

T. Thelin, H. Petersson and C.Wohlin, "Sample-Driven Inspections", Proceedings
Workshop on Inspection in Software Engineering (WISE'01). M. Lawford and D.L.

Parnas (editors), pp. 81-91, Paris, France, 2001.

Sample-Driven Inspections

Thomas Thelin and Håkan Petersson
Dept. of Communication Systems,

Lund University
{thomas.thelin, hakan.petersson}@telecom.lth.se

Claes Wohlin
Dept. of Software Eng. and Computer Science

Blekinge Institute of Technology
claes.wohlin@bth.se
Abstract
The main objective of software inspections is to find

faults in software artefacts. The benefits of inspections are
reported from researchers as well as software organiza-
tions. In some studies, the fault detection in inspections has
shown to be more efficient than other validation and verifi-
cation activities. A problem, however, is that inspections
sometimes are not as efficient and effective as expected. The
reason may be that the software artefact inspected contains
few faults. In addition, when a software project runs late, in-
spections are often not properly conducted. This leads to
that many faults are not detected, valuable time is lost and
people’s trust in inspections is affected negatively. Sample-
Driven Inspections (SDI) provides a solution to these prob-
lems. The concept of SDI uses sampling, inspection and re-
source scheduling to increase the efficiency of an inspection
session. SDI uses a pre-inspection phase in order to deter-
mine which artefacts need more inspection time, i.e. which
artefacts contain most faults. The second phase of SDI is a
main inspection with a special attention on the artefacts
with most faults. In this paper, the SDI method is described
and empirical evidence is provided, which indicates that the
method is appropriate to use. A Monte Carlo simulation is
used to evaluate the proposed method. Furthermore, the pa-
per discusses the results and important future research in
the area of SDI.

Keywords
Empirical study, Monte Carlo Simulation, Software In-

spection.

1. Introduction

High quality, and by that reliability, is built into the soft-
ware throughout its development. Thus, techniques to in-
crease quality throughout software development are
important to ensure delivery of high quality software. In-
spection is an efficient technique to detect faults throughout
the software development process. Several research papers

have reported on the benefits of using inspections [4][7]
[8][15]. The main purpose of inspections is to detect faults.
Empirical research focuses on improving inspections to be
more effective and efficient. Different inspection processes,
and variants of them, have been proposed since the formal-
ization of the first inspection process [7]. In this paper, in-
spections are considered to have three main phases:
preparation, meeting and fault correction. The aim of these
phases is fault searching, fault gathering, and fault correc-
tion, respectively.

Different aspects of making software inspections more
efficient and effective have been investigated empirically
by many researchers. The research focuses on three im-
provement factors for inspections, lead-time, effectiveness
and efficiency (effort). Lead-time reduction has been evalu-
ated by cancelling the inspection meeting and is defined as
the calendar time between two points during development.
Efficiency and effectiveness have been investigated by im-
proving the reading technique and by changing the process.
Efficiency is defined as the number of (severe) faults found
per time unit and effectiveness is defined as the number of
(severe) faults found of the total number of (severe) faults.

Sample-Driven Inspections (SDI) is a method to reduce
the effort in an inspection session. The aim of the method is
to concentrate the inspection effort on the software artefacts
that contain most faults. SDI divides the fault searching into
two parts. First, samples of the artefacts are inspected in or-
der to estimate which artefacts contain most faults (pre-in-
spection). Second, an inspection is carried out for these
artefacts (main inspection). It is important to notice that SDI
does require neither any special type of reading technique
nor any special preparations for the reviewers. This means
that any type of reading technique can be used when apply-
ing SDI.

Gilb and Graham [8] and Burr and Owen [2] have pro-
posed sampling of software artefacts, although leaving sev-
eral open research questions, including, for example,
sample size and number of reviewers. They suggest inspect-
ing part of a software artefact in order to determine whether
the artefact is ready for the main inspection. Gilb and Gra-
ham [8] argue that the same types of faults exist in different

forms throughout the same document. Hence, a sample of
one or some pages would be enough to get a picture of the
fault distribution in a software document. Gilb and Graham,
as well as Burr and Owen, describe sampling as a way to
make inspections more efficient and effective. SDI uses the
sampling part and defines a method, which provides soft-
ware organizations with the opportunity to increase their in-
spection performance.

This paper consists of two parts. The first part introduces
the concept of SDI, which constitutes three parts: sampling,
inspection, and resource scheduling. Neither of these parts
is new. The novelty is the combination and empirical inves-
tigation of the method. The second part is a Monte Carlo
simulation that provides an investigation of SDI as an in-
spection method. The important parameters that are investi-
gated are sample accuracy, the number of reviewers, the
ability of the reviewers and the percentage inspected in the
pre-inspection (sample size).

The main result from the simulation is that the method
works and is appropriate to use. The results are valid even if
the sample accuracy is low, which indicates that the method
is robust enough to be further studied. Further work in-
cludes experimentation with sampling and effort schedul-
ing, as well as case studies in industrial settings.

The paper is structured as follows. The Sample-Driven
Inspection method and different aspects related to SDI are
presented in Section 2. In Section 3, the simulation model is
described together with a discussion of the document pro-
files used, where a document profile refers to how the faults
are distributed across the document. The results and a dis-
cussion of the results are presented in Section 4 and Section
5. In Section 6, the main conclusions are presented and
some areas for future research are identified.

2. Sample-Driven Inspections: Method De-
scription

2.1. Overview and Motivation

In software development, driven by market forces, the
projects have to move very fast through the development
phases because of the strong demand of releasing new or
upgraded products as often as possible. This is the general
situation in software development today. In order to deliver
software with appropriate quality, different methods for
quality control and improvement are used. One such meth-
od is software inspections [7].

Inspections are an integrated part of a company’s devel-
opment process. The project manager, or someone with
similar responsibilities, has to take care of the planning of
the inspections and consider a number of different ques-
tions: how to inspect, what to inspect, when to inspect, and

who should perform the inspection. Since inspections re-
quire resources that could otherwise be used for develop-
ment, the concept of resource scheduling is closely related
to performing inspections.

Unfortunately, project progress is still in many cases
measured with measures like lines of code or pages written.
Since inspections is a quality assurance activity, and not a
producing activity, it achieves a low score with such meas-
ures. Low scoring of an inspection often leads to that in-
spections is the first activity to be cut down when projects
start to run out of time. The project manager finds himself/
herself in the position of having to choose parts of the prod-
uct to inspect since there is no time to inspect all. If accept-
ing that this situation occurs, the best solution would be to
schedule the available inspection resources to the software
artefacts that need it the most. However, since the quality of
the documents is unknown, it has to be estimated.

The estimation can be achieved by applying sampling to
support the scheduling task. In addition to the inspection
and resource scheduling tasks, we add the task of sampling,
see Figure 1. By inspecting a small sample of all available
documents, it is possible to estimate which artefacts have
the lowest quality and make sure that these get most
attention during the inspections.

The concept of sampling documents to support inspec-
tions has been briefly mentioned in a couple of sources, for
example, [2][8][10]. However, the impact and magnitude of
the possible effort gain have not been investigated. In this
paper, we present and make an initial investigation of the
concept of Sample-Driven Inspections (SDI).

2.2. Sampling and Resource Scheduling

Each of the three parts of SDI, see Figure 1, allows for a
lot of variation. The inspections can be performed with dif-
ferent techniques, the sampling can be made in numerous
ways and the resource decisions, based on the sampling, can
be done in various ways as well.

The sampling part is of special focus in SDI. It is crucial
to whether the method will work properly or not. The goal
of the sampling is to achieve, with a minimum of resources,
a representative sample of each document’s quality. This
would lead to a correct evaluation of which document that
needs most attention during an inspection. Different sam-
pling strategies are probably needed for different types of
software documents. A textual document, for example, a re-
quirements specification or a user guide can be sampled by
choosing the number of pages to cover beforehand. While
for code or design documents it might be easier to first per-
form a minor inspection during limited time and finally es-
timate how large part that was covered.

After having decided upon a sampling technique, the
documents are sampled and the samples are inspected.

Based on the outcome, quality estimations of the documents
are made. This pre-inspection can be conducted by either
one reviewer or a group of reviewers. After the pre-inspec-
tion, the documents are sorted and resources are distributed.

In many cases, not only the quality of the document de-
termines how important it is to inspect. Different parts of the
product could be more safety critical or contain functional-
ity of higher importance than other parts. The prioritization
of where to put the inspection effort will then be based on a
combination of quality and importance. Since the criticality
and importance of documents vary between companies as
well as within a company, the method of prioritizing has to
be designed for the specific case.

The resources can also be divided in many ways. An ex-
ample is that different number of reviewers inspects differ-
ent documents. Another example would be to assign a given
amount of inspection time to each document. This is an im-
portant subject for further studies of SDI.

2.3. Investigation

It is obvious that the SDI approach will aid the schedul-
ing of resources if representative sampling is possible.
Within the mere definition of representative lies the fact
that it gives a good enough picture of the quality of the doc-
uments. However, even if representative sampling is as-
sumed, it is of interest to investigate to what extent the
method works. In this paper, the method’s magnitude of
gain is first investigated making the assumption of repre-
sentativeness and second, the effect of relaxing this assump-
tion is investigated. This is evaluated by running a process
simulation [9], of an inspection process. The model used for

simulating software inspections is closely related to, and
based on, the model used for capture-recapture simulation,
see for example [3][6][13].

To investigate the possible effects, we create a conceptu-
al model of how SDI could be implemented within a soft-
ware organization, see Figure 2. The simulation of the
model is used to evaluate different parameter settings. The
available documents are sampled, and based on a pre-in-
spection of these samples the resources are scheduled. The
scheduling is based on the sorting of the documents, which
is based on the perceived fault content from the pre-inspec-
tion. The main inspection is then performed with the as-
signed resources.

The model in Figure 2 is very general and some restric-
tions have to be made in order to make an investigation pos-
sible.
1. Faults used in the sorting of the documents are of equal

importance – This can be viewed either as if all faults
found are used or only the severe faults are used when
sorting the documents.

2. Documents are of equal importance – This assumption
can be viewed from a project manager perspective. He/
she could select a number of equally important docu-
ments to apply the SDI to.

3. Representative sampling of a document is possible –
This assumption is our starting point. However, investi-
gations of SDI’s behaviour, when disturbing the repre-
sentativeness, is performed and further discussed in
Section 2.5.

Figure 1. General view of Sample-Driven Inspections.

Inspection

Sampling
Resource

Scheduling

Figure 2. Conceptual model of SDI in a company.

Sampling Resource
Scheduling

Main
Inspection

Pre-
Inspection

The simulation procedure of SDI can briefly be de-
scribed as follows. First, a sample of each of the available
documents is inspected. Second, the documents with the
highest estimate of faults are selected and the main inspec-
tion is concentrated on these. The following four steps gives
a more detailed explanation, see also Figure 3:
1. Inspect a sample, ai, of each software artefact i, where ai

is a percentage figure of the document. Note the number
of faults found, .

2. Estimate the total number of faults by multiplying the
number of faults found in each artefact with 1/ai.

3. Sort the artefacts in descending order according to

.

4. Focus the inspection effort on the artefacts with highest
rating.
Note that the scaling of the found faults is only necessary

if the samples are of different sizes.

2.4. An Example Scenario

As an example, assume that five design documents are to
be inspected. The project manager selects five documents of
equal importance and decides that 20% of the documents
are to be inspected. Since the documents are about 10 pages,
he/she selects two of the pages that he/she thinks is appro-
priate as a sample of the documents. Prior to the pre-inspec-
tion, the project manager has decided that only severe faults
should be considered when sorting the documents.

The five documents contain 5, 5, 10, 15 and 20 severe
faults. (Of course, this is not known beforehand.) In the 20%
pre-inspection 0, 1, 2, 1 and 3 severe faults are found. This
leads to a sorting of the document as (20, 10, 5, 15, 5). The
project manager decides that the focus in the main inspec-
tion will be put on the documents where 3 and 2 faults were
found. If we count the approximate number of faults that

have been exposed to an inspection, we find
(0.20*(5+5+10+15+20)+0.80*(10+20)) = 35 faults. Note
that exposed includes all faults that exists in the reviewed
material not only the ones that the reviewer found.

This means that it is potentially possible to detect about
64% of the faults using 52% of the effort, compared to in-
specting every document fully or selecting a document to
inspect by random. This example shows that important
project resources and time could be saved by the use of SDI.

2.5. Document Profiles

In Section 2.3, the assumption that representative sam-
ples are possible to achieve is made. In the simulation, this
is done by randomly distributing the faults in the documents
as well as randomly selecting what to pre-inspect. To inves-
tigate the effect of what will happen when disturbing the
representativeness, both the random distribution and the
random selection are removed.

If a document is divided into 10 equally sized parts and
define di as the fraction of the total number of faults in part
i. Then an approximate measure of how equally distributed
the faults are in the document would be to calculate the
standard deviation of {di, i=1...10}. We denote this measure
S. Even if faults are randomly distributed, the most likely
value of S is not zero. If the number of faults were infinite,
this would however be the case. For example, with 100
faults randomly distributed, S has an average of 0.031.

To disturb the effectiveness in sampling, we force the
documents to have their faults distributed according to spe-
cific profiles. The profile assigned to a document is random-
ly chosen. Five profiles, a to e, are used, see Figure 4. The
S measure of these profiles are {0.033 0.062 0.100 0.141
0.211}. The mix of the different profiles is 10:5:5:5:1 where
with a is the most common and e is the most unlikely.

The design and mixture of these profiles do not rely on
any empirical information of how faults are distributed in

Figure 3. The steps in the Sample-Driven Inspection method.

...

Pre-inspection

Doc 10

D∆ 1
1
a1
-----⋅

D∆ 2
1
a2
-----⋅

D∆ 10
1

a10
-------⋅

Sort

...

Doc 7

Doc 1

Doc 4

...

Main inspection
Doc 1

Doc 2

D∆ i

D∆ i
1
ai
----⋅

documents. The approach and design are made to study the
effect of disturbing of the sampling part of SDI. An empiri-
cal investigation of how faults are distributed in reality
would be of interest, especially when designing the sam-
pling technique to use.

The robustness of SDI using these profiles is discussed
further in Section 4.1.

2.6. Research Questions

Under the assumption that it is possible to achieve repre-
sentative samples, it is obvious that the SDI approach would
help the resource planning. But to what extent? Are the pos-
itive effects large enough to justify research of how to iden-
tify a representative sample? This study concentrates on
investigating whether the method succeeds and how it be-
haves when changing different parameters. The SDI method
is evaluated in a Monte Carlo simulation. The goal of the
simulation is to answer the following questions:
• How large part of the artefact has to be pre-inspected in

order to make a good enough sorting?
• How does the number of reviewers affect the result?
• How do the abilities of the reviewers affect the result?
• How does the representativeness of the samples affect

the result?

3. Simulation Model of Sample-Based Inspec-
tions

A Monte Carlo simulation is used to investigate whether
the SDI method gives reliable results. Furthermore, the sim-
ulation is designed to evaluate the research questions stated
in Section 2. This section describes the simulation model
and explains the parameters used in the model.

The simulation model consists of three parts. The first
part is designed to simulate one inspection (Section 3.1).
The second part is designed to simulate SDI (Section 3.2).
The third part is used to evaluate the SDI method (Section
3.3). These parts are described in the subsequent sections.

The simulation is based on a model called Mth in cap-
ture-recapture [11]. The model assumes that reviewers as
well as faults are independent. This choice of model was de-
cided upon after observing empirical data, showing the Mth
model to be the most realistic one. A consequence of using
this model is that if one reviewer has higher probability to
detect a specific fault than other reviewers, he/she has high-
er detection probability of all faults. Another model that
does not have this constraint was under consideration. How-
ever, during the model validation, this less constraint model
showed to be less realistic using empirical data of the effec-
tiveness.

3.1. Simulation Model of One Inspection

To simulate one inspection five parameters have to be
considered. The five parameters are:
• Size of a document – A document consists of 1000

places, where one fault can be injected in one place. The
faults are randomly injected at these places, using a uni-
form distribution. This means that the faults can be
injected in any place with the same probability.

• Number of Reviewers – The number of reviewers for
one inspection is part of the simulation model of SDI
and is described in Section 3.2.

• Ability of reviewers – The abilities of the reviewers rep-
resent the reviewers’ ability to find faults and perform
software inspections. The abilities of the reviewers are
designed to investigate the performance of SDI. There-
fore, the choices of these abilities are described in Sec-

tion 3.2. The ability of reviewer j is denoted rj.

• Number of faults – The number of faults in a document
is part of the evaluation model and is described in Sec-
tion 3.3.

• Probability of faults – The probabilities of the faults are
assumed to follow a uniform distribution. Three classes
of faults are used: easy, moderate and difficult faults.
The use of a uniform distribution means that the number
of easy, moderate and difficult faults is equally probable
in a document. The detection probability for fault i is
denoted fi.
Note that the probability to find a specific fault for a spe-

cific reviewer is determined by multiplying the ability of the
reviewer with the detection probability of the fault
(Fij=fi

.rj).
Since only a percentage of a document is inspected in the

pre-inspection, a combination of where to look (the sam-

Figure 4. Fault distribution profiles

a b

c

d e

50

5050

50

50

% %

%

% %

pling) and where the faults are located is the key to whether
the reviewers find the faults. The sampling part is further
evaluated using the profiles discussed in Section 2.5.

3.2. Simulation Model of SDI

The design of the simulation model of SDI is based on
empirical data collected from 30 experiments and case stud-
ies in the area of software inspections [7] and capture-recap-
ture [5][11]. An overview of the simulation model of SDI is
shown in Table 1 and Figure 5. Both the pre-inspection and
the main inspection parts are simulated.

The simulation model of SDI is designed to study three
parameters:
• Number of reviewers – The number of reviewers is

selected to be one, three or five. The same number of
reviewers is used for pre-inspection and main inspec-
tion.

• Percentage of pre-inspection – To achieve accurate
results, five percentages are used to investigate the size
of the fractions in the pre-inspection (10%, 20%, 30%,
40% and 50%). A linear relation is assumed between the
sample size and the effort needed to perform the pre-
inspection and the main inspection. Since it is assumed
that the resources are limited, the percentage values
decide the number of documents to be inspected during
the main inspection. For example, if 10% of a document
is pre-inspected, more documents can be inspected dur-
ing the main inspection. On the other hand, if 50% of all
documents are inspected, a more confident decision can
be made of which documents that are fault-prone. How-
ever, fewer documents are inspected during the main
inspection. In other words, the decision becomes a
trade-off between the confidence in pre-inspection and
the resources left to conduct the main inspection.

• Ability of reviewers – The abilities of the reviewers are
divided into three categories, see Table 1. The catego-
ries investigated are when all reviewers has a high abil-
ity to find faults (All good), all reviewers has a low
ability to find faults (All bad) and a mixture of the abili-
ties of the different reviewers (Mixed).
The choice of the abilities of the reviewers was made

through an investigation of 30 data sets from empirical stud-
ies. The mean of the Fij values of these data sets was found

to be 0.27. In order to resemble this characteristic, the mean
of the abilities in the mixed case is set to 0.6. Since the prob-
abilities of the faults are from the uniform distribution1, this
leads to the mean of the generated data sets in this case is
0.6 * 0.5 = 0.3. For the other cases, lower respectively high-
er mean values are chosen. The data sets were collected
from different types of software inspections, for example,
perspective based reading [1], checklist based reading [4],
ad hoc inspections, and on different types of software arte-
facts, for example, requirements and code documents. The
data sets are further described in [14]

The simulation varies three parameters: the number of
reviewers, the percentages for the pre-inspection and the
ability of the reviewers. This leads to 45 combinations. For
each of these combinations, 1000 inspections are simulated
in order to get enough evaluation data. However, the same
documents are used for the 45 cases.

3.3. Evaluation Model of SDI

The evaluation model of SDI consists of three parame-
ters, the number of documents, the number of faults in the
documents and a resource limit, which in this paper is called
work points. Furthermore, to evaluate the success of the
method the number of exposed faults and the number of
found faults are measured.

After a pre-inspection has been conducted, the docu-
ments are sorted in descending order in terms of estimated
faults in the document, see Section 2. To evaluate whether
the method sorts the documents in correct order, 10 docu-
ments are used, which contain 10 to 100 faults in steps of
10, i.e. a total of 550 faults, see Figure 5.

The optimal result would be if the documents were sort-
ed in correct order. Hence, the documents containing most
faults can be selected for the main inspection. The success
of the method is, however, not dependent of an exactly cor-
rect ranking. It is sufficient if the artefacts are sorted so that
the correct artefacts are pinpointed for the main inspection

1. The uniform distribution gives a mean of ri at 0.5.

Table 1: The three different cases simulated during the study.

Ability

1 Reviewer 3 Reviewers 5 Reviewers

All Good 0.9 0.8, 0.9, 1 0.8, 0.85, 0.9, 0.95, 1

Mixed 0.6 0.4, 0.6, 0.8 0.3, 0.5, 0.6, 0.7, 0.9

All Bad 0.3 0.2, 0.3, 0.4 0.2, 0.25, 0.3, 0.35, 0.4

To compare the parameters investigated, work points are
used as a means for available resources. The different

work points used are:
• 100 points – the resources used for inspecting one whole

document.
• 550 points – the available resources in one inspection

session.
Ten documents are used in one inspection session. This

means that 5.5 documents of 10 can be inspected. If 10% is
used as a sample, 10% of 5 documents are inspected plus,
hopefully, the 5 most fault-prone. In the 50% case, 50% of
9 documents are inspected plus one whole document. If two
or more documents are predicted to be equally fault-prone,
the remaining work points are distributed equally among
these.

The same amount of work points is used for one, three
and five reviewers.

The evaluation is carried out by measuring the faults that
could be found (exposed) and the faults that are actually
found (found) in a main inspection.
• Exposed Faults – This is a measure of the sorting of

documents. The measure counts the faults that are
exposed in the pre-inspection and the main inspection.
In the pre-inspection, a sample of all documents are
used and in the main inspection, only the documents
that are predicted to contain most faults are used.

• Found Faults – This is a measure of the whole proce-
dure and considers both the pre-inspection sampling and
the main inspection. The measure counts the faults that
are actually found during the pre-inspection and the
main inspection.

• Number of Times Selected – This is a measure for the
fault-prone artefact evaluation and consider the number
of times the two documents with the highest number of
faults are selected for the main inspection.

4. Empirical Evaluation of Sample-Based In-
spections

In this section, the results and observations are present-
ed. The results are further discussed in Section 5. This sec-
tion is divided into two subsections. The first subsection
discusses the results after the pre-inspection and the second
subsection discusses the results after the main inspection.

4.1. Pre-inspection

In Figure 6 and Figure 7, boxplots of the results of the
pre-inspection, when assuming that the samples are repre-
sentative, are shown. The results of having one and three re-
viewers in the pre-inspection phase are presented. The
results for five reviewers are similar. The mean number of
exposed faults when choosing documents by random is
302.5. This value is shown as a straight line in the boxplots.

A number of observations can be made from the box-
plots:
• The higher percentage pre-inspected, the less disper-

sion. This reflects the fact that a higher percentage leads
to a more confident classification. However, fewer
resources are left for the main inspection.

• The more reviewers used the more reliable results.
However, the results show that the differences are very
small. This points in the direction that few reviewers are
needed in the pre-inspection.

• The higher ability of the reviewers, the less dispersion is
obtained. This is a consequence of that competent
reviewers finds more faults. Hence, the sorting of the
documents becomes more reliable.

• For the mixed case with a pre-inspection of 20%, in
median 68% of the faults are exposed. This means that
using 55% of the effort, 68% of the faults can be found

Figure 5. An overview of the simulation model. The percentages are varied from 10%
to 50%. The faults are varied from 10 to 100 faults.

100 faults

90 faults

...

20 faults

10 faults

10%

100 faults

90 faults

...

20 faults

10 faults

20%

100 faults

90 faults

...

20 faults

10 faults

50%

...

...

during the inspection. Consequently, SDI exposes more
faults per resource used.
In Figure 8 and Figure 9, boxplots of the evaluation of

sorting using the profiles are shown, see Section 2.5.
The results do not become this good when using docu-

ment profiles. However, the method is robust to deviations
from the assumption of representative samples. For the
mixed case, pre-inspecting 20%, 63% of the faults are ex-
posed (using 55% of the effort). For some cases the reduc-
tion of exposed faults are larger. However, in neither of the
cases the median of the sampling approach is lower than the
median value when not using sampling.

The simulation of the profiles shows that sampling is im-
portant. Although SDI provides smaller profit when the
samples are less representative, it is still better compared to
selecting the documents by random.

4.2. Main Inspection

The effect of the abilities of the reviewers is not large
when investigating the number of exposed faults. This is a
consequence of the robustness of SDI, i.e. as long as the re-
viewers have equal abilities for all documents, the order of

Figure 6. Number of exposed faults for
one reviewer.

Figure 7. Number of exposed faults for
three reviewers.

0.1 0.2 0.3 0.4 0.5 0.1 0.2 0.3 0.4 0.5 0.1 0.2 0.3 0.4 0.5
220

240

260

280

300

320

340

360

380

400

420

N
u
m

b
e
r

o
f
E

x
p
o
s
e
d
 F

a
u
lt
s

Percentage covered

MixedAll BadAll Good

0.1 0.2 0.3 0.4 0.5 0.1 0.2 0.3 0.4 0.5 0.1 0.2 0.3 0.4 0.5
220

240

260

280

300

320

340

360

380

400

420

N
u
m

b
e
r

o
f
E

x
p
o
s
e
d
 F

a
u
lt
s

Percentage covered

All Good All Bad Mixed

Figure 8. Number of exposed faults for
one reviewer when the documents use the
profiles discussed in Section 2.5.

Figure 9. Number of exposed faults for
three reviewers when the documents use
the profiles discussed in Section 2.5.

0.1 0.2 0.3 0.4 0.5 0.1 0.2 0.3 0.4 0.5 0.1 0.2 0.3 0.4 0.5

150

200

250

300

350

400

450

N
u
m

b
e
r

o
f
E

x
p
o
s
e
d
 F

a
u
lt
s

Percentage covered

MixedAll BadAll Good

0.1 0.2 0.3 0.4 0.5 0.1 0.2 0.3 0.4 0.5 0.1 0.2 0.3 0.4 0.5

150

200

250

300

350

400

450

N
u
m

b
e
r

o
f
E

x
p
o
s
e
d
 F

a
u
lt
s

Percentage covered

All Good All Bad Mixed

the sorting will not be affected.
However, the main inspection will be affected by the

abilities of the reviewer. This effect is shown in Figure 10
and Figure 11. In these figures, the total number of faults
found from both the pre-inspection and the main inspection
is shown.

Hence, the ability of the reviewers is very important for
the success of an inspection. However, the ability does not
affect the pre-inspection part of SDI much.

The case when a small number of artefacts contains sub-
stantially more faults than the others has also been studied.
As expected, SDI performs very well. In summary, SDI per-
forms very well when the differences in quality between the
documents are large. If the differences are small, it is more
difficult to sort the documents in a correct order. On the oth-
er hand, it is also much less critical. Thus, SDI works well
when it is most needed.

5. Discussion

5.1. Research questions

In Section 2, four research questions were posed in this
study.
• How large part of the artefact has to be pre-inspected in

order to make a good enough sorting?
• How does the number of reviewers affect the result?
• How do the abilities of the reviewers affect the result?
• How does the representativeness of the samples affect

the result?

As shown in Section 4 almost all values lies above the
mean of what would be the case if the 550 work points were
spent randomly among the documents. This leads to the
conclusion that the SDI method does work.

The largest variation in the results comes from the choice
of the sample size. All of the investigated sample sizes give
better results than the random approach. Even inspecting
only 10% gives a fairly good picture of the number of faults
in each artefact and is better than choosing documents ran-
domly. The choice of the size of the sample is also a matter
of trade-off between mean and dispersion. Pre-inspecting
50% results in a very small dispersion but not much im-
provement in mean compared to the 10% case.

Regarding question two and three, neither the number of
reviewers nor their abilities affect the outcome in terms of
number of exposed faults very much. The dispersion in the
three-reviewer case is smaller and the median is somewhat
better compared to the one-reviewer case. The same can be
seen when comparing the all good reviewer case with the all
bad reviewer case. This is expected since the risk of missing
a fault is smaller the more and better reviewers that partici-
pate in the pre-inspection.

The last question is more difficult to answer. It is obvious
when disturbing the sampling that the yield from SDI be-
comes smaller. Even if, Section 4.1 shows concrete measur-
able results it is not clear how well the used disturbance
reflects true circumstances. In a real-world inspection, the
yield of SDI will be a tussle between how the faults are dis-
tributed and how well the sampling technique works. How-
ever, with the circumstances used in our simulation, SDI
still delivers better results than merely selecting the docu-
ments by random.

Figure 10. Number of found faults for
one reviewer.

Figure 11. Number of found faults for
three reviewers.

0.1 0.2 0.3 0.4 0.5 0.1 0.2 0.3 0.4 0.5 0.1 0.2 0.3 0.4 0.5

50

100

150

200

250

300
N

u
m

b
e
r

o
f
F

a
u
lt
s
 F

o
u
n
d

Percentage covered

MixedAll BadAll Good

0.1 0.2 0.3 0.4 0.5 0.1 0.2 0.3 0.4 0.5 0.1 0.2 0.3 0.4 0.5

50

100

150

200

250

300

N
u
m

b
e
r

o
f
F

a
u
lt
s
 F

o
u
n
d

Percentage covered

All Good All Bad Mixed

5.2. Applying SDI

One aspect contributing to the robustness of SDI is that
it is not important that the scaling of the found faults lies ex-
actly at the true value, neither is it important that the sorting
becomes exactly correct. The only important issue is that
the correct artefacts are selected for the main inspection. For
example, in the 10% case, five documents are chosen for the
main inspection, which means that it is only a matter of di-
viding the documents into two halves.

Even if the number of reviewers and their abilities do not
affect the scores of exposed faults very much, it does affect
the actual outcome of the inspection, as can be seen in Sec-
tion 4.2. When it comes to actually finding the faults, it is
very important how many and how good the reviewers are.
It must be remembered that SDI does not improve the re-
viewers’ chance of finding faults; it makes the best out of
the given situation.

As mentioned earlier, the key to success lies in the sam-
pling. The application of SDI relies on that organizations
learn how to select a representative sample. This could be
made either through random sampling or through selecting
an appropriate part of the artefact, where appropriate means
a part that is close to the mean quality of the artefact. A re-
lated issue is to study the effect of first deciding on what
sample to pre-inspect and then determine the size of that
sample. These matters ought to be further investigated in a
series of controlled experiments where different approaches
of sampling as well as the SDI approach as such can be eval-
uated. It is likely that the sampling method will be highly
dependent on the type of artefact as well as the organization
using the method. The actual sampling procedure probably
has to be calibrated for the given situation.

An early recommendation, based on the results in this
study, is to use one reviewer to pre-inspect 20-30% of the
document and then decide which documents to focus on in
the main inspection. In the simulation, 20-30% managed to
expose in average 70% of the total number faults. This yield
is dependent on the distribution of faults among the docu-
ments as shown in Section 4.1. A rather common case in
software development is the 20-80 rule. This rule means
that often 20% of the modules contain 80% of the faults.
The Pareto effect has been shown empirically in, for exam-
ple, [12], although in this study 20% of the modules ac-
counted for 60% of the faults. In our study of particularly
fault-prone documents, SDI is very successful in the case
when the quality differences are large.

6. Summary

As a way of increasing the quality of software products,
inspections are well established. However, as many other
quality improving tasks, inspections take time. When
projects run late or are close to a deadline, the time to in-
spect sometimes is decreased or the product is delivered
into the next development phase without being properly in-
spected.

In this study, a method to allocate the inspection resourc-
es efficiently is proposed. The method deals with the case of
having a number of documents to inspect but not the re-
sources available to cover them all. The main parts of the
method are the pre-inspection phase and the main inspec-
tion phase. During the pre-inspection, a sample of a number
of artefacts is inspected in order to sort them in terms of
fault-proneness. Then, during the main inspection, the arte-
facts predicted to be most fault-prone are inspected. The
number of artefacts inspected during the main inspection is
determined by the available resources. The method, howev-
er, does require neither the limitation of resources to be de-
cided beforehand nor any special technique for the
inspection.

The method was investigated empirically with a Monte
Carlo simulation. The results can be summarized as follow:
• The method works and gives an advantage over merely

choosing software artefacts by random.
• The method is robust, simple to use and gives reliable

results.
• The recommendation is to use one reviewer to pre-

inspect 20-30% of the software artefacts.
• The method shows even more promising results when it

comes to identify fault-prone software artefacts.
To summarize, SDI works best when the differences in

the quality between the documents are large and it is not as
good as when the differences are smaller. Thus, SDI is best
when it is needed the most.

Further work would be to run a controlled experiment in
order to evaluate the method without the limitations of the
simulation. The focus of such an experiment would be to in-
vestigate if the SDI approach works in a real setting as well
as investigate different ways of solving the representative
sample problem.

Acknowledgements

This work was partly funded by The Swedish National
Board for Industrial and Technical Development (NUTEK),
grant 1K1P-99-6121.

References

[1] Basili, V. R., Green, S., Laitenberger, O., Lanubile, F., Shull,
F., Sørumgård, S. and Zelkowitz, M. V., “The Empirical Investi-
gation of Perspective-Based Reading”, Empirical Software Engi-
neering: An International Journal, 1(2):133-164, 1996.

[2] Burr, A. and Owen, M., Statistical Methods for Software
Quality – Using Metrics for Process Improvements, International
Thomson Computer Press, UK,1996.

[3] Chao, A, “Estimating Population Size for Sparse Data in
Capture-Recapture Experiments”, Biometrics 45, pp. 427-438,
1989.

[4] Ebenau, R.G. and Strauss, S. H., Software Inspection Proc-
ess, McGraw-Hill, New York, 1994.

[5] Eick, S. G., Loader, C. R., Long, M. D., Votta, L. G. and
Vander Wiel, S. A., “Estimating Software Fault Content Before
Coding”, Proc. of the 14th International Conference on Software
Engineering, pp. 59-65, 1992.

[6] El Emam, K. and Laitenberger, O., “Evaluating Capture-Re-
capture Models With Two Inspectors, to appear in IEEE Transac-
tions on Software Engineering, 2001.

[7] Fagan, M. E. “Design and Code Inspections to Reduce Errors
in Program Development”, IBM System Journal, 15(3):182-211,
1976.

[8] Gilb, T. and Graham, D. Software Inspections, Addison-Wes-
ley, UK, 1993.

[9] Kellner, M. I., Madachy, R. J., Raffo, D., M., “Software Proc-
ess Simulation Modeling: Why? What? How?”, Journal of Sys-
tems and Software, 46(2/3):91-105, 1999.

[10] Kit, E. Software Testing in the Real World – Improving the
Process, Addison-Wesley, USA, 1995.

[11] Miller, J., “Estimating the Number of Remaining Defects af-
ter Inspection”, Software Testing, Verification and Reliability,
9(4):167-189, 1999.

[12] Ohlsson, N. Helander, M. and Wohlin, C., “Quality Improve-
ment by Identification of Fault-Prone Modules using Software
Design Metrics”, Proc. of the 6th International Conference on
Software Quality, pp. 1-13, 1996.

[13] Otis, D. L., Burnham, K. P., White, G. C. and Anderson, D.
R., “Statistical Inference from Capture Data on Closed Animal
Populations”, Wildlife Monographs 62, 1978.

[14] Petersson, H. and Wohlin, C., “Evaluation of using Capture-
Recapture Methods in Software Review Data”, Proc. of the Con-
ference on Empirical Assessment & Evaluation in Software Engi-
neering, 1999.

[15] Weller, E. F., “Lessons from Three Years of Inspection Data”
IEEE Software, 10(5):38-45, 1993.

	Abstract
	Keywords
	1. Introduction
	2. Sample-Driven Inspections: Method Description
	2.1. Overview and Motivation
	Figure 1. General view of Sample-Driven Inspections.

	2.2. Sampling and Resource Scheduling
	2.3. Investigation
	1. Faults used in the sorting of the documents are of equal importance – This can be viewed eithe...
	2. Documents are of equal importance – This assumption can be viewed from a project manager persp...
	3. Representative sampling of a document is possible – This assumption is our starting point. How...
	Figure 2. Conceptual model of SDI in a company.
	Figure 3. The steps in the Sample-Driven Inspection method.
	1. Inspect a sample, ai, of each software artefact i, where ai is a percentage figure of the docu...
	2. Estimate the total number of faults by multiplying the number of faults found in each artefact...
	3. Sort the artefacts in descending order according to .
	4. Focus the inspection effort on the artefacts with highest rating.

	2.4. An Example Scenario
	2.5. Document Profiles
	Figure 4. Fault distribution profiles

	2.6. Research Questions

	3. Simulation Model of Sample-Based Inspections
	3.1. Simulation Model of One Inspection
	3.2. Simulation Model of SDI
	3.3. Evaluation Model of SDI
	Table 1: The three different cases simulated during the study.
	Figure 5. An overview of the simulation model. The percentages are varied from 10% to 50%. The fa...

	4. Empirical Evaluation of Sample-Based Inspections
	4.1. Pre-inspection
	Figure 6. Number of exposed faults for one reviewer.
	Figure 7. Number of exposed faults for three reviewers.

	4.2. Main Inspection
	Figure 8. Number of exposed faults for one reviewer when the documents use the profiles discussed...
	Figure 9. Number of exposed faults for three reviewers when the documents use the profiles discus...
	Figure 10. Number of found faults for one reviewer.
	Figure 11. Number of found faults for three reviewers.

	5. Discussion
	5.1. Research questions
	5.2. Applying SDI

	6. Summary
	Acknowledgements
	References

	Sample-Driven Inspections
	Thomas Thelin and Håkan Petersson
	Dept. of Communication Systems, Lund University {thomas.thelin, hakan.petersson}@telecom.lth.se
	Claes Wohlin
	Dept. of Software Eng. and Computer Science Blekinge Institute of Technology claes.wohlin@bth.se

