

C. Wohlin, P. Runeson and J-E. Johansson, "When Is the Software Reliability
Estimate Reliable?", Proceedings Bellcore/KPN/Purdue Workshop on Issues in

Software Reliability", Leidschendam, The Netherlands, 1995.

 1

When Is the Software Reliability
Estimate Reliable?

Claes Wohlin1 Per Runeson2 Jan-Eric Johansson3

1) Dept. of Communication Systems, Lund Institute of Technology,
 Lund University, Box 118, S-221 00 Lund, Sweden,
 E-mail: claesw@tts.lth.se

2) Q-Labs AB, Ideon Research Park, S-223 70 Lund, Sweden,
 E-mail: pr@q-labs.se

3) Telia AB, S-205 21 Malmö, Sweden,
 E-mail: Jan-Eric.Johansson@materials.telia.se

Abstract

It is of paramount importance that software reliability requirements not only can be
formulated, but also enforced and evaluated before accepting a software product for
release. This requires sound acceptance criteria for software, which implies that
methods for evaluating the software reliability are needed during the testing phase.
Thus, theoretical models which are practically applicable are needed. These models
should support software procurers in their difficult task of objectively accepting
software products prior to releasing them for operation. This paper addresses this issue
through studying two possible models for when to stop testing and accepting the
software. The models are discussed with one particular software reliability growth
model in mind, but the approach can be enlarged to take other software reliability
growth models into account. The proposed stopping rules are illustrated on a set of
failure data. It is concluded that it is indeed possible to evaluate and hence accept
software products based on a software reliability estimate, including confidence in the
estimate.

1. Introduction

A major problem in software reliability engineering is the problem of when to accept a
software product based on some estimation of the current reliability level. Software
reliability growth models are applied to estimate the current reliability level and to
predict the forthcoming reliability growth. These models must, however, be combined
with acceptance criteria of the software. It is not enough that the growth models

* This work is supported by National Board for Industrial and Technical Development (NUTEK),
Sweden, reference Dnr: 93-2850.

 2

estimate that the reliability exceeds a certain required value, we must know with a
certain confidence that the software fulfils whatever reliability requirement set on it.
Thus the following question must be answered: When is the software reliability
estimate reliable? This is often referred to as the stopping rule problem in software
reliability engineering, as it is concerned with the problem of when to stop testing and
release the software.

The stopping rule problem has been discussed in several articles, see for example
[Krten80, Wohlin90]. The problem is here studied further based on a particular software
reliability model, although a similar approach can be taken for other models, and with
the objective to provide a practical useful acceptance rule. This implies that the
emphasis is on a method practical applicable, which however should have a theoretical
basis. Two different stopping rules are described and then exemplified on a data set.

The software reliability model used throughout this paper is the model presented in
[Currit86]. This model is the model normally referenced in the Cleanroom literature,
therefore henceforth referred to as the Cleanroom software reliability growth model.
The model is briefly introduced in Section 2, before introducing the two stopping rules
in Section 3. The two rules are illustrated on real failure data in Section 4 and then
finally some conclusions are presented in Section 5.

2. The Cleanroom software reliability growth model

The software reliability model discussed in connection with Cleanroom is as follows:

MTBFk = A * Bk , with k = 0 (1)

This form is supposed to describe the change in MTBF (Mean Time Between Failures)
when faults are corrected. The model is discussed in detail in [Currit86]. The
parameters A and B are estimated from the collected failure data by taking the
logarithm of the equation and then applying the minimum square method. This gives
estimates of A and B and in particular it is possible from the equation to predict future
failure occurrences. From the value of MTBF, it is possible to calculate the reliability of
the software. Thus meaning that based on a required reliability, it is possible to evaluate
the software against this requirement. The problem is, of course, even easier if the
requirement is formulated in terms of MTBF.

It can be worth noting that A can be seen as the estimated value of MTBF0 based on
the failures observed. B is a measure of the growth in MTBF between two consecutive
failures. This can be interpreted as follows, if B is 1.1 we have a 10% growth in the
MTBF between two consecutive failures.

The model is in particular more appealing than some other proposed models, for
example, the models of Jelinski-Moranda [Jelinski72] and Goel-Okumoto [Goel79].
The reason being that these model use the maximum likelihood estimation method. This
clearly cause problems if the number of data points is small. The objective is to develop
high quality software, which indicates that the model to be used should be able to
handle software with few failures. The faults made should have been detected before the
testing phase, or even better never made in the first place. This is the actual meaning of

 3

certification as it is discussed within Cleanroom, i.e. the high quality should be proven
and testing should be aimed at certification, i.e. the objective is not fault detection. It
should, however, be noted that if we succeed in developing software, which is almost
fault free prior to the testing phase, which is the objective with Cleanroom, then
software reliability growth models are not suited at all.

The model proposed in Cleanroom is simple and easily understood. The calculation of
the parameters is also simple, although from a theoretical point of view a number of
correction factors should be used due to that we take the logarithm of Eq. 1 before
determining the model parameters. The correction factors are discussed in [Currit86].
They are, however, not used in this study as it is believed that from a practical
viewpoint there are more critical problems, for example, data collection and criteria for
acceptance. A major question remaining is the ability of the model to predict future
failure behaviour as well as the reliability in the reliability estimate. These aspects are
discussed further below.

 4

2. The stopping rule problem

2.1 Introduction

It is not enough that the model estimates that the reliability exceeds the required
reliability one time, there has to be a better criterion for when to stop the certification.
The criterion ought to be based on statistics, i.e. how certain is the estimate of the
reliability. The main reason for needing a stopping criterion is that the model only
estimates the mean time between failures and it does only take the stochastic variations
into consideration in the estimation process. Even if the model may predict an MTBF
which is larger than the requirement, it is not certain that the reliability constraint is
fulfilled. The model may predict a high value due to some high values in the beginning,
which are a result of the stochastic variations of failure occurrences. It may also be the
case that although the prediction is correct, i.e. the right mean value is predicted, the
large stochastic variations may mean that several failure occurrences will be worse than
the required reliability. That is, the failures will occur more frequently than required.
This is quite natural and it has to be accepted. The procurer may, however, want to
know how the stochastic variations influence the estimated MTBF and to know with a
certain confidence that the estimated MTBF fulfils the reliability requirement. This is
not explicitly discussed in the presentation of the Cleanroom software reliability growth
model.

The Cleanroom software reliability growth model estimates an MTBF value, but does
not say anything about the variations. Two different types of probabilities that are of
interest can be identified:
• the probability that the estimated MTBF is higher than a predefined value. This

probability covers the stochastic variations.
• the degree of confidence that the estimated MTBF is within certain limits. This

probability covers the statistical uncertainty in the estimate itself.
The first probability gives the probability for a specific value, while the second is a
measure of the uncertainty around the value. There is, however, a coupling between
these two, which is further discussed after studying them separately. The two different
approaches mentioned above are investigated: the stochastic variations and the
statistical confidence in the estimate. First the stochastic variations are taken into
consideration (Section 2.2-2.5) and then the certainty in the estimate itself is discussed
(Section 2.6). In Section 2.7 the coupling between the two approaches is described.
Section 2.8 describes a stepwise method of how to apply the two different stopping
rules.

2.2 Distribution of the stochastic variations

The user of the model would like to know how probable it is that the MTBF actually
fulfils the requirement, i.e. that the MTBF is stable above the required value. This
knowledge can only be obtained if a distribution is assumed. The failures occur
randomly based on the usage profile. It is therefore natural to assume that the actual
times for failures are distributed according to an exponential distribution, with the mean
value as predicted by the Cleanroom model. Mean value according to Cleanroom:

MTBFk = A* Bk (2)

 5

A required mean time between failures is the basis for stopping the testing, i.e. to accept
the software as fulfilling the reliability requirement. This requirement is denoted
MTBFc .

The probability density function of the assumed exponential distribution can be written
as:

fk(x) = µk e-µkx , with µk =
1

A*Bk (3)

The probability distribution is simply:

Fk(x) = 1 - e-µkx (4)

2.3 Stochastic basis

The objective is to find a way to determine if the software can be accepted, not only
based on the estimation of a mean value but with a certain confidence, i.e. in other
words with a calculated risk. The aim is to formulate a method that estimates the risk of
accepting a product not fulfilling the requirements. The method should be based on both
the risk that the mean value by chance is high and the actual trend of the reliability
estimate.

Based on the formulas in the previous section, it is possible to formulate a stochastic
basis for acceptance of software products. The confidence that the actual MTBF is
above the requirement can be estimated through the estimated MTBF and a fictitious
new outcome. This is determined so that the estimate after the fictitious value equals the
requirement. Based on the fictitious value that fulfils this relationship, it is possible
from the exponential distribution to determine the probability that the next estimated
MTBF equals the requirement. If the estimate is high above the requirement the
fictitious value can be quite low, which results in a low probability (i.e. low risk) that
the next estimation of the MTBF will be as low as the requirement. This reasoning can
be applied when the estimate is above the requirement. The proposed way of evaluating
the confidence is better explained through some equations and figures.

Let us assume that the number of failures that have occurred is k and that MTBFk+1 is
higher than the required MTBF. MTBFk+1 is the next expected time to a failure and it
is estimated as

MTBFk+1 = Ak * Bk
k+1 (5)

The next step is to determine the fictitious outcome, i.e. outcome k+1 (denoted
Outcome1(k+1)), that makes the next estimated MTBF equal to the requirement,

MTBFk+2 = Ak+1 * Bk+1
k+2 = MTBFc (6)

The probability that MTBFk+2 equals or is less than MTBFc can be calculated based
on MTBFk+1 and the fictitious outcome k+1 as

 6

P1 = P(MTBFk+2 ������c) = 1 - e- Outcome1(k+1) / MTBFk+1 (7)

Another possible application of this is to determine a second fictitious outcome k+1
(denoted Outcome2(k+1)) that makes MTBFk+2 less or equal than MTBFk+1 . This
can be used to determine the trend, since MTBFk+2 ought to be larger than MTBFk+1
, i.e. if B is larger than 1. This is true if we have a reliability growth, which should be
the case. This probability is calculated as

P2 = P(MTBFk+2 ������k+1) = 1 - e- Outcome2(k+1) / MTBFk+1 (8)

The equation including MTBFc is illustrated in Figure 1. The other equation can be
illustrated in a similar way.

x
x

x
x

x

Failure
number

Time to failure

x

x

x

k

1

1 The estimated curve based on k outcomes

2

2 Estimation of MTBF

MTBFc

k+1

3

3 The level of the required MTBF, i.e. MTBFc

4

4 Fictitious outcome k+1, which makes the new estimated curve at
the point k+2 to be equal to the requirement, see also 5.

5

5 The new curve is estimated based on the k actual
outcomes and the fictitious outcome k+1. The curve
is estimated to reach the requirement after k+2
outcomes.

6

6 The possible outcome is assumed to be distributed
according to an exponential distribution, i.e. between
zero and infinity.

7

7 The probability space that the estimated curve actually will equal or be below
the requirement after k+2 outcomes.

The calculated probability is a measure of certainty that the
MTBF will be above the requirement in the future as well.

Figure 1: An explanation of the proposed probability calculations.

This illustrates the way we obtain the probabilities that should be used as a stochastic
basis to determine whether we are prepared to accept the estimated reliability or not. We

 7

will return to these two probabilities below, but first we have to deal with the problem
of determining the fictitious outcome.

2.4 Determining a fictitious outcome

The basic problem is that the MTBF is a function of the parameters A and B, which are
estimated based on the failure data. The problem encountered is to determine a
particular outcome that, when the parameters are estimated, gives the wanted MTBF. It
is not possible to invert the function, but by introducing a search algorithm it is possible
to achieve the objective.

The fictitious outcome is determined with the following algorithm, which also is
illustrated in Figure 2:
1. Determine which of the two probabilities to find the fictitious outcome for, i.e.

Outcome1(k+1) or Outcome2(k+1). The rest of the algorithm is described
assuming that we are interested in Outcome1(k+1). The algorithm is exactly the
same for Outcome2(k+1).

2. Two variables High and Low are introduced as a help to locate the right fictitious
value. High is initially given a value that is higher than the estimated MTBF, i.e.
MTBFk+1 . Low is set to 0 (zero).

3. Outcome1(k+1) is first set to MTBFk+1 . This should result in that MTBFk+2 is
higher than MTBFc , since B should be higher than 1.

4. The new curve is calculated, i.e. MTBFk+2 = Ak+1 * Bk+1
k+2 .

5. If MTBFk+2 > MTBFc then
 High = Outcome1(k+1)
 else
 Low = Outcome1(k+1);
6. The fictitious outcome, Outcome1(k+1) is given a new value, i.e.
 Outcome1(k+1) = (High-Low)/2 + Low.
7. If (MTBFk+2 = MTBFc) or (Outcome1(k+1) = High or Low) then
 The search is ready and the right Outcome1(k+1) has been found.
 else
 Goto 4.

 8

MTBF

Iteration j

High(0)

Low(0)

x

x
x

x x

High(1)

High(2) High(3)

Low(1)
Low(2)

Fictitious
outcome

x

The value of High and Low are changed until MTBF
equals the requirement (MTBF k+2c or MTBFk+1 Outcome1 and Outcome2 respectively).

x - Calculated MTBF

for

Figure 2: Algorithm for determination of a particular MTBF.

In Figure 2, it can be seen how the algorithm changes High respectively Low depending
on the estimated MTBFk+2 so that it finally reaches the requirement, which can be
either MTBFc or MTBFk+1 depending on the probability to be calculated.

The proposed way of calculating the fictitious outcome, as well as the determination of
the probabilities will become clearer in Section 3 where an example is presented.

2.5 Evaluation criteria

The interpretation of the probabilities has to be discussed a little further. The first
probability (based on Outcome1(k+1)) is a measure of the confidence. The second one
is a little more difficult to interpret, but it is possible to see it as a probability for the
trend. A low value of the second probability means that there is a little probability that
MTBFk+2 is lower than MTBFk+1 . This means that there is only a small risk that the
curve will have a downward tendency in comparison. Suppose that there should only be
a risk of 5% that the MTBFk+2 is less than MTBFc and that we would like it to be
twice as probable that the curve has an upward tendency as a downward. Theis means
that the value of the second probability should be 0.333. Other values of this probability
is calculated from: 1 / (1 + No. of times the upward tendency should be larger than the
downward tendency), i.e. in our small example 1 / (1 + 2) = 0.333.

One problem remains, however, if the risk (see 5% above) is much smaller than the
acceptance level, then the tendency requirement can be loosened. The reason is, of
course, that if our estimated MTBF is high above the requirement, then the tendency is
not particular interesting. But for values close to the requirement, it is reasonable to
assume that we want be pretty sure that the tendency is upwards.

Proposal:
• Determine the two probability requirements, P1(req.) and P2(req.), see Eqs. 7 and

8 for explanation of P1 and P2.
• Evaluate P1 separately, i.e. is P1 < P1(req.). (Example: Check if P1 < 0.05).

 9

• Evaluate the product of P1 and P2. The first evaluation has to succeed before this
second evaluation is performed. The product should be less than the product of the
required values, i.e. P1 * P2 < P1(req.) * P2(req.). (Example: P1 is smaller than
0.05. Check if P1 * P2 < 0.0167).

The proposed stochastic stopping rule based on the reliability model suggested in
Cleanroom will be applied on an example in Section 3.2 to explain the practical use of
the proposed scheme.

2.6 The confidence in the estimated MTBF

In the previous sections, it has been shown that it is possible to determining a
probability that the estimated MTBF is higher than a predefined value. The statistical
confidence in the estimate has, however, not been treated. This problem will be
addressed in this section.

The parameters, in the Cleanroom software reliability model, are estimated after taking
the logarithm of Eq. 1, and then these are put into the unlinear equation and through this
an approximation of the curve is obtained. The confidence of the estimate is obtained in
a similar way, i.e. from the linear curve and then transformed to the unlinear case. The
confidence interval for the estimated MTBF can be calculated as follows.

For simplicity let x = ln(MTBF).

First some help variables are introduced to simplify the rest of the calculations, where n
is the number of data points. Let:

Sxx = ∑
i = 0

 n-1

 (xi)
2 -

1
n * (∑

i = 0

 n-1
 xi)

2 (10)

Skk = ∑
i = 0

 n-1

 (ki)
2 -

1
n * (∑

i = 0

 n-1
 ki)

2 (11)

Skx = ∑
i = 0

 n-1
 (xi* ki) -

1
n * (∑

i = 0

 n-1
 ki) * (∑

i = 0

 n-1
 xi) (12)

From these we obtain

Q0 = Sxx -
(Skx)2

 Skk
 (13)

The estimated standard deviation of the one value becomes

s = Q0 / (n-2) (14)

 10

Letting ke be the value of k at which the confidence interval should be calculated, we
obtain the mean error in the estimate as

d = s *
1
n +

(ke - kmean)2

 ∑
i = 0

 n-1

 (ki - kmean)2

 (15)

where

kmean = (∑
i = 0

 n-1
 ki) / n (16)

The confidence interval at ke becomes

Ix = (xmean - ta/2(f) * d, xmean + ta/2(f) * d) (17)

with

f = n-1 (i.e. the number of degrees of freedom)

and

xmean = (∑
i = 0

 n-1
 xi) / n (19)

This interval is a two-sided confidence interval with 1-a as confidence degree. The t-
value is found in tables of the t-distribution, which is a function of f and the confidence
degree.

These calculations should now be formulated as a stopping rule. This is done by
determining the degree of confidence wanted. It should be noted that a 95% confidence
means that a 90% confidence degree should be used in the calculations. The reason is
that only the lower limit is of interest, i.e. 5% is below the lower limit. The confidence
interval is calculated from the estimated MTBF, the estimated standard deviation of the
estimate and a value from the t-distribution. The value depends on the confidence
degree wanted and the number of observations.

A simple example: Assume that the confidence interval for ln(MTBFk) is (7.3303,
7.9195) with a mean value of 7.6249. The confidence interval for MTBFk is obtained
by applying the exponential function, i.e. (exp(7.3303), exp(7.9195)) with a mean value
exp(7.6249), i.e. (1526, 2750) with mean value 2049. It can be observed that the
symmetric confidence interval in the linear case becomes asymmetric when applying
the exponential function. The stochastic variations give the outcomes that is the input to
the estimation of the curve. The uncertainty in the estimate is shown by the confidence
interval, see Figure 3. The asymmetry in the confidence interval indicates that further

 11

theoretical work is needed, although the proposed scheme may be a suitable starting
point from a practical viewpoint.

x
x

x

x
x

x

x

xx - Outcomes

MTBF curve based
on the outcomes

Confidence
interval for
MTBF estimate

Outcome
number k

MTBF

MTBF
estimated
value at k

k
k

Figure 3: Outcomes, estimated curve and confidence interval

The stopping rule is simply that when the lower limit of the defined confidence interval
is over the requirement, then the software is accepted. This means that with the
confidence degree chosen the estimate of the MTBF is over the required MTBF. The
stopping rule is based on the fact that the MTBF ought to be over the requirement if the
whole confidence interval is over it.

The application of the statistical stopping rule is shown in an example in Section 3.2.

The trend is missing for this rule. In the future it ought to be possible to extend the rule
to capture this aspect as well. The confidence interval can be determined, which also
ought to mean that it is possible to determine the probability that the value is above a
specific value assuming the t-distribution (normal distribution with unknown standard
deviation).

2.7 Relationship between the two stopping rules

The stochastic stopping rule implies that the estimate of MTBFk+2 is over the
requirement at k+2 with the probability level chosen as a suitable acceptance
confidence. The estimate is based on the real outcomes and the fictitious outcome at
k+1, where the value of the fictitious outcome is determined from the confidence
required. This means that it is possible to choose a probability that says that for example
in 95% of the cases the MTBFk+2 is above a specific value, i.e. for example the
requirement.

The statistical stopping rule on the other hand gives a confidence interval in which the
estimated MTBF is with the specified confidence degree. This means that if the
assumptions of the models were perfect, the models should be close to each other at the
lower limit of the confidence interval. The stochastic rule should give the point which
equals the lower limit of the confidence interval, see Figure 4.

 12

x
x

x

x
x

x

x

x
x - Outcomes

MTBF curve based
on the outcomes for
the statistical rule

Outcome
number

MTBF

k

MTBFc

Confidence
interval for
MTBF estimate

k+1 k+2

Confidence
interval for
MTBF estimate

Fictitious outcome

k+1 k+2

MTBF curve based on the outcomes
and the fictitious outcome
for the stochastic stopping rule

The point where the rules
theoretically should be close.1

2
6

3

4

5

Figure 4: Relationship between the stopping rules.

The numbering in the figure can briefly be described as:
1. The curve is calculated based on k outcomes and its predicted behaviour is shown

for k+1 and k+2.
2. The requirement is shown with a horizontal dashed line.
3. The confidence intervals for the predicted values of MTBFk+1 and MTBFk+2

are shown in the figure. The lower limit of the confidence interval for MTBFk+2
is in this case exactly on the requirement. This is not always the case, it might be a
bit above the requirement since the interval is only calculated at discrete points in
time, i.e. k, k+1 and k+2.

4. A fictitious outcome is determined for the stochastic stopping rule.
5. Based on the k outcomes and the fictitious one, a new line is calculated. This line

reaches the requirement at k+2.
6. This means that the line calculated from the stochastic rule and the lower limit of

the confidence interval for the statistical rule is close to each other at the
requirement.

It must be noted that the line calculated for the stochastic stopping rule always will meet
the requirement exactly, while the interval calculated from the statistical stopping rule
will be equal or larger than the requirement. The reason for this being that the
calculations are performed at discrete points in time.

The two stopping rules should theoretically be close to each other at the point indicated
in Figure 4. This is, however, not the case practically, since the assumptions are not
completely fulfilled. The stochastic rule assumes that the time between failures is
exponentially distributed, while the statistical rule is based on the normal distribution
around the line. Another aspect making the results slightly different, when applying the
rules practically, is the fictitious outcome. This outcome actually means that the
calculations for the stochastic rule is made with one more outcome. In particular, it is
made with the knowledge of a bad outcome, i.e. a short time between failures. The
picture is further blurred because of the unlinear relationship describing the MTBF.

 13

The main advantage with the stochastic rule is the opportunity to study both the
requirement as well as the trend. The disadvantage is mainly its complexity in both
understanding and computation effort. The statistical stopping rule is simpler
theoretically, which includes understanding. This is clearly an advantage. The major
disadvantage is its inability to capture the trend. This disadvantage may be possible to
remove, which has to be further examined in the future.

Although the models should give similar results, it is recommended to use both models
until more experience is gained.

2.8 Method for applying the stopping rule

The techniques described above in Sections 2.2-2.6 can be formulated in a method for
applying the two stopping rules. The following method is proposed, where A is for the
stochastic stopping rule and B for the statistic stopping rule:

1. Determine the reliability requirement, preferably in terms of an MTBF

requirement, or so that the requirement can be recalculated to an MTBF
requirement.

2A. Determine the probability requirements, i.e. the risk and the trend probabilities,
see section 2.5.

2B. Determine the confidence degree wanted in the estimate, see section 2.6.
3. Estimate the curve as proposed in the Cleanroom literature, i.e. make a linear

regression and then transform it to the unlinear case, see Section 2.6.
4A. Determine the fictitious outcome that makes the next MTBF exactly equal to the

requirement, see Sections 2.2 and 2.3.
4B. Based on the results from the previous item a confidence interval is calculated for

the unlinear case, see Section 2.6. An evaluation is then carried out.
5A. Calculate the risk probability, P1, based on the fictitious one, see Section 2.2.
6A. Evaluate the obtained value of P1 compared to the risk probability determined in

item 1, see Section 2.5.
7A. Determine a new fictitious outcome that makes the next MTBF equal to the

previous prediction, see Section 2.2 and 2.3.
8A. Calculate the trend probability, P2, based on the second fictitious outcome, see

Section 2.2.
9A. Evaluate the obtained value of P2 compared to the required product of the risk

probability and the trend probability, see Section 2.5.

Every item of the proposed method should, of course, not be carried out at all times. For
example, if the evaluation of P1 says that the software should not be accepted then the
rest of the items have not to be carried out.

3. Example

In Appendix A, a table with failure data is presented. The data are used to illustrate and,
to some extent, evaluate the ideas presented above.

3.1 Stochastic stopping rule

The requirements are as follows:

 14

MTBFc = 1500
P1(req.) = 0.05
P2(req.) = 1/3 ���	

It should be observed that k in the table is calculated from 0 and upwards, since the first
MTBF normally is denoted MTBF0 . The actual numbering of the failures is of minor
interest. The stopping rule should be applied after 4, 5 and 19 failures, since the
predicted MTBF is larger or equal than 1500. These three cases have been investigated,
but they are not shown here. The software was not accepted after 4, 5 or 19 failures
have occurred. The next time the estimated MTBF is larger than 1500 is for k = 20, i.e.
21 failures have occurred.

In particular, it must be noted that if the mean value was the only criterion, then the
software should have been accepted after 4 failures (k = 3). It is from the rest of the
failure data obvious that this would have been too early, and that the high estimate is
simply obtained based on a number of high values in the beginning. This indicates the
importance of confidence in the estimate.

First calculation:

k = 20, see table in Appendix A. The calculation gives:

MTBF21 = A20 * B20
21 = 189.4097 * 1.113321 = 1804 (see table).

Let High = 10000, Low = 0 and Outcome1(21) = 1804 => MTBF22 = 2009
This means that MTBF22 > MTBFc => High = 1804 and Outcome1(21) = (High-
Low) / 2 + Low = (1804 - 0) / 2 + 0 = 902 => MTBF22 = 1771.
=> High = 902, Outcome1(21) = 451 => MTBF22 = 1563
=> High = 451, Outcome1(21) = 226 => MTBF22 = 1376
=> Low = 226, Outcome1(21) = 339 => MTBF22 = 1484
=> Low = 339, Outcome1(21) = 395 => MTBF22 = 1526
=> High = 395, Outcome1(21) = 367 => MTBF22 = 1504
=> High = 367, Outcome1(21) = 353 => MTBF22 = 1494
=> Low = 353, Outcome1(21) = 360 => MTBF22 = 1501
=> High = 360, Outcome1(21) = 357 => MTBF22 = 1496
=> Low = 357, Outcome1(21) = 359 => MTBF22 = 1498
=> Low = 359, Outcome1(21) = 360 => MTBF22 = 1501

The value of Outcome1(21) is now equal to High and has to be accepted as the best
fictitious value even if MTBF22 is not exactly equal to MTBFc . For accepting rules
see above in the presented algorithm. This calculation procedure is easily implemented
into a program. Based on the fictitious outcome the probability P1 can be calculated,

P1 = 1 - e- Outcome1(21) / MTBF21 = 1 - e- 360 / 1804 = 0.181

The value of P1 is clearly above the requirement, i.e. the software is not accepted. This
means that it is unnecessary to calculate P2 and consequently Outcome2(21).

 15

Second calculation:

The next real outcome is 3798. This gives MTBF22 = 2301. The search for the
fictitious outcome results in that Outcome1(22) = 101. The calculation of P1 gives

P1 = 1 - e- Outcome1(22) / MTBF22 = 1 - e- 101 / 2301 = 0.043

which is better than the required maximum risk, P1(req.) = 0.05. This means that the
value of Outcome2(22) has to be determined so that MTBF23 after the next outcome is
equal to MTBF22 . This results in Outcome2(22) = 1187, which gives

P2 = 1 - e- Outcome2(22) / MTBF22 = 1 - e- 1187 / 2301 = 0.403

The product of P1 and P2

P1 * P2 = 0.043 * 0.403 = 0.0173

but the requirement is

P1(req.) * P2(req.) = 0.05 * 0.333 = 0.0167

The software can not be accepted due to the second evaluation criterion. The upward
trend is not strong enough compared to P1, which means that the software is not
accepted.

Third calculation:

The next outcome is 2775 from this follows that MTBF23 is equal to 2671. The next
fictitious outcome is Outcome1(23) = 41. This lead to that

P1 = 1 - e- Outcome1(23) / MTBF23 = 1 - e- 41 / 2671 = 0.015

which means that the first evaluation criterion is fulfilled, i.e. P1 < P1(req.). The value
of Outcome2(23) is then determined, Outcome2(23) = 1316. P2 can now be calculated

P2 = 1 - e- Outcome2(23) / MTBF23 = 1 - e- 1316 / 2671 = 0.389

The product between P1 and P2 is now determined

P1 * P2 = 0.015 * 0.389 = 0.0058

which is clearly below the required value 0.0167.

The software is accepted based on the Cleanroom software reliability growth model and
the stochastic stopping rule introduced here after 23 failures (k = 22 in the table).

3.2 Statistical stopping rule

 16

The statistical stopping rule can be applied when the estimate of the MTBF fulfils the
requirement. The question is if this also means that the confidence interval for the
estimate fulfils the requirement. The calculation of the confidence interval is carried out
with well known statistics, see Section 2.6. The calculation of the confidence interval is
carried out when the next estimated time between failures fulfils the requirement.

The first time the requirement is fulfilled is for k = 3 (4 failures have occurred). The
value of MTBF4 (from curve) = 2291, with 90% confidence interval (2291 - 1750,
2291 + 7409) = (541, 9700). Since only the lower limit is of interest the interval says
that with a confidence degree of 95% is the estimate over 541. This means that the
software is not accepted.

The calculation is continued until the confidence interval is over the requirement.

k = 4: MTBF5 = 1587 with interval (325,7737).
k = 20: MTBF21 = 1804 with interval (961, 3389).
k = 21: MTBF22 = 2301 with interval (1250, 4234).
k = 22: MTBF23 = 2671 with interval (1492, 4777).
k = 23: MTBF24 = 2953 with interval (1698, 5128).

Finally, the interval is over the requirement on 1500, which means that the software is
accepted after 24 failures based on the statistical stopping rule. The software was close
to being accepted after 23 failures, but the confidence interval was just below the
requirement, hence is could not be accepted.

4. Conclusions

Two ways of determining when to stop testing have been examined. The stochastic
stopping rule is supposed to capture the stochastic variations in the failure process. The
statistical stopping rule is formulated to capture the uncertainty in the estimated MTBF.
The two rules give the following points in time when the testing should be stopped, for
the example presented:

Stochastic stopping rule: 23 failures
Statistical stopping rule: 24 failures

The proposed rules show that it is possible to formulate test stopping criteria, and hence
to accept the software based on a reliability requirement. The stochastic stopping rule
shows that it is possible to formulate a rule that captures both the risk and the trend. The
statistical stopping rule is an example of how a rule can be formulated based on the
statistical uncertainty in the estimate. These rules are not supposed to be perfect, but it
is believed that they can work as reasonable tools for when to stop testing and
consequently accepting the quality level of the software.

Currently, it is recommended to apply both rules until more experience is gained.The
results from the example indicate, however, that the choice is probably not critical since
the rules accept the software very close in terms of the number of failures, at least in
this particular example. It should, however, be observed that even if there is a small
difference in the number of failures, the actual time until the software is accepted can

 17

vary. The reason, of course, being that the time between failures ought to be quite long
near the acceptance. The difference in time may hence be quite large although there is
only one failure outcome that differs between the two rules. This is one of the reasons
that it is necessary to apply both rules until more experience has been gained. It is, of
course, important not to test the software unnecessarily long but on the other hand it
should not be accepted until the requirement is fulfilled.

One conclusion is that the actual choice between which of the rules to use in practice
has to be further investigated both theoretically and by applying the proposed rules to
failure data. It is necessary to study advantages, disadvantages, similarities, differences
and realism of the proposed stopping rules. In particular, the opportunity of capturing
the trend with the statistical rule as well must be investigated thoroughly.

The perhaps most important conclusion is that it is possible to apply the software
reliability growth model proposed in Cleanroom and in particular it is possible to
determine when the test phase should be considered to be completed based on the
requirements and the model, including the stopping rule.

References

[Currit86] Currit, P. Allen, Dyer, Michael and Mills, Harlan D., ”Certifying the

Reliability of Software”, IEEE Transactions on Software Engineering,
Vol. SE-12, No. 1, 1986, pp. 3-11.

[Jelinski72] Jeliniski, Z., and Moranda, P., ”Software Reliability Research”,
Statistical Computer Performance Evaluation, 1972, pp. 465-484.

[Goel79] Goel, Amrit L., and Okumoto, Kazuhira, ”Time-dependent Error-
Detection Rate Model for Software Reliability and Other Performance
Measures”, IEEE Transactions on Reliability, Vol. R-28, No. 3, 1979, pp.
206-211.

[Krten80] Krten, O. Joe and Levy, Dave, ”Software Modelling for Optimal Field
Entry”, Proc. Annual Reliability and Maintainability Symposium, pp.
410-414, 1980.

[Wohlin90] Wohlin, Claes and Körner, Ulf, ”Software Faults: Spreading, Detection
and Costs”, Software Engineering Journal, Vol. 5, No. 1, pp. 33-42,
1990.

 18

Appendix A: Failure data

The failure data is presented in [Currit86]. In our context it is used to evaluate the ideas
presented regarding the software reliability models and in particular to illustrate the
results presented.

 k Outcome(k) B(k) A(k) MTBF(k+1)

0 85 - - -
1 85 1 85 85
2 479 2,3739 63,7186 852,4
3 965 2,4639 62,1568 2290,8
4 469 1,7942 85,3594 1587,1
5 385 1,4655 111,7926 1107,5
6 796 1,4146 118,5845 1344,2
7 277 1,2401 154,2923 863
8 927 1,246 152,587 1104,5
9 340 1,1685 181,1194 859,5

10 405 1,1292 200,682 763,8
11 150 1,0607 247,2463 501,5
12 277 1,0401 265,6252 442,8
13 503 1,0439 261,7971 477,7
14 694 1,0537 251,422 551
15 620 1,0564 248,3864 597,6
16 4050 1,0968 205,9106 990,5
17 3064 1,1188 185,2693 1397,5
18 522 1,1015 202,3233 1269,8
19 1797 1,107 196,3941 1500
20 2329 1,1133 189,4097 1804,1
21 3798 1,1232 178,5941 2301
22 2775 1,1255 176,066 2670,7
23 2393 1,1243 177,4855 2953,5
24 909 1,1121 192,9082 2747,6
25 994 1,1025 206,7968 2614,5
26 28212 1,1235 176,6877 4099
27 14956 1,1343 162,631 5541
28 1971 1,1262 173,4047 5443,9
29 5308 1,126 173,6788 6108
30

