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Abstract
Software systems evolve over time and it is often difficult to maintain them. One reason for this is often

that it is hard to understand the previous release. Further, even if architecture and design models are

available and up to date, they primarily represent the functional behaviour of the system. To evaluate

whether it is possible to also represent some non-functional aspects, an experiment has been conducted.

The objective of the experiment is to evaluate the cognitive suitability of some visual representations that

can be used to represent a control relation, software component size and component external and internal

complexity. Ten different representations are evaluated in a controlled environment using 35 subjects. The

results from the experiment show that it representations with low cognitive accessibility weight can be

found. In an example, these representations are used to illustrate some qualities in an SDL block

diagram. It is concluded that the incorporation of these representations in architecture and design

descriptions is both easy and probably worthwhile. The incorporation of the representations should

enhance the understanding of previous releases and hence help software developers in evolving and

maintaining complex software systems. 

Keywords: software evolution, software maintenance, software quality representation, software

quality aspects, software architecture models, software design models

1. Introduction

Software systems grow continuously, i.e. new versions of the software are released either to enhance,

improve or correct its behaviour. Few software products are released once and then never updated. The
2



evolution of software systems calls for an understanding of previous versions and releases of the software

system. Moreover, it is not possible to rely solely on the understanding of the code. The code is

important, but other descriptions are needed to support the understanding of software, for example,

architecture and design descriptions. The latter descriptions provide valuable tools on a higher abstraction

level than the code. The value of architecture models has been indicated by e.g. [5, 9, 23, 25, 35, 37, 38].

The architecture and design models (e.g. UML class diagrams [35] and SDL block diagrams [24]) are,

however, primarily formulated to express actual or estimated functional and static information, rather

than information regarding issues that only can be gained after having developed the system. In other

words, the models have no means of representing experiences from previous releases, for example, the

number of user-reported failures. Thus, the models are mainly developed to form a basis for the

continuation of the implementation within a project and not between successive projects. We believe,

however, that there are simple ways of including experienced quality aspects in architecture and design

descriptions. In particular, it should be possible to add information to architecture models during the

coding and testing phase of one release to help in the understanding as new versions of the software are to

be developed.

Code decay and identification of fault-proneness between releases have gained an increasing interest,

for example, [14, 18, 30, 34]. These are important areas to help guide development activities in future

releases or identify candidates for reengineering efforts. A problem encountered in these studies is that

the information about non-functional aspects of the software has to be found by archival analysis of the

software, testing records and problem reports. Four major reasons for fault-proneness are size,

relationships, and internal and external complexity. See e.g. [4, 33].

The intention of this paper is to study whether these aspects easily can be included in graphical

architecture and design models, and hence help in the understanding of some non-functional aspects

between releases. A model is of little value unless it is understood. Once semantics and syntax have been
3
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established, there is a basis for understanding a model. Is this enough or can we increase the intuitive

understanding of a model, i.e. can we organize a model in such a way that our cognitive processes shaped

by prior experience and knowledge help us interpret the model more easily? This is an important aspect,

since engineers may prefer the information source with the lowest psychological cost, not the information

source with the highest quality [19]. Thus, if a model is perceived as being inaccessible, it is possible that

it will never be used.

This paper presents an experiment where the intuitive understanding of various graphic representations

for size, relationships, internal and external complexity are evaluated. Intuitive representations of

qualities have been suggested before, e.g. in [7, 8]. However, this work is related to cartography and other

entities than software. Therefore, there is a value in studying intuitive representation in the context of

software systems, with people who have software experience.

The basic hypothesis of this study is that it is possible to decorate or extend existing graphical

architecture and design models (such as UML class diagrams and SDL block diagrams) fairly easily to

include these four aspects related to quality. By quality, we refer to few experienced faults. By decorating

graphical models instead of creating new models, we adhere to Baker’s and Eick’s proposition that a

visualization should adhere to the structure of the software [2], which in this case is represente

existing architecture model of the software. This differentiates our approach from e.g. [2, 3, 17],

special purpose graphical models are suggested that replace or complement existing models, ra

enhance existing models.

In the experiment different ways of representing four aspects are presented to subjects and the

understanding of the representation is evaluated. From the experiment, it can be concluded that 

individuals have the same intuitive understanding of the representations evaluated. This show

should be possible to include intuitive representation for these four aspects to help in the understa

software systems between new versions of the software. An example suggests that it is feasible s
4



easy to add information about these aspects as the software is being released. The information provides

then valuable input to forthcoming versions of the software.

This paper is organized as follows. Section 2 defines research questions, variables and hypothesis.

Section 3 discusses the methods used to conduct the experiment. Section 4 presents an analysis of

collected data. Section 5 shows some possible applications of the results, through applying the results of

the experiment on an industrially operational car control software system. Finally, section 7 summarizes

the paper.

2. Experiment definition

This experiment analyses how software developers can be supported during evolution of a software

system. The objective of the experiment is to evaluate whether some relationships and quality related

issues can be represented easily and intuitively in graphical software architecture or design models.

Inspired by e.g. [13, 16], it is believed that different two-dimensional visual representations better

express some software engineering concepts in terms of how intuitive the mapping between the

representation and the concept is. The representation that is the most intuitive representation of a software

engineering concept is said to have the minimum accessibility weight. For example, in Figure 1 there are

two symbols, that both represent that smoking is not allowed. The left symbol is a more intuitive

representation of the concept. Out of the two symbols, the left symbol can be said to have the minimum

accessibility weight - no previous training or information is needed to understand what the symbol

represents. By ensuring minimum accessibility weight in models, the need for training and manuals is

minimized.

Four research questions are formulated:

Fig. 1. Two symbols that represent 
the concept of no smoking.
5
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RQ1 How do we best show that component A controls the operation of component B? That a Com-

ponent Controls another component is referred to as the ‘CC’ relationship.

RQ2 How do we best show that it is more complex to modify the internals of component A tha

to modify the internals of component B? This is referred to as the Internal Complexity relationship 

RQ3 How do we best show that the externally visible interface of component A is more co

than the externally visible interface of component B? This is referred to as the External Complexit

tionship (‘EC’).

RQ4 How do we best show that the size of component A is larger than the size of compon

This is referred to as the Component Size relationship (‘CS’).

All of the research questions refer to an intuitive mapping between a concept used within so

engineering and a visual representation. This paper does not take a stand on how the concepts 

measured, only how they should be represented. For example, internal complexity can be measur

some code metric such as cyclomatic complexity, or some process metric such as the number 

reported for a component.

There are a large number of classes of spatial concepts used for visual representation, e.g.

51 spatial concepts and indicates that there are many more. This experiment investigates onl

visual representations, that have been chosen because they share three properties: i) They ar

both for paper and screen representation; ii) They can possibly be combined with many existing gr

architecture and design models, such as UML class diagrams and SDL block diagrams; and 

concepts can be used concurrently to decorate an existing diagram with several new propert

representations studied for the CC relationship are shown in Figure 2. Representations 1 to 4 are 

as good candidates for the CC relationship, i.e. possible indications that component A c

component B.

Representations 5 to 10, that are studied for the EC, IC and CS relations are shown in Figur
6
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example, it is evaluated whether representation 6 is a better indicator of the fact that component A is

larger (the CS relationship) than component B, than, for example, representation 9. All representations

studied avoid unnecessary visual cluttering. Thus it is adhered to Tufte’s advice that “[A] large sh

ink on a graphic should present data-information, the ink changing as the data change.” [42].

From the research questions, a number of hypotheses are derived. These are described in Tab

hypotheses all indicate that we believe that there is a representation that is better than the other o

Fig. 2. Objects studied 
for the CC relationship

A B

Repr 1

B A

Repr 2

B

A

Repr 3 Repr 4

A

B

Fig. 3. Objects studied for the IC, EC and CS 
relationships

A B

Repr 5

BA

Repr 6

A B

Repr 7

A B

Repr 8

A B

Repr 9

A B

Repr 10
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3. Method

3.1 Introduction

The strategy used to answer the research questions is an experiment in a laboratory environment [44].

For data collection, questionnaires have been used. The method used for data collection and analysis is

summarized in Figure 4 and described further below.

3.2 Sampling and generalization

From [29] it is known that entry-level programmers work differently from more experienced

Table 1. Hypotheses. All hypotheses are assessed at the  significance level. , , 
, 

RQ Name Definition

RQ1 HCC,1  There is some representation Reprn that has minimum accessi-

bility weight in terms of how well it represents that software component A controls 

software component B.
HCC,0  Null hypothesis: There is no statistical difference between the 

representations that may represent that software component A controls software com-

ponent B. Explanation of variables: The average weight assigned to representation n 

regarding how well it represents the “A controls B” relationship (CC) is equal to th

average weight assigned to representation m for the same relationship.
RQ2 HIC,1  There is some representation Reprm that has minimum accessi-

bility weight in terms of how well it represents that software component A is inter-

nally more complex than software component B. Null hypothesis: HIC,0.

RQ3 HEC,1  There is some representation Reprm that has minimum accessi-

bility weight in terms of how well it represents that software component A is inter-

nally more complex than software component B. Null hypothesis: HEC,0.

RQ4 HCS,1  There is some representation Reprm that has minimum accessi-

bility weight in terms of how well it represents that software component A is large

than software component B. Null hypothesis: HCS,0.

p 0,05= m n, 1 2 3 4, , ,{ }∈ m n≠
p q, 5 6 7 8 9 10, , , , ,{ }∈ p q≠

AvgCC Repr n, AvgCC Repr m,≠

AvgCC Repr n, AvgCC Repr m,=

AvgIC Repr p, AvgIC Repr q,≠

AvgEC Repr p, AvgEC Repr q,≠

AvgCS Repr p, AvgCS Repr q,≠
8
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programmers. In particular, experienced programmers are able to concurrently draw on more sources of

information such as different models. This experiment studies how entry-level programmers and part-

time programmers can be aided. 35 subjects participated in the experiment. 26 of them are master

students in computer science and electrical engineering. Nine have PhDs or are PhD candidates. ANOVA

tests comparing the two types of participants show no significant difference in the results from the two

types of participants. Therefore, all participants are treated as one homogeneous group, despite the

participants’ different exposure to various tools, technologies and methodologies. All participant

had some exposure to object-oriented methods prior to the experiment. We believe that the w

objects studied are perceived is not changed much by the increased time pressure and compe

that may exist in industry as compared to a student/university environment. Given the backgroun

participants, it should be possible to generalize to at least entry level programmers, and probably

somewhat more experienced designers as there is no significant difference in the results between

and postdocs.

3.3 Data collection

Data collection has taken place in a laboratory setting. Data collection took place at three d

occasions. The same introduction to the experiment was given to all participants. This introductio

sure that all participants knew how to fill in the questionnaires. It was also made sure that all parti

knew that they were not to think more than 15 seconds about each question. This was to ensure

initial understanding of each question was captured. No hypotheses regarding the outcome

Fig. 4. Data collection and analysis. Acronyms are explained in the text

Random ordered questionnaires

35 participants

Compare objects pairwise

Compute AHP statistics

Draw boxplots, no high CR outliers

Remove outliers (high CR)

Draw graphs for all data

Compute Kruskal-Wallis

Compute ANOVA

Same results?

Compute PLSD

Yes. Thus assumptions for 
ANOVA met well enough

Interpret & conclude
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experiment were presented to the participants.

Each of the research questions were addressed by a questionnaire. For each of these four

questionnaires labelled RQ1, RQ2, RQ3 and RQ4, three different versions exist (A, B and C). The

ordering of questions in each version was different, but the set of questions was equal across all versions.

Participants were assigned one of each questionnaire in random order. The version used of each

questionnaire was also randomly assigned. Two possible sequences of questionnaires are i) {RQ1:vA,

RQ3:vC, RQ2:vA, RQ4:vA}; and ii) {RQ4:vA, RQ1:vC, RQ3:vB, RQ2:vB}. Thus, the order of

questions answered is random for each participant, which should reduce the threat that the ordering of

questions affect the outcome of the experiment.

Each question was applied on a number of pair-wise comparisons. For example, RQ1 was applied to

six comparisons between representations Repr 1 to Repr 4, as the number of possible pair-wise

comparisons is Q(Q-1)/2 when Q is the number of representations to be compared. Table 2 is an example

of a single comparison for RQ1. To the left, there is one representation (here: Repr 1), and it is to be

compared to Repr 2 (to the right). In between, there is a graphical scale with nine alternatives where it is

possible for the participants to answer by checking the appropriate box. By checking the middle box, it is

indicated that none of the representations is better. By checking the left-most box, the participant would

have indicated that “Repr 1 is extremely better than Repr 2 when used to represent that comp

controls component B”.
10



3.4 Data refinement

Data collected through the questionnaires is initially refined by using the Analytical Hierarchical

Process (AHP) [27, 36]. The AHP was developed to improve decision-making through giving priority to

items pair-wise, rather than prioritizing all items at once. Thus the method simplifies complex decision-

making. The output from an AHP analysis is a value denoting the relative weight of items compared. In

this paper, the AHP is used to compute the relative accessibility weight of the representations in Figure 2

for the CC relationship and those in Figure 3 for the IC, EC and CS relationships.

The original AHP method is intended to be used by one person or one group of people, who for every

comparison decide one common answer based on consensus. In [15] it is shown how to instead aggregate

the result of individual comparisons after the comparisons have been made. This procedure has been used

in this study.

The AHP has an additional feature. Using the AHP, it is possible to objectively measure how consistent

answers from a participant are. For example, if a participant claims that Repr 1 is a better representation

of the CC relationship than Repr 2, and that Repr 2 is a better representation than Repr 3, and that Repr 1

is a much better representation than Repr 3, there is high consistency in the answers. On the other hand, if

the participant claims that Repr 1 is a better representation than Repr 2 for the CC relationship, and that

Repr 2 is a better representation than Repr 3, then answers are not consistent if the participant also

Table 2. Example of a single comparison

Which of representations 1 and 2 do you think 
better represents that component A controls 
component B?

Repr 1 Repr 2

A B B A
11



considers Repr 3 to be a better representation than Repr 1. This example of consistent and inconsistent

answers is illustrated in Figure 5. This Figure uses the same nine point scale as Table 2.

The consistency is measured by computing a consistency index (CI) and adjusting it according to the

number of different items compared, to an adjusted index called the consistency ratio (CR). By looking at

the CR, it is possible to objectively identify respondents who have either not put a lot of thought into the

answers, or have not understood the questions, or have not enough knowledge to compare the items to

prioritize. A low CR value is a sign of high consistency in answers given. As a rule of thumb, answers

with a CR > 0.40 are treated as outliers. For details in how to compute the relative weight and CI and CR,

see e.g. [27]. In the software engineering field of research, the AHP has also been used, for example, to

prioritize requirements [27], to estimate size of simple software modules [31], to measure organizational

beliefs [26] and to estimate what consumes lead-time in the development and evolution of distributed

real-time systems [10].

3.5 Statistical analysis

As shown in Figure 4, a number of statistical tests have been used1 on the output of the AHP, notably

the Kruskal-Wallis tests [28], Analysis of Variance (ANOVA) [32], and Protected Least Significant

Difference tests (PLSD) [32]. The Kruskal-Wallis test is non-parametric and does not make any

assumptions about the distribution or variance of data collected. This test is used to initially get a picture

1. SPSS 8.0 running on Windows NT has been used for all tests except the AHP.

Fig. 5. Example of consistent and inconsistent 
answers

Consistent answers Inconsistent answers

A B

B A

B

A

A B

B A

B

A

Repr 1

Repr 2
Repr 3

Repr 1

Repr 2
Repr 3
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of the data analysed. The ANOVA makes two assumptions: The variance in the groups being compared

must be equal, and the data must be distributed according to a normal distribution. If both a Kruskal-

Wallis test and an ANOVA show the same result, PLSD tests have been used as it is assumed that the

preconditions for the ANOVA have been met well enough. The Kruskal-Wallis test and the ANOVA have

been used to reject/support the hypotheses in Table 1. PLSD tests have been used to identify what

contributes the most to the results of an ANOVA, i.e. to identify exactly which representation is

considered the best. A PLSD is similar to a t-test, in that it identifies if there is a statistically significant

difference between two sets of data.

3.6 Threats and validity

The validity of the findings reported depends to a large extent on how well threats have been handled.

Four types of validity threats [12] are analysed: Conclusion validity, construct validity, internal validity

and external validity. The relationship between these is illustrated in Figure 6.

Conclusion validity (marked 1 in Figure 6) concerns the relationship between the treatment and the

outcome. Care has been taken not to violate any assumptions made by the statistical tests. The questions

used in the questionnaires have been easy to answer, and the participants were trained in advance in how

to fill in the questionnaires. Therefore, the reliability of the measures is high. As the data collection took

place at three different occasions, there has been a risk that the reliability of the implementation of the

experiment could be degraded. This threat has been addressed by using a highly standardized experiment

T
he

or
y

O
bs

er
va

tio
n

What you test
Independent Dependent

cause-effect
construct

treatment-
outcome
construct

Cause
construct

Effect
construct

Treat-
ment

Out-
come

Fig. 6. Experiment principles as described 
by [44]

1 2

4
3 3

Experiment objective

variable variable
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introduction. By collecting data at different occasions, random irrelevancies in the experimental setting

have been accounted for. The set of experiment participants is fairly homogenous, because of their

common experiences in courses studied at the university. Additionally, there is no statistically significant

difference between the student participants and the graduate participants. Therefore, the present random

homogeneity (or heterogeneity) of participants should not affect the conclusion validity much.

Internal validity (2) concerns matters that may affect an independent variable’s causality, witho

knowledge of the researcher. History effects, i.e. how previous events affect participants, have be

into account in several ways. First, there is some heterogeneity in the group of respondents. This 

long-term history effects. Secondly, the data collection has taken place at three different occasio

accounts for effects of recent events. Thirdly, respondents answered questions in different order b

different versions of four questionnaires answered in random order. The latter ensures that history

from the last few questions are accounted for. As data collection took no more than an hour, there

be no maturation effects. Testing effects have been minimized by making sure that there was no

loss in how questions were answered. No participants left the experiment, i.e. there has been no m

Construct validity (3) concerns whether we measure what we believe we measure. Constructs

the questionnaires have been well defined. The use of the scale used to compare objects h

explained to all participants. The use of the AHP and using the consistency ratio to identify outlie

way of reducing the mono-method bias by making each participant compare each object studie

other objects. Thus, the results from each respondent are not dependent on a single answer.

always a risk that respondents guess the hypotheses at hand. By making sure questions are an

different order, we balance both the threat of hypotheses guessing as well as the threat of int

between different questions and objects.

External validity (4) concerns generalization of the findings to other contexts and environment

the one studied. All participants have been active at a university, either in teaching or studyin
14



t the

ested are

ction 6

 area to

nsional

ated to

ifferent

her a

y of this
teachers have varying degree of industrial background. First, there is no statistically significant difference

between the teachers and the students. Secondly, which may be more important for the external validity:

Students leave the university for industry. Student participants are close to the end of their university

education (M.Sc. level). It is believed that possible changes in competitiveness and time pressure that

may be different in industry and a university setting does not affect the perception of the representations

studied. Therefore, results should be valid at least for the first few years in industry. The difference

between students and professionals as subjects in terms of perception of aspects that influence lead-time

in software projects have been studied without finding any statistical significant difference [22]. This

does not necessarily mean that there is not a difference in other studies, but it suggests that the difference

may not be as large as one may anticipate. Recently, the use of students as subjects have also been

discussed as part of the review process of empirical papers [40]. Comparative studies as the one

presented here is a situation where the use of students is most easily motivated.

Another threat is that the experiment compares the objects in Figure 2 and Figure 3 in isolation, not in

complex combinations such as shown in e.g. Figure 16. It is possible that this affects the outcome as

perception is a function of “the entire visual field” [1]. Though further study is needed to verify tha

understanding does not change in complex combinations, such as when the representations sugg

applied to e.g. UML class diagrams or SDL block diagrams, a limited experiment described in Se

suggests that understanding does not change in at least one complex diagram.

A threat that is of concern only to the representation of the CS relationship, is that we have used

represent component size. Area is two-dimensional, while component size usually is one-dime

(e.g. lines of code, number of bytes). This can possibly cause misinterpretation [42]. A threat rel

the understanding of software, is the wide range of comprehension strategies used by d

individuals [29, 39]. The objective of this study is not to generate a silver-bullet solution, rat

particular set of comprehension issues are investigated. The biggest threat to the external validit
15



study that we can think of, is the prior exposure by other populations to particular mappings between the

software engineering concepts and the visual representations studied. This could possibly be the case if

some tools have been used before.

4. Results and analysis

In this section, results from the experiment are presented. First, the analysis for the CC relationship is

presented in some detail in Section 4.1, to explain how analysis has taken place. The other relationships

are briefly analysed in Section 4.2. In Table 3, results for all four relationships are summarized. Finally,

in Figure 11 all results are graphically summarized.
Table 3. Summary of analysis for the four relationships studied

CC IC EC CS

Representations compared 1, 2, 3, 4 5, 6, 7, 8, 9, 10 5, 6, 7, 8, 9, 10 5, 6, 7, 8, 9, 10

Boxplots of all data Figure 7 Figure 8 Figure 9 Figure 10

Outliers due to CR>40, participant(s) 
no.

None 2, 20 9 2

Hx rejected by a Kruskal Wallis at a 
0.05 significance level

HCC,0 rejected HIC,0 rejected HEC,0 rejected HCS,0 rejected

Hx rejected by an ANOVA test at a 0.05 
significance level

HCC,0 rejected HIC,0 rejected HEC,0 rejected HCS,0 rejected

Representation with best average mini-
mum accessibility weight

Repr 4 Repr 7 Repr 9 Repr 6

Representation with next best mini-
mum accessibility weight

Repr 1 Repr 9 Repr 7 Repr 9

PLSD indicates difference at 0.05 sig-
nificance level between the two best 
representations

Yes No Yes Yes

Suggested mapping with minimum 
accessibility weight

Repr 4 Repr 7a Repr 9 Repr 6

Answers research question RQ1 RQ2 RQ3 RQ4
16
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4.1 Detailed analysis of the CC relationship

HCC,1 is tested. The participants were asked (original grammatical error) “Does object 1 or object 2

indicate the stronger the fact that software component A controls software component B?”. The 

referred to are representations 1, 2, 3, and 4 in Figure 2. The individual participants’ results and a 

are shown in Figure 7. From Figure 7, it is seen that representation 4 seems to be the best and

next best is representation 1 as they have the highest result values (i.e. minimum accessibility 

Thus, the next step is to evaluate if the differences seen in Figure 7 are statistically significant. 

stage, it is also noted that no participants had a CR>0.40, so there are no outliers.

Both a Kruskal-Wallis test and an ANOVA test show that there is a statistically significant differen

the 0.005 level in how designers rank the accessibility-weight of the four objects studied.

Repr4 is on average the best representation of the CC relationship. Since an PLSD sho

AvgCC,Repr4 is statistically different at the 0.005 level from the next best representation of the

relationship, Repr1, HCC,0 can be rejected. The conclusion is that Repr4 is the representation of 

studied that represents the controlling/controlled relationship with the smallest accessibility weigh

answers RQ1 and addresses the HCC hypotheses.

4.2 Analysis of the IC, EC and CS relationships

This analysis and the corresponding analysis for the other relationships are summarized in Tab

addition, box plots for the other three hypotheses are shown in Figures 8-10. The main result is th

a. Representation 9 is significantly better at representing the EC relationship than

representation 7. Therefore, representation 9 is chosen for the EC relationship.

Representations 7 and 9 best represent the IC relationship. There is no statistically significant

difference between representations 7 and 9 for the IC relationship, but since representation 9

already is accounted for, and representation 7 is the best on average, it is chosen to represen

the IC relationship.
17



statistical significance, the representations with minimum accessibility weight can be determined. The

CC relationship is best represented by Repr 4, the IC relationship by Repr 7, the EC relationship by

Repr 9 and the CS relationship by Repr 6.

These representations, with minimum accessibility weight, are illustrated in Figure 11. There is also a

simple example of how the properties can be combined together. A larger example is provided in

Section 5.

5. Application of results

The study in Section 4 has been conducted without any specific graphical notation in mind and hence

the results have to be studied in more detail for each specific notation. Moreover, for a specific notation,

other graphical representations may also be of interest.

Fig. 7. Boxplot for the CC relationship
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Fig. 8. Boxplot for the IC relationship
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Fig. 9. Boxplot for the EC relationship
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Fig. 10. Boxplot for the CS 
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To illustrate how the results possibly can be applied in a more complex environment, with a specific

notation, a scenario is presented below. As noted in Section 3.6, more research is needed to fully establish

that the representations identified in the experiment also are valid in this more complex environment. In

the scenario, we have applied the approach from the experiment to SDL block diagrams, where

communication paths have been removed for clarity of figures. SDL is a formally defined language [24].

It is frequently used in embedded software, such as in the telecom domain, in medical equipment and in

the car industry. The software illustrated is a part of an industrial currently operational car control

software system. The relationships illustrated are the Component Size and Component Internal/External

Complexity Relationships (CS, IC, EC). Since the approach is applied on existing software, the

Component Controls relationship (CC) is not applied, since it is believed that this is best modelled at

design time.

A Software Development Team (SDT) is given a static architecture level diagram (Figure 12). The

system consists of two main components, that in their turn are aggregated from other components. The

semantics of the aggregation relationship is formally defined by SDL [24]. The CarLogic software

component is a representation of the car’s behaviour. The CarTestDriver is a software componen

used to test the CarLogic, without having to execute the software in an actual car. In fact, th

conditions, the driving context as well as the driver’s behaviour can be simulated. During simulatio

TestRecorder component monitors all actions as well as how the car reacts to each stimuli. T

behaviour of the car can be monitored and analysed also in potentially dangerous situation

Fig. 11. Results and simple example of combined use

Component A con-
trols component BA

B

BA

A B

A B

Component A is
internally more
complex than com-
ponent B

Component A is
externally more
complex than com-
ponent B.

Component A is
larger than compo-
nent B.

B C

A

Component C is smaller than B,
roughly the same size as A. However,
component C is both hard to use and
hard to understand the internals of.

Component A,
which is complex to
use, controls com-
ponents B and C.
Component B is
large, but not hard
to understand.
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CarTestDriver component is not a part of the car on-board embedded system, which is created by adding

some hardware interface components to the CarLogic component. 

The SDT’s task is to extend both the CarLogic and the CarTestDriver with software that allow

software to handle two new video-cameras, that should be used to adjust the speed of the car in c

is a foreign object in front of the car. Examples of foreign objects are humans and other vehicle

task has been selected to be used in this example because it represents the extension of the c

system with a feature described in a commercial patents database.

The SDT does not have any previous knowledge of the software, and starts by planning what sh

done by looking at an architecture model of the system (Figure 12).

Seeing this model, the SDT draws a number of immediate conclusions. For example, the S

component in the CarLogic component should be expanded with camera functionality

InstrumentPanel should be changed to accommodate a new switch that determines if the automa

adjustment is engaged or not. The SDT decides that this switch should be handled 

Misc. Instruments component. Also, there should be changes in the Surroundings componen

CarTestDriver to allow images to be constructed and fed to a new video analysis componen

Car

Truck

Bike

Motorbike

Vehicles

Child

Adult

Living

Surroundings

TestEditor

TestRunner

TestRecorder

TestController

RoadSimulator

Road

Sensory

Decision

Action

Driver

CarTestDriver

CruiseAccDeSwit

CruiseResumOnOff

Wheel

SteeringWheel

Accelerator

Brake

Clutch

DrivingSeat

Stickshift

PedalsAndGear

RoadsideRadio

BluetoothNet

Sensors

CruiseIndicator

Misc. Instruments

Speedometer

InstrumentPanel

Engine

Gearbox

Throttle

Transmission

PowerSteering

EngineCompartment

CarLogic

Fig. 12. Architecture of a part of the car control software
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CarLogic component. There should also be changes to the Throttle component to handle new speed

adjustment messages coming from a new component that analyses video images.

However, without prior experience of the car control system, it is hard for the SDT to estimate for

example change effort for each component, and where the largest risks for faults are. This is important to

know, since a small number of components are likely to account for a large amount of externally visible

faults [4, 21]. Therefore, the SDT invokes the understandability mode of their design tool. In this

example scenario, the number of problem reports and fixes for a software component is used to indicate

internal complexity. These figures have been found to be a good indicator of component internal

complexity in the SDT’s organization. The understandability mode is illustrated in Figure 13, which

illustration of how the visual representation for the IC relationship identified in the experiment in

paper is applied in an SDL block diagram to leaf blocks. Shaded components are considered in

more complex, than not shaded components.

Using the information in Figure 13, the SDT makes a number of new decisions. First, seeing t

Throttle component is fault-prone, the SDT decides to allocate extra time to the comprehension

component, to avoid introducing new faults. Faults in software in embedded car systems ar

expensive to fix, since on-board software usually is run on hardware that is physically glued to othe
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Fig. 13. Car control software, number of problem reports indicates internal complexity
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to handle the vibrations in a car. Therefore any software update can involve the costly replacement of a

larger physical component.

Secondly, the component Misc. Instruments is prone to faults. Since this component has been

identified as being likely to change due to the addition of the new functionality, the SDT changes the

earlier decision and instead decides that the new instruments should not be allocated to the Misc.

Instruments component, but to a new component: AutoSpeedAdjustIndicator.

Next, the SDT needs indications of the size of the components currently in place, in order to estimate

the time it takes to understand each component. Size-related metrics has been identified as being related

to effort. Therefore, the size-view is invoked as illustrated in Figure 13.

The size view illustrates the source code volume of leaf components. The volume is important to know

for two purposes: First, volume is a crucial factor in embedded systems. In a car, every single kilobyte of

memory counts due to that the unit cost has a large impact on the total cost. Secondly, the SDT can use

the information to adjust the standard development process: Extra time is assigned to understand and

modify the Throttle component, since it is a relatively large component of those that are likely to change.
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Fig. 14. Car control software, size view
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Next, it is known that effort is dependent on size measures that are affected by externally visible size

measures such as the number of methods. Therefore, the system is shown with indications for externally

visible complexity in Figure 15. Here the number of externally visible methods are used as an indicator of

externally visible complexity.

From this model, it is seen that the Misc. Instruments component is complex to use. Remembering that

it was also fault-prone, the SDT changes its decision regarding this component: Instead of just adding a

new component for the automatic speed adjustment instruments, the SDT decides to split the Misc.

Instruments component into several components – one for each instrument.

Finally, the system is viewed with a concurrent combination of quality aspects represented, 

early estimation of the new parts are plotted as well. This is illustrated in Figure 16. Notice how fa

possible to distinguish which components are large, which are internally complex, and whic

externally complex. This is a sign of that the representations suggested have high selectivity [7

when used in cluttered contexts. This is in line with [41], who found that simple shapes and colou

be as quickly found when embedded in a distracting environment, as when the environment 

distracting.

Figure 16 constitutes the base for further adjustments to the development process and the alloc
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Fig. 15. Car control software, externally visible complexity
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developers. The SDT decides that their most experienced developers should be assigned to work mainly

with the Image Analyser and the Image Creator components, due to their estimated internal complexity.

The Image Analyser is expected to be complex to use, so extra effort is allocated to producing diagrams

that help understand how to use the component. The new Camera component is estimated to be small and

easy to design, so junior developers are assigned to work on this component.

6. Scenario validation

The scenario presented in Section 5 is one example of how the visualization technique proposed in this

study can be used to help shape a development organization and its development process to produce

higher quality software. The example system is a part of an industrial system and the change request, i.e.

adding video-cameras to control speed relative objects in front of the car, is fetched from a commercial

patents database. Thus it is ensured that the example scenario is industrially relevant.

In Section 3.6, it was identified that the simplicity of the experiment could be a threat to the validity of

the results in more complex settings. In order to further establish trust in the findings, one more

experiment has been conducted: Ten graduate software professionals were first introduced to a short text
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Fig. 16. Car control software, complete architecture including new components
24



explaining that in a graphical architecture model that they were about to see, there were representations of

software leaf component size, internal complexity and external complexity. None of these participants

had seen the representations discussed before. None of them had even heard about the first experiment,

and none of them had any SDL experience. Thus the participants did not know how these qualities were

represented.

After reading the short introduction text, the participants were given a copy of Figure 16. The

participants were asked, in random order, to identify an example of a) one of the largest/smallest leaf

components; b) one of the internally most/least complex leaf components; and c) one of the externally

most/least complex leaf components. That is, in total each participant was asked to identify six leaf

components.

All ten participants correctly identified examples of the largest/smallest leaf components. Seven

participants correctly identified examples of all six types of components. The remaining three

participants each identified one, two and four components incorrectly. That is, in total there were

53 correct identifications out of 60 possible, despite the brief explanation of the model. The single

identification error was, according to the participant, a pure mistake. The other two participants explained

that they had attempted to consider how they would have constructed the system in Figure 16. Instead of

drawing conclusions from the model, they used their own experience to identify components that they

believed would be internally/externally most/least complex.

Though this second experiment is very limited (e.g. only one diagram has been investigated, there are

rather few participants and the participants did not know about the semantics of SDL block diagrams), it

is believed that it strengthens the idea that the representations suggested are indeed intuitive, at least

when applied to SDL block diagrams.

7. Summary

The presented experiment is formulated based on the belief that it should be possible to represent some
25
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software quality aspects clearly in graphical architecture and design models. For example, to the best of

our knowledge, no UML [35] nor SDL [24] diagrams contain a graphical representation for e.g.

component size and component external/internal complexity. Thus, the objective of the experiment was

to evaluate whether it would be possible to augment some existing architecture and design models with

this type of information, in an intuitive way.

Ten different representations have been evaluated independently of UML/SDL diagrams, and the

results from the experiment have shown with statistical significance, in most cases, that it is indeed

possible to intuitively represent non-functional aspects in a way that can decorate many UML/SDL

architecture and design models. Exact rules for mapping complexity measures to decoration must be

established for each model through future research. However, it is believed that the evaluated

representations can easily be used to decorate existing graphical architecture and design models, which

differ from for example [2, 3, 11, 17] that use special purpose models.

The main value of the results is in software evolution. Representations of the evaluated types can

support architecture and design understanding during evolution and maintenance. In addition to the

experiment, it has been illustrated through an example how tool support can be enhanced to include

representations of non-functional aspects. For example, [2] and [3] use component area to represent

component size. The findings in this study strengthen the idea that this is a sensible representation.

The representations in this study have a few weaknesses.

• Gray-scale is used to represent internal complexity. Color was avoided to decrease print costs

that color can be better at conveying value information [43]. As color printing becomes less 

replacing the gray-scale with color representation may be beneficial.

• Human perception of gray differs depending on the amount of black and white surrounding th

area [6]. Thus there is room for erroneous perception if the same internal complexity (same am

gray) is used in one component with low external complexity (thin black border), and anothe
26
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high external complexity (thick black border). However, component size (area) should not affect the

perception of the gray-scale [7].

It is our belief that these deficiencies are acceptable, given that the representations are used to decorate

existing graphical design models.

In summary, the experiment indicates that representations can be found that can be used when software

is evolving and we would like to stay in control of the evolution. The representations suggested can be

viewed as warnings signs together with, for example, methods for classifying software components.

Further work includes comparing the representations suggested by this study in more complex

environments as well as the use in large scale software systems.
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