

A. Aurum, H. Petersson and C. Wohlin, "State-of-the-Art: Software Inspections after
25 Years", Software Testing Verification and Reliability, Vol. 12, No. 3, pp. 133-

154, 2002.

Published in Software Testing, Verification and Reliability, Vol. 12, No. 3, pp. 133-154, 2002.

State-of-the-Art: Software Inspections after 25 Years April 25, 2003 1

State-of-the-Art: Software Inspections after 25 Years

Abstract

Software inspections, which were originally developed by Michael Fagan in 1976, are an impor-
tant means to verify and achieve sufficient quality in many software projects today. Since Fagan’s
initial work, the importance of software inspections has been long recognized by software devel-
opers and many organizations. Various proposals have been made by researchers in the hope of
improving Fagan’s inspection. The proposals include structural changes to the process and several
types of support for the inspection process. Most of the proposals have been empirically investi-
gated in different studies.

This is a review paper focusing on the software inspection process in the light of Fagan's inspec-
tion, and it summarizes and reviews other types of software inspection processes that have
emerged in the last 25 years. The paper also addresses important issues related to the inspection
process and examines experimental studies and their findings that are of interest with the purpose
of identifying future avenues of research in software inspection.

Keywords: software inspections, Fagan inspection, survey, software reviews, reading techniques

1. Introduction

Software inspections are an important means to verify and achieve sufficient quality in software
projects today. It is a static verification technique and one of its main benefits is that it can be
applied to any artefact produced during software development. It is probably one of the few meth-
ods that people actually agree will help in improving software quality, although it is not always
applied.

The objective of this paper is to provide a survey of software inspections given that this technique
celebrates its 25th anniversary in 2001. Since the first description of software inspections, there
have been further improvements, new ways of conducting inspections have been suggested and
several methods supporting software inspections have been proposed. This paper summarizes and
provides an overview of software inspection processes that have emerged in the last 25 years. The
paper identifies the main differences between commonly known inspection methods and Fagan’s
inspection. It studies the evolution of inspections, highlights articles presenting original ideas, and
presents evaluations of new ideas that have since emerged. It also addresses important issues

Aybuke Aurum
School of Information Systems,
Technology and Management

University of New South Wales
 Sydney NSW 2052

Australia
Phone: +61-2-9385 4418

Fax: +61-2-9662 4061
E-mail: aybuke@unsw.edu.au

Håkan Petersson
Dept. of Communication Syst.

Lund University
Box 118

SE-221 00 Lund
Sweden

Phone: +46-46-222 4910
Fax: +46-46-145823

E-mail: hakanp@telecom.lth.se

Claes Wohlina

Dept. of Software Engineering
and Computer Science

Blekinge Institute of Technology
Box 520, SE-372 25 Ronneby

Sweden
Phone: +46-457-385820

Fax: +46-457-27125
E-mail: claes.wohlin@bth.se

a. Contact author

Published in Software Testing, Verification and Reliability, Vol. 12, No. 3, pp. 133-154, 2002.

State-of-the-Art: Software Inspections after 25 Years April 25, 2003 2

related to the inspection process that are of interest for the purpose of identifying future avenues of
research in software inspection and it provides a list of concrete research questions.

Software inspection is a peer review process led by software developers who are trained in inspec-
tion techniques (IEEE, 1998). Michael Fagan originally developed the software inspection process
‘out of sheer frustration’ (Wheeler et al., 1996). It has been 25 years since Fagan published the
inspection process in his famous article in 1976 (Fagan, 1976). Since then the importance of soft-
ware inspections has been increasingly recognized by software developers and many organiza-
tions. The need to improve the inspection process has become a long-standing concern of software
developers and researchers. Fagan's inspection has been studied and presented by many research-
ers in various forms.

1.1 Terminology

Software inspection is a type of software review process. One common problem is that, the termi-
nology used for different types of software review processes is often imprecise and leads to confu-
sion. In particular, there is no universal agreement on what a software inspection process is and
how it is different from the other types of software review processes such as a walkthrough, a for-
mal technical review or a management review. In practice, the inspections performed do not neces-
sarily follow the original definition. In other words, an organization can conduct an inspection that
may also fit under the category of a walkthrough or a technical review.

Fagan (1976) strongly emphasizes that inspections have formal procedures and produce repeatable
results whereas walkthroughs are performed in varying regularity and thoroughness. He also
remarks that in some cases walkthroughs may be identical to formal inspections but in many cases
they are informal and less efficient (1986). Wheeler et al. (1996) point out some principal differ-
ences between review processes. Knight and Myers (1993) suggest that walkthroughs are used to
examine source code, formal reviews are the presentation of the work product to the rest of the
team members, and inspections are error detection techniques and ensure that particular coding
standards and issues are enforced. According to these authors Fagan’s inspection is a combination
of a walkthrough, formal review and inspection. IEEE Std. 1028-1997 (IEEE, 1998) provides the
following descriptions:

• An inspection is ‘a visual examination of a software product to detect and identify software
anomalies, including errors and deviations from standards and specifications’

• A walkthrough is ‘a static analysis technique in which a designer or programmer leads mem-
bers of the development team and other interested parties through a software product, and the
participants ask questions and make comments about possible errors, violation of development
standards, and other problems’

• A review is ‘a process or meeting during which a software product is presented to project per-
sonnel, managers, users, customers, user representatives, or other interested parties for com-
ment or approval’

According to the IEEE Std. 1028-1997 standard, the objective of technical reviews and walk-
throughs is to evaluate the software product, whereas the objective of an inspection is to detect and
identify defects in the software but not to evaluate it. Thus, inspections are viewed as distinctively
different from the other techniques, although the document type used is the same. This definition
also parallels Fagan’s original idea i.e. the aim of the inspection process is to detect the defects and
this does not involve searching for solutions and reaching consensus over the product implementa-
tion.

Published in Software Testing, Verification and Reliability, Vol. 12, No. 3, pp. 133-154, 2002.

State-of-the-Art: Software Inspections after 25 Years April 25, 2003 3

2. Software Inspection Process

A software inspection is a well-structured technique that originally began on hardware logic and
moved to design and code, test plans and documentation (Fagan, 1986). The process itself can be
characterized in terms of its objective, number of participants, preparation, participants’ roles,
meeting duration, work product size, work maturity, output products and the process discipline
(Wheeler et al., 1996). The essential criterion to start an inspection is to have a well-defined soft-
ware process with an exit criterion and a software product that meets with that criterion (Bisant
and Lyle, 1989). An inspection team who plays defined roles perform a software inspection. It is
important that people performing the inspection are familiar with the product and they have a
sound knowledge about the inspection process or otherwise they must be trained. The members of
the inspection team examine the material individually to learn the product. Then participants
attend a meeting with the intended purpose of effectively and efficiently identifying defects early
in the development process. Next, the list of defects is sent to the author of the documents to be
repaired and removed in the later stage of the review process. Hence, software inspection provides
a powerful way to improve the quality and productivity of the software process (Ackerman et al.,
1989; Russell, 1991).

An effective software review process needs to address relationships of all required variables in
terms of tasks involved, tools and methods used, and the skill, training and motivation of people.
Various researchers have made proposals which attempt to improve upon process of Fagan’s
inspection. A literature review reveals two major areas of study, as illustrated in Figure 1. There is
considerable research that has been carried out on the structure of the inspection process.
Researchers have developed several new process models by restructuring the basic processes in
Fagan’s inspection and these models have been evaluated and validated empirically. Another
group of studies focus on particular methods, tools, and models that support the structure of the
inspection process. Examples include support to preparation stage, i.e. reading techniques, elec-
tronic support to both preparation and inspection meeting, and various models that support the re-
inspection process, which have again been empirically validated.

Published in Software Testing, Verification and Reliability, Vol. 12, No. 3, pp. 133-154, 2002.

State-of-the-Art: Software Inspections after 25 Years April 25, 2003 4

This paper focuses on the software inspection process in the light of Fagan's inspection. The struc-
ture of this paper is drawn from Figure 1. This section addresses the review process in terms of its
objectives and benefits, roles of the participants, documents, inspection pace and the team size.
Section 3 describes Fagan’s inspection process and Section 4 reviews the literature on structural
changes made to this process and experimental findings. Section 5 focuses on methods and models
that support the structure of the inspection process and the experiments that validate these studies.

2.1 Objectives and Benefits

The basic objective of software inspections is to improve the quality of the product by analysing
the product and detecting defects in time, and removing them before the product is released.
According to O’Neill (1997) 42% of all defects result from lack of traceability from the code to the
design, to the requirements and to the business case. Researchers all agree that inspections appear
to be an effective technique in error detection and productivity improvement (Fagan, 1986; Acker-
man et al., 1989; Russell, 1991). First of all, inspections reduce the number of defects in the soft-
ware throughout the development process. The more defects that can be found earlier, the easier
and much less expensive they are to correct. Secondly, they can also uncover defects that would be
difficult or impossible to discover in later stages of the life cycle. Thirdly, the inspection process
improves learning and communication within the software team (Briand et al., 2000b). Overall,
inspections reduce the software development cost, increase the quality of software, and improve
the productivity as well as the quality of the decision making process for management (Fagan,
1986; Ackerman et al., 1989; Gilb and Graham, 1993).

FIGURE 1. Evolution of the Inspection Process with Two Major Areas: Change in Structure
and Support to Structure.

5.1 Support to Preparation;
Reading Techniques

5.2 Electronic support to
Inspection Process

5.3 Support to Re-inspection

Support to Structure

Fagan’s Inspection

4.1 Active Design Review
4.2 Two-Person Inspection
4.3 N-fold Inspection
4.4 Phased Inspection
4.5 Inspection without a Meeting
4.6 Other Inspection Techniques

Change in Structure

Evaluation
(Experiments)

Evaluation
(Experiments)

(Section 3)

(Section 4) (Section 5)

Published in Software Testing, Verification and Reliability, Vol. 12, No. 3, pp. 133-154, 2002.

State-of-the-Art: Software Inspections after 25 Years April 25, 2003 5

Despite the documented benefits of inspection, in many organizations productivity is still mea-
sured in terms of lines of code per effort (Briand, 2000b), and therefore the benefits of inspection
are not perceived well by management and thus inspections are not used widely in software indus-
try. Shirey (1992) points out that one of the problems in the inspection process is that the informa-
tion collected from the process may not necessarily be used. Grady (1994) reports that to get
inspections incorporated into a large company e.g. Hewlett-Packard, may take a long time e.g. 15
years. Since inspections are labour intensive, the return from this process is not immediate and
clear to the management (Shirey, 1992). Therefore there is a perception that inspections cost more
than they are worth (Russell, 1991).

2.2 Roles

Software inspections start with a request from the author of the work product. Following this
request a team of reviewers is formed and roles assigned to each member of the team. The team
members may play multiple roles. Each role requires specific skills and knowledge. There are
roles related to the inspection process, and to the product being inspected. The process roles
defined by Fagan are: author, moderator, reader and reviewer(s). According to some researchers,
when reviewing requirements documents, each reviewer may be assigned a product role to repre-
sent the viewpoint of that role during the review process (Bisant and Lyle, 1989; Basili et al.,
1996). Researchers seem to all agree that the manager (project leader) should not be involved with
the review process of technical documents. In some cases, the manager is the person who plans the
inspection, assigns resources and roles. But on the other hand, a moderator (not being the man-
ager) chairs the software inspection activities and facilitates the interaction between reviewers
(O’Neill, 1997). The moderator may also collect the defects from the reviewers and creates a list of
defects (Russell, 1991). In other cases, the moderator is a leader who is drawn from other develop-
ment projects and has many responsibilities and may act as administrator, manager and supporter
(Gilb and Graham, 1993). In each case, the moderator must be trained to carry out the review pro-
cess. Although Russell (1991) recommends that the author participates as a silent observer in the
review process, Gilb and Graham (1993) stresses the active participation of the author; in fact they
claim that the author may be the best defect finder.

2.3 Documents

The document type can be a design, a requirements specification, code, a test plan or any type of
document that is related to the product. One of the strengths of inspections is that a similar process
can be applied to a wide range of documents. The document format can in be in textual, graphical
or tabular form or program code.

The size of a document of work product can vary in length, starting from a couple of pages to
dozen of pages or thousands of lines of code. In order to prevent the information-overloading
problem on reviewers, a document is generally divided into small chunks and then presented to
reviewers. Hence, inspection of a document may take several cycles.

2.4 Inspection Pace

Researchers agree that a slower review process yields more impressive results (Russell, 1991; Gilb
and Graham, 1993). Russell (1991) recommends that in code reading, maximum reading speed
should not exceed 150 lines per hour. Gilb and Graham (1993) also support this idea by suggesting
an optimum-reviewing rate as one page per hour per participant. Laitenberger and DeBaud (1997)
report that 200-300 lines of C code is a right size of document to inspect within two hours frame.

Published in Software Testing, Verification and Reliability, Vol. 12, No. 3, pp. 133-154, 2002.

State-of-the-Art: Software Inspections after 25 Years April 25, 2003 6

2.5 Team Size in Software Inspection

Software inspections involve teamwork where a group of individuals work together to analyse the
product in order to identify and remove defects. Teamwork is essential for software developers.
There are some major assumptions behind teamwork. First of all, the software products in today’s
market are too complex to be designed by individuals. The complexity of the products has become
the driving force behind the creation of teams. It has been found that the quality of the product
improves as it is inspected from multiple viewpoints (Laitenberger and DeBaud, 1997). Secondly
there is a belief that people are more committed to their work if they have a voice in the design of
the product or use of the development process (Smart and Thompson, 1998).

Inspection teams are formed from small groups of developers. Fagan (1976), in his article suggests
that four people constitute as a good-sized inspection team. This suggestion also ties with the
industrial work done by Weller (1993), who reports that four person teams are more effective and
efficient than three person teams. IEEE STD 1028-1997 suggests teams of 3 to 6 people (IEEE,
1998). Teams of 4 or 5 people are common in practice (Wheeler et al., 1996). Owens (1997)
reports that although it is expensive to have more reviewers, it is more effective to have more
points of view for requirements inspection (e.g. 5-6 inspectors) than for design, and more inspec-
tors are needed for design than coding (e.g. 1-2 inspectors for coding). Bisant and Lyle (1989) also
support the idea of having 2 people in coding inspection. Their findings illustrate that overall pro-
gramming speed increases significantly as a result of two-person inspections. Porter et al. (1997)
performed a detailed study on team size and found that the performance of one-person teams is
significantly lower than two or four person teams. Porter et al. (1997) also did not find a signifi-
cant difference in performance between two and four person teams for code inspection.

3. Fagans Inspection

Fagan (1976), in his influential article describing an inspection process developed at IBM, defines
inspections as ‘a formal, efficient and economical method of finding errors in design and code’.
Fagan’s inspection is now known to be applicable to any phase of the software development lifecy-
cle including requirements analysis, test documents, or management documents as well as to
design and code. Below is a summary of the key elements from the 1976 paper.

Software inspections involve teamwork and are organized by a moderator. Essentially, a number of
participants review a document with the aim of discovering defects. Fagan states that the inspec-
tion will be successful if all team members play out their roles fully in the process. In summary the
following inspection process roles are described:

• Moderator: This is the key person in the inspection who manages the team and coordinates the
inspection process.

• Author (designer or coder): The programmer who produces the program design and who may
also translates the design into code.

• Reader: The programmer who paraphrases the design or code during the meeting.

• Tester: The programmer who reviews the product from testing point of view.

Fagan’s inspection also consists of six major steps to be followed:
1. Planning: An inspection team is formed and the roles are assigned to team members.
2. Overview: An optional stage where the inspection team is informed about the product.

Published in Software Testing, Verification and Reliability, Vol. 12, No. 3, pp. 133-154, 2002.

State-of-the-Art: Software Inspections after 25 Years April 25, 2003 7

3. Preparation: Individual reviewers inspect the material independently. The inspection material
may be a product of analysis, design (such as entity-relationship diagrams, data-flow diagrams,
state-transition diagrams or a text specification) or coding. The aim of preparation is to learn
the material and to fulfil their assigned roles.

4. Examination: It is also called inspection meeting. The aim of the meeting is not to discuss or
evaluate the solution but to find and to pool the defects together. The moderator, who guides the
meeting, takes notes and prepares a list of defects. The meeting should not last more than two
hours. After the meeting the moderator produces a written report of the meeting to ensure that
all issues identified in the meeting will be addressed in the rework and follow-up.

5. Rework: The defects, to be verified by the moderator, are corrected by the author. Some prod-
ucts must be reworked and re-inspected several times if necessary.

6. Follow-up: The moderator checks and verifies each correction.

Although the main steps are preparation, examination and rework in the review process, Fagan
states that all steps are necessary and skipping or combining steps is not recommended. One of the
benefits of this approach is the feedback provided to the programmer that may take place within a
few days of writing a program. Fagan also recommends that, since the inspection process from
overview to follow-up may take up to 100 people hours, it is best to have a two hour session when
performing an inspection meeting.

Fagan (1986) points out that software inspections are less expensive if defects are detected and
repaired at the stage where they are inserted as opposed to when they are found and removed dur-
ing the testing and operational stage. He presents a detailed cost-benefit analysis showing its cost-
effectiveness and provides descriptions to allow software developers to better understand the
inspection process. He describes a 1976 project which, when inspection was applied, resulted in
38% less defects in the final product than would have been accomplished if walkthroughs were
used (1976). He also reports that IBM inspections found 90% of all defects detected over the life-
cycle of a product and IBM had 9% reduction in average project cost compared to when walk-
throughs were applied (Fagan, 1986).

4. Changes in the Inspection Process

Figure 2 compares the seven well known inspection methods based on the main process steps
involved. The grey and black parts on each bar illustrate the relative emphasis put on the various
steps in each method. For instance, in the Active Design Review (Parnas and Weiss, 1985) prepa-
ration and inspection meeting steps are handled differently from Fagan’s inspection process. On
the other hand, in Gilb inspections (Gilb and Graham, 1993) an extra step is added to the inspec-
tion process to improve the software development process that produced the document being
inspected. The following section further describes the seven methods and addresses experimental

Published in Software Testing, Verification and Reliability, Vol. 12, No. 3, pp. 133-154, 2002.

State-of-the-Art: Software Inspections after 25 Years April 25, 2003 8

findings on the inspection team size, the number of teams and the coordination strategy within the
team or the multiple teams.

4.1 Active Design Review

Parnas and Weiss (1985) presented active design reviews in the mid 80s. According to the authors
the conventional inspection methods fail to find defects in the product development because (1)
reviewers are generally overloaded with information during the preparation stage and finding the
relevant information is difficult, (2) in most cases the reviewers are not familiar with the goals of
the design and they may not be competent in the task, (3) social interaction in large meetings
brings a few drawbacks such as production blocking and evaluation apprehension. In order to
achieve a full review process they redesigned the review process.

The Active Design Review is conducted as several brief reviews as opposed to one large review, in
which each review focuses on certain part of the product. Different reviewers who have particular
expertise and specific responsibilities perform each review. In order to guide the reviewers the
errors are classified in terms of inconsistency, inefficiency and ambiguity. Reviewers are also pro-
vided with a list of questions to be used as a guideline during the review process. Reviews are
designed according to the properties of the product that the reviewer is examining. Each review
consists of three stages. In the first stage, the reviewers are presented with a brief description of the
main product. In the next stage, reviewers study the material following the guideline. Then, in the
third stage the issues raised by the reviewers are discussed in small meetings where only the
designer and the particular reviewers meet.

Parnas and Weiss successfully applied this approach to the design of military flight navigation sys-
tem, but did not provide any quantitative measurements.

FIGURE 2. Commonly Known Inspection Processes with Comparison to Fagan’s Inspection

Inspection
MeetingOverviewPlanning Preparation Rework Follow-up

Fagan’s
Inspection

Active Design
Review

Two-Person
Inspection

N-Fold
Inspection

Phased
Inspections

Inspection
without meeting

Gilb
Inspection

1976

1985

1989

1990

1993

1993

1993

Collection

Process
Brainstorming

Published in Software Testing, Verification and Reliability, Vol. 12, No. 3, pp. 133-154, 2002.

State-of-the-Art: Software Inspections after 25 Years April 25, 2003 9

4.2 Two-Person Inspection

This approach uses a formal method for software inspection. It removes the requirement of the ini-
tial resources of Fagan’s inspection by eliminating the role of the moderator. The inspection team
consists of two persons: an author and a reviewer.

Bisant and Lyle (1989) by applying this approach, conducted experiments to study the program-
mers’ productivity and to determine whether their productivity improves with this technique dur-
ing the design or coding phase of product development. They found that two-person inspections
had immediate benefits in the program quality and program productivity. They pointed out the sig-
nificant improvements in individual productivity, in particular with novice programmers and less
productive programmers. They suggested using this method in small organizations where the team
sizes are relatively small, and as a transition to the larger team technique which will have the extra
benefits of establishing consistent data to be used in process control.

4.3 N-fold Inspection

This approach uses N independent small efficient teams. The aim in using multiple teams is to
identify defects that may not be found by a single team. It is also expected that different teams will
detect different faults. Therefore, having a larger number of teams should result in the detection of
more defects. The team size varies between 3 and 4 people. The participants of this approach are
the author, reviewers and one single moderator. The moderator is assigned for coordinating teams
and collecting data from teams. Each team follows the six steps of the Fagan inspection. In this
approach multiple teams work in parallel sessions. First each team member individually reviews
the document for about two hours. Then, they meet as a team to discuss the defects that may also
last up to two hours. After the inspection only one single team becomes responsible for the rest of
the development process.

Martin and Tsai (1990) who originally developed this technique, suggested using N-fold inspection
for the initial phase of software development for mission-critical systems. They conducted their
experiments based on this approach and found that (a) N-fold teams out-performed single teams:
even one pair of teams found more defects during the inspection than a single team discovered
after inspection, specification and design. Tripp et al., (1991) who applied multiple team inspec-
tion to improve the technical review and quality of a safety-critical software standard have also
reported favourable results. They found out that there was a low redundancy in defects between
teams. Schneider et al., (1992) found that a single team was able to detect 35% of defects present
whereas N teams (N=9) was able to detect 78% of defects present, (b) there was no significant
overlapping between the faults found by different teams. Martin and Tsai (1990) raised a point that
although increasing the number of teams result in finding more defects, this increment may not be
significant. The best value for N depends on (a) availability of teams, (b) cost of additional teams,
and (c) potential cost for not finding a defect during the inspection. Tripp et al., (1991) also
described that multiple team inspection is costly, but provides substantial benefits.

Kantorowitz et al., (1997) who conducted experiments with both information and real-time sys-
tems identified that N-fold inspection is not dependent on the type and the size of the system. Their
analysis suggested that the performance of N-fold inspection depends on the level of expertise of
the team members and the number of teams. Based on their findings they developed a probabilistic
model for N-fold inspections, in which the model captures the performance of N-fold and it can
also be used to determine the optimal number of inspection teams.

Published in Software Testing, Verification and Reliability, Vol. 12, No. 3, pp. 133-154, 2002.

State-of-the-Art: Software Inspections after 25 Years April 25, 2003 10

4.4 Phased Inspection

Knight and Myers (1993) developed Phased inspection. Some of the ideas in active design
reviews, Fagan inspection and N-fold inspection are adopted for phased inspection. In this
approach the software product is reviewed in a series of partial inspections called phases. A simple
inspection may have up to six phases and phases are conducted in sequential order. Each phase has
a specific goal and is intellectually manageable. During each phase, reviewers fully examine and
validate the product for fulfilment with a specific property. The inspection does not progress to the
next phase until corrections are completed. To achieve a higher degree of confidence, the approach
uses two types of phases: single-inspector phase and multiple-inspector phase. In the first case, a
single person studies the product to determine whether it complies with a checklist. It is recom-
mended to use a technical writer for this process. After this, in the multiple-inspector phase, sev-
eral reviewers individually study the product by using a different checklist and then attend a
meeting session to compare their findings. The multiple-inspector phase may take around four
hours. According to Knight and Myers phase inspections can be used not only for fault detection
but also to examine the other desirable characteristics of the product e.g. portability, reusability or
maintainability.

4.5 Inspection without a Meeting

In Fagan’s inspection the main focus is on inspection meetings where the members of the inspec-
tion team meet to identify and to discuss the defects. The goal of inspection meetings is to bring
synergy to the software team. It is believed that the combination of different viewpoints, skills and
knowledge from many inspectors creates this synergy (process gains). Synergy can overcome
many difficulties encountered in organizational life, including those in the software development
process. Fagan (1976) strongly emphasized that the inspection meeting is crucial and reported that
most defects will be found during the inspection meeting. He suggested that reviewers who have
meetings will be more successful in finding a larger quantity of defects, as opposed to those who
work individually. Johnson and Tjahjono (1998) pointed out that the reason that teams who have
meetings will be more successful than individuals working alone, is that in Fagan’s inspection
defect detection only becomes an explicit goal only during the meeting phase.

Recently, it has been reported that in many organizations the structure of Fagan’s inspection is rad-
ically changed, and performed in three stages: preparation, collection (with or without an inspec-
tion meeting) and rework (Votta, 1993; Porter et al., 1995). Furthermore, the expected outcome
from preparation and inspection meeting has also considerably changed, i.e. the preparation stage
is used to identify defects, whereas the collection stage is used to pool out the defects from the
reviewers (McCarthy et al., 1995). Experimental findings in Eick et al., (1992) showed that when
this structure was applied, reviewers were able to identify 90% of the defects during preparation
stage, whereas only 10% of the defects were found during the inspection meeting.

After observing several meetings and collecting data from the programmers of the work products,
Votta (1993) identified five reasons for holding meetings: synergy, education, schedule deadline,
competition, and requirement. His experiments in AT&T Bell Labs showed that on the positive
side holding meetings tend to minimize ‘false positives’, but on the negative side they may not
necessarily bring the synergy. He claimed that holding meetings after the preparation stage does
not have a significant effect on the inspection. This finding also ties with the experimental work
done by Johnson and Tjahjono (1998). These researchers reported that meeting based software
inspections are more costly and do not find significantly more defects than non-meeting based
methods, but the former approach is significantly better at reducing the number of ‘false positives’
and the reviewers actually prefer inspection meetings over a non-meeting approach. Mashayekhi

Published in Software Testing, Verification and Reliability, Vol. 12, No. 3, pp. 133-154, 2002.

State-of-the-Art: Software Inspections after 25 Years April 25, 2003 11

et al., (1993) argued that face-to-face meetings can be quite expensive because they involve 3-6
people. It is labour intensive and takes many meetings to completely inspect a product since each
inspection covers only a small part of the product. Porter et al., (1995) also indicated that holding
meetings is time consuming, because bringing several people into one room on a specific day and
time requires significant amount of effort.

Votta (1993) raised a point that in a meeting, although n number of reviewers participate, only two
of the reviewers can actually interact at any time, because in face-to-face meetings communication
is established in sequential order. He also found that, most of the time, only 30-80% of n-2 review-
ers were actually listening to the conversation. Hence, in each meeting on average n-4 reviewer
hours per meeting were wasted. Votta found that most defects were also identified before the meet-
ing. He concluded that having a meeting is not cost effective and made a few suggestions: (1)
using a nominal1 group approach or, (2) using correspondence instead of face-to-face meetings or,
(3) replacing meetings with all reviewers with two or three person meetings, called depositions,
which consists of an author, a reviewer and a moderator (optional). According to his experimental
findings in many cases depositions were more efficient than inspections.

4.6 Other Inspection Techniques

There are several more inspection techniques, similar to Fagan’s inspection, that have several dis-
tinct features in relation to the number of people involved in the process, the role of the reviewers
and the goal of inspections. For instance, Yourdon (1989) defines a specific walkthrough that is
similar to Fagan’s inspection. Yourdon calls this approach ‘structured walkthroughs’, where a
walkthrough is described as being simply a peer group review of any product. In Yourdon’s
inspection, the preparation stage and the inspection meeting does not take more than two hours. In
the preparation stage the reviewers are encouraged to note positive aspects of the document. Gilb
and Graham (1993) suggest adding an extra step to improve the inspection process itself, right
after the inspection meeting, called ‘process brainstorming meeting’. The reader can find a litera-
ture review on various software inspection processes in Porter et al. (1996), a detailed taxonomy of
review processes in Wheeler et al. (1996) and Johnson (1998). Recently, Laitenberger and DeBaud
(2000) also provided a survey and developed a different taxonomy which characterized the nature
of software inspection in various dimensions and then they illustrated the differences between soft-
ware inspection processes during different phases of the software development lifecycle.

5. Support for the Structure of the Inspection Process

There are a considerable number of studies that focus on methods and tools to support the structure
of the inspection process. Section 5.1 reviews different reading techniques and the results of exper-
imental findings. Section 5.2 presents the research on electronic support tools and the experimental
studies. Finally, Section 5.3 is concerned with various methods and models that are developed to
support the re-inspection process and the experiments that validate these studies.

5.1 Support for Preparation: Reading Techniques

Multiple reviewers identifying potential defects in the material using a particular reading tech-
nique perform the preparation stage. There are few techniques available to support this activity

1. A nominal group is an artificial group that is created based on combining the results of the performance
of the individuals. This means that no group meeting is held.

Published in Software Testing, Verification and Reliability, Vol. 12, No. 3, pp. 133-154, 2002.

State-of-the-Art: Software Inspections after 25 Years April 25, 2003 12

that are proven to be more effective. Researchers all agree that the choice of reading techniques
has potential impact upon inspection performance. Reading techniques are classified as systematic
techniques and non-systematic techniques (Porter and Votta, 1994; Porter et al., 1995). The sys-
tematic reading techniques such as Perspective-Based Reading, further described in Section 5.1.5.,
apply a very highly explicit and structural approach to the process. It provides a set of instructions
to reviewers and explains how to read the software document and what they should look for (Shull
et al., 2000) The non-systematic reading techniques, such as Ad hoc reading or Checklists, apply
an intuitive approach and offer little or no support to the reviewer. A few empirical studies have
also made comparisons between reading techniques by measuring the number of defects detected
by each technique. The following sections describe the most commonly used forms of reading
techniques and report the results of a few empirical studies.

5.1.1 Ad hoc Reading

This technique takes a very general viewpoint of reviewers. There is no clear procedure to follow
for the reviewer and no training is needed. Reviewers use their own knowledge and experience to
identify defects in the documents. Ad hoc reading does not offer any support to the reviewer.

5.1.2 Checklist

Checklist reading is considered to be more systematic than Ad hoc reading. The proposed proce-
dure by Fagan (1976) included the use of checklists. The reviewer answers a list of questions or
ticks a number of predefined issues that needs to be checked. It is expected that the questions will
guide the reviewer throughout the inspection process. The aim is to define the responsibilities of
the reviewers and provide guidance to them to identify the defects. According to Gilb and Graham
(1993) checklists are developed from the project itself and they must be prepared for each individ-
ual type of documentation and for each different type of product or process role. A checklist may
concentrate on questions that help reviewers identify major defects or prioritise different defects.
A checklist should be no more than one single page for each type of documentation (Gilb and Gra-
ham, 1993).

5.1.3 Stepwise Abstraction

This reading technique was developed in the late 70s as a code reading technique and has been
experimentally validated (Linger et al., 1979). In code reading by Stepwise Abstraction, each
reviewer identifies subprograms in the software and determines their functions. Next, each
reviewer determines the function of the entire program by combining sub-functions together and
constructing their own specification for the program. Then, the reviewer compares this derived
specification with official specification. Based on this comparison, inconsistencies are identified
as defects and studied in the next stage.

Basili and Selby (1987) conducted some experiments to compare code reading by Stepwise
Abstraction with Functional Testing and Structural Testing in four small programs. They reported
that code reading by Stepwise Abstraction detected more defects than the other two techniques did.
They pointed out that the number of defects observed, defect detection rate and the total effort in
detection depended on the type of software tested.

Based on the idea that different reading techniques may identify different defects, Roper et al.
(1997) investigated the relative effectiveness of different reading techniques. They examined the
effect of combining three techniques: code reading by Stepwise Abstraction, Functional Testing

Published in Software Testing, Verification and Reliability, Vol. 12, No. 3, pp. 133-154, 2002.

State-of-the-Art: Software Inspections after 25 Years April 25, 2003 13

and Structural Testing. They found that individual techniques were similar to each other in terms
of finding defects. They also pointed out that the reading techniques would be more effective when
used in conjunction with other techniques.

5.1.4 Scenario-Based Reading (Defect-Based Reading)

Scenario-Based reading is proposed as a systematic reading technique with specific responsibili-
ties for reviewers (Porter and Votta, 1994; Porter et al., 1995). This technique was originally devel-
oped to identify defects from requirements documents. In this approach, defects are classified and
a set of questions is developed for each defect class. Scenarios, which are a collection of proce-
dures for detecting particular types of defects, are also developed and focused on a particular view-
point. The reviewer answers the questions by following a specific scenario.

Several researchers compared Scenario-Based reading with Ad hoc and Checklist reading tech-
niques and studied the potential benefits of Scenario-Based reading on requirements documents by
conducting multiple experiments (Porter and Votta, 1994; Porter et al., 1995). In these experiments
documents were written in both plain English and tabular form. For scenario-based reviewers, they
developed a few scenarios that were derived from checklists and aimed to detect particular classes
of defects. Then, each reviewer was assigned to a scenario and was asked to search for different
classes of defects. For checklist reviewers, they developed a single checklist that contained several
questions. Ad hoc reviewers did not receive any assistance. Experimental findings showed that
Scenario-Based reading had a higher detection rate than Ad hoc and Checklist methods. In partic-
ular, the Scenario-Based approach found 35% more defects than the other two groups. Checklist
reviewers performed no better than Ad hoc reviewers.

Gough et al., (1995) performed a large-scale study using scenarios in a market driven industrial
environment (a medical system) and the use of Fagan’s inspection with stakeholders, i.e. custom-
ers and developers. Each team consisted of a moderator, a scribe and an average of five reviewers
who were assigned to particular roles e.g. requirements engineer or customer representative. In
this large case study reviewers identified typically 2-4 defects per hour. The authors pointed out
that scenarios are the prime means of elicitation of requirements.

Fusaro et al., (1997) who also conducted experiments using requirements documents on real-time
systems, and compared Scenario-Based reading with Ad hoc and Checklist techniques, discovered
that the average defect detection rate for Scenario-Based reading was not significantly different
from those obtained from the other two techniques.

5.1.5 Perspective-Based Reading

Perspective-Based Reading (PBR) is originally developed and experimentally validated at NASA
(Basili et al., 1996). PBR is an enhanced version of scenarios. The technique focuses on the point
of view or needs of the stakeholders. Each scenario consists of a set of questions. Scenarios are
developed based on the viewpoint of stakeholders. During the review process, reviewers read the
document from a particular viewpoint and produce a physical model that can be analysed to
answer the questions based on the viewpoint. It is expected that this structural approach will
reduce any existing gaps or overlaps between reviewers during the inspection process.

Basili et al., (1996) conducted several experiments at NASA to study the effectiveness of PBR on
requirements documents. They found no significant difference in the performance of reviewers
who were using PBR and those using their own usual technique when finding defects. However,

Published in Software Testing, Verification and Reliability, Vol. 12, No. 3, pp. 133-154, 2002.

State-of-the-Art: Software Inspections after 25 Years April 25, 2003 14

PBR reviewers performed significantly better on the generic documents. Laitenberger and DeBaud
(1997), also found no significant performance differences when they ran a more detailed experi-
ment using PBR on code documents at Robert Bosch GmbH. Shull et al., (2000) pointed out that
PBR is suited for reviewers with a certain range of experience. According to these authors, review-
ers who use PBR to inspect requirements documents tend to detect more defects than those who
use less-structured approaches. They also emphasized that PBR has beneficial qualities because it
is systematic, focused, goal-oriented and customisable, and transferable via training.

5.2 Electronic Support for the Inspection Process

In recent years, there have been a number of attempts to further increase inspection efficiency by
the introduction of electronic tool support that has resulted in a number of prototype systems.
These systems are designed to support either synchronous, asynchronous or both of types of com-
munications between team members. Some systems are designed to fully support the inspection
process whereas others partially support the process e.g. the preparation or the inspection meeting.
The researchers who conducted experiments studied the effectiveness of these tools and the perfor-
mance of meetings with and without electronic support. Below several examples of these tools,
which are evaluated in empirical studies, are presented.

Mashayekhi et al., (1993) developed a tool for reviewers who are geographically distributed. The
tool provided support for the preparation and inspection meeting. This system was structured for
software inspections on all types of products including requirements, design and coding and it was
designed to facilitate both asynchronous and synchronous activities in software inspection. The
authors conducted experiments where each team consisted of six members: an author, a moderator,
a recorder and three reviewers. Their findings indicated that meetings using electronic support
were as effective as face-to-face meetings.

Johnson (1994) developed a tool to support asynchronous communication. The inspection mainly
consists of two stages: private review and public review. During the private review, reviewers
study the material individually and cannot see other participants’ comments and issues. During the
public review, reviewers can access all comments and issues. Then they vote on whether they
agree on issues. Next, the moderator analyses the private and public review and decides whether to
go a head with a face-to-face group review meeting or not.

Murphy and Miller (1997) also developed a prototype to support asynchronous communication
that used electronic mail as the basis of communication. In this approach some of the tasks of team
members were modified: the author did not participate in the process whereas the moderator was
responsible for planning the inspection, monitoring the communication, and broadcasting the list
of defects to the inspection team to be re-inspected and compiling the list of defects to the author.

Vermunt et al., (1998), who conducted experiments using electronic support only for the inspec-
tion meeting, found that 95% of the defects were found during the preparation stage and groups
using electronic support performed as well as the groups who did not have electronic support.

5.3 Support for Re-Inspection

This section is concerned with methods and models that have been developed to support the re-
inspection process.

Published in Software Testing, Verification and Reliability, Vol. 12, No. 3, pp. 133-154, 2002.

State-of-the-Art: Software Inspections after 25 Years April 25, 2003 15

5.3.1 Inspection Metrics

Inspection metrics provide important information for the software project manager. Gilb and Gra-
ham (1993) state that ‘The metrics themselves are the lifeblood of inspections’. Inspection metrics
are useful in many ways; It helps the project manager to see the economics of the software review
process, to judge the quality of inspection and decide whether to re-inspect the material or not, to
better understand the potential problems within the software process and also provides feedback
for the review process.

Although Fagan (1976) does not explicitly discuss the importance of collecting metrics from the
inspection process, some metrics on the software inspection process are presented in the original
paper. Fagan mentions the classification of defects and gives examples from the inspection reports
and forms such as the number of defects found, date of inspection, size of product and the length of
inspection. Ackerman et al. (1989) list twelve basic measures that should be collected for each
inspection, e.g. date of inspection, identity of product to be inspected, number of reviewers and
number of defects. Barnard and Price (1994) present nine derived key metrics that are used to
answer questions concerning different things such as inspection cost, product quality and the effec-
tiveness of the inspection process. They also show various analyses and process control techniques
that can be used in inspections. Detailed information about inspection metrics and descriptions of
measures to be collected from an inspection process can be found in Gilb and Graham (1993), and
Ebenau and Strauss (1994).

Inspection metrics measure various aspects of inspection itself directly as well as indirectly (Gilb
and Graham, 1993). There are many useful metrics that can be collected from inspections for anal-
ysis to monitor, control and improve the review process. Examples of these inspection metrics
include total number of defects found, elapsed time for preparation and inspection meeting, and
number of reviewers. By using the inspection metrics several statistics can be computed e.g.
inspection rate, the number of defects found per reviewer, and the number of remaining defects
can be estimated. By collecting inspection metrics, developers can establish a baseline of measure-
ment about their development process. This historical data may help them to determine the quality
of the current inspection of the product and to control the process (Christenson et al., 1990; Gilb
and Graham, 1993; Burr and Owen, 1996). Chillarege et al. (1992), introduced the concept of
Orthogonal Defect Classification in order to provide a cause-effect relationship that can be used to
monitor the software process. In this approach, by keeping the same classification of defects
throughout the phases of the development, and computing the total number of found defects, it is
possible to obtain information about the status of the product and the process.

Collecting metrics can be tedious, in particular when dealing with various sizes and types of prod-
ucts. Furthermore, the developers may avoid measurement because of a fear of data misuse. Shirey
(1992) reported from a survey at Hewlett-Packard that in most cases the data from the inspection
process had never been used for any of the intended purposes.

5.3.2 Estimation of Remaining Defects

The main objective of an inspection is to find and correct defects. The correction of defects leads
to increased quality, hence eliminating defects from the product is an important issue. One way of
measuring the quality is estimating the number of remaining defects after an inspection. If the
number of remaining defects is estimated, it becomes easier to calculate an estimation of the risk
of failure. This would also give a hint of the amount of effort that has to be spent further on the

Published in Software Testing, Verification and Reliability, Vol. 12, No. 3, pp. 133-154, 2002.

State-of-the-Art: Software Inspections after 25 Years April 25, 2003 16

project. Thus the knowledge of the number of remaining defects gives an estimation of the quality
of the inspected artefact.

During the review process, the moderator records the number of defects the reviewers find. The
list of defects is then sent to the author to be corrected. Meanwhile, by using various methods the
number of remaining defects is calculated. Based on the results, the developers decide whether to
re-inspect the document. Re-inspection is performed after the author revises the software product
(IEEE, 1998). The most commonly used estimation techniques which are applied to software
inspection data are summarized below (Eick, et al., 1992; Ebenau and Strauss, 1994; Briand et al.,
2000a). Other methods also exist to estimate defect density, however, this is not in the scope of this
paper. The focus here solely on estimations from inspections.

(a) Defect Density: This is expressed in terms of the defects detected per unit reviewed (Ebenau
and Strauss, 1994). A reasonably high defect density may indicate that the review process is work-
ing well or that the document contains an unreasonably high number of defects. Since the aim is to
eliminate the causes of defects, by re-inspecting the document it is expected that defect density
will continually become lower throughout the development. Using upper and lower thresholds on
the number of defects per unit of size is also a common approach (Vander Wiel and Votta, 1993).
The drawback in this approach is that reviewers tend to reach the upper limit regardless of the doc-
ument’s quality (Briand et al., 1997).

(b) Subjective Assessment: Reviewers make their own estimation at the end of the review process.
The approach is not fully reliable, thus it is useful to combine this approach with an objective re-
inspection criterion (Briand, et al., 2000a).

(c) Using Historical Data: The remaining number of defects is estimated based on the historical
data from the previous projects. The document is re-inspected if the number of undetected defects
is significantly different from the historical average. Too many defects may indicate that the docu-
ment is poorly written. Too few defects may indicate that the document is poorly reviewed.
According to Eick et al., (1992) this approach assumes that the variation between reviewers is
larger than the variation between the documents. The drawback in this approach is that, if this
assumption is not true then a high quality document may be re-inspected, and a poor quality docu-
ment may not be re-inspected if the inspection is poorly performed. Gilb and Graham (1993) also
suggest using historical data as an estimation method.

(d) Capture-Recapture Method: This approach is based on the amount of overlap in defects found
by various reviewers and uses estimation models to calculate the number of remaining defects in
the product. The capture-recapture method was originally used to estimate the number of animals
in wilderness (animal population). Recently, researchers started using the same method to estimate
the number of defects in software products. The approach is based on applying statistical method
to collected defects. Three methods have been applied for this purpose: Maximum Likelihood
Estimator (MLE) and Jackknife Estimator (JE), and Chao’s Estimator. Capture-recapture models
applied to software inspections make use of models based on assumption of two factors (1) the
probability of a specific defect being found (2) the ability of the reviewers.

The capture-recapture method for estimating the number of remaining defects has been empiri-
cally studied by many researchers during the last decade. Eick et al., (1992) performed the first
application of capture-recapture in software inspections. They applied this method to estimate the
defect content in the design documents in AT&T’s International Switching Division. Vander Wiel
and Votta (1993) used Monte Carlo simulation to investigate the assumptions made by capture-
recapture methods, in particular MLE and JE. They found that if defects are classified into a small

Published in Software Testing, Verification and Reliability, Vol. 12, No. 3, pp. 133-154, 2002.

State-of-the-Art: Software Inspections after 25 Years April 25, 2003 17

number of groups, MLE performs better than JE and if there is no grouping then MLE performs
poorly. Based on this Wohlin et al., (1995) carried out the first controlled experiment on capture-
recapture in software engineering. They proposed the application of a filtering process that
grouped the defects into small classes. The classes are defined in such way that some of the
assumptions of the capture-recapture method are better fulfilled, hence the estimate is improved.

Briand et al., (1997) studied the impact of the number of reviewers on the performance of capture-
recapture models. They commented that the capture-recapture models generally underestimate the
remaining defects. They suggested that the estimates will not be accurate if the group size is less
than four people. They recommended using the Jackknife estimator for group size four, and the
Chao estimator for group size five. The experimental findings from Miller (1999) also supported
this recommendation. Miller found that the Jackknife estimator is the best estimator for team size
3-5 and recommended using Chao’s estimator for larger group sizes or the Jackknife estimator
with combination of other estimators. Briand et al., (2000a) conclude that models are strongly
affected by the number of reviewers and, therefore, developers must consider this factor before
using capture-recapture models.

(e) Curve-fitting Methods: Wohlin and Runeson (1998) proposed estimating the number of
defects using a curve fitting approach. They plotted the inspection data and fitted a curve to the
plot to produce an estimate. They pointed out that curve fitting is more useful than capture-recap-
ture estimates as the latter is based on statistical analysis with underlying assumptions that are
largely not fulfilled. The curve-fitting approach was integrated with capture-recapture methods by
Briand et al. (1998), where they also applied a linear function to perform the estimation. The func-
tion applied by Wohlin and Runeson (1998) was an exponentially decreasing function.

The estimation methods listed above, from (a) to (e), are validated in empirical studies. It is impor-
tant to note that most of the evaluations are from laboratory environments (controlled experi-
ments), whereas only a few of them are based on industrial case studies.

6. Summary and Conclusion

Software inspections are important for improving the quality of software. Although software
inspections are widely used among developers, the application of the process varies. This paper
reviewed existing literature on software inspections and addressed issues related to the inspection
process. Reviewing the literature in this field made us aware of the differences and overlaps
between studies. Figure 1 illustrates the summary of the evolution of software inspections.

The following two major areas of study is identified in the literature.

• In the last 25 years several variations of Fagan’s inspection have been proposed to improve the
performance of software inspections. There are some distinctive structural differences between
models. Restructuring the basic processes in Fagan’s inspection creates the different models.
This includes changing the activities in each preparation or inspection meeting, emphasizing
different goals in each stage, changing the number of participants in teams, employing single or
multiple teams, changing the coordination strategy between teams or participants of the teams.
A summary of these inspection methods is illustrated in Figure 2. Most of the methods in Fig-
ure 2 have been empirically evaluated.

• There is a considerable amount of research on various models, methods and tools that support
the structure of software inspections. Support approaches include various reading techniques,

Published in Software Testing, Verification and Reliability, Vol. 12, No. 3, pp. 133-154, 2002.

State-of-the-Art: Software Inspections after 25 Years April 25, 2003 18

electronic support tools, and various models that support the decision making process in rela-
tion to re-inspection.

Table 1 provides a brief summary of the two major areas of research and corresponding empirical
studies in the literature. The first two columns show the main approaches or suggested changes in
software inspections. The first column includes changes to the structure of software inspections
and the second column presents new ideas of how to support software inspections. The objective,
in the first two columns, has been to give credit to the authors that proposed the new ideas. Thus,
the references provided in the first two columns are intended to reference the original source. The
new ideas are annotated so that cross-references to empirical studies in columns three and four can
easily be identified. The references in columns three and four are to papers where primarily a new
idea has been evaluated, although some minor changes may also have been introduced. The table
is divided into three rows to classify the research into the three major phases of software inspec-
tions, i.e. preparation, meeting and re-inspection. The table is by no means exhaustive. The inten-
tion has been to capture some of the main contributions in the area.

Published in Software Testing, Verification and Reliability, Vol. 12, No. 3, pp. 133-154, 2002.

State-of-the-Art: Software Inspections after 25 Years April 25, 2003 19

.

Software inspections are widely used and recognized as a cost-effective way of removing defects.
Despite this, there is still room for improvement in this field. The extensive research into software
inspections has provided valuable knowledge and experience. There have been contributions to
areas such as the inspection process, reading techniques and defect estimation techniques. It is not
possible to identify any single study or proposal that has provided a major breakthrough in how
software inspections are researched or practiced. The studies have, however, jointly contributed to
the evolution of software inspections. This means that they have contributed to the general body of
knowledge in software inspections. It should however be noted that no definitive answers have

Table 1: A Summary of the Literature.

Change in
Structure

Support
to Structure

Evaluation of
Structure

Evaluation of
Support to
Structure

A1) Fagan Inspection
Fagan’76

A2) Active Design Review,
Parnas and Weiss’85

A3) Two-Person Inspection,
Bisant and Lyle’89

A4) N-fold Inspection, Martin
and Tsai’90

A5) Phased Inspection, Knight
and Myers’93

A6) Inspection without Meet-
ing, Votta’93

A7) Gilb Inspection, Gilb and
Graham’93

B1) Ad hoc Reading

B2) Checklists

B3) Stepwise Abstraction,
Linger et al.’79

B4) Scenario Based Reading,
Porter and Votta’94

B5) Perspective Based Read-
ing, Basili et al.’96

B6) Electronic Support

• Wheeler et al’96, A1

• Russell 91’, A1

• Tripp et al.’91, A4

• Schneider et al.’92, A4

• Kantorowitz et al.’97, A4

• Basili et al.’87, B3

• Roper et al.’97, B3

• Porter et al.’95, B4

• Gough et al.’95, B4

• Fusaro et al.’97, B4

• Laitenberger and
Debaud’97, B5

• Shull et al.’00, B5

• Mashayekhi et al.’93, B6

• Johnson’94, B6

• Murphy and Miller’97, B6

C1) Active Design Review,
Parnas and Weiss’85

C2) N-fold Inspection, Martin
and Tsai’90

C3) Inspection without Meet-
ing, Votta’93

C4) Gilb Inspection, Gilb and
Graham93

D1) Electronic Support • Mashayekhi et al’93, D1

• Johnson’94, D1

• Murphy and Miller’97, D1

• Vermunt et al.’98, D1

E1) Defect Density

E2) Subjective Assessment

E3) Historical Data

E4) Capture-Recapture, Eick et
al.’92

E5) Curve Fitting, Wohlin and
Runeson’98

• Briand et al. ‘00b, E2

• Vander Wiel and Votta’93,
E4

• Wohlin et al.’95, E4

• Briand et al.’97, E4

• Briand et al.’00a, E4

• Miller’99, E4

• Briand et al.’98, E4 and
E5

Pr
ep

ar
at

io
n

M
ee

tin
g

R
e-

In
sp

ec
tio

n

Published in Software Testing, Verification and Reliability, Vol. 12, No. 3, pp. 133-154, 2002.

State-of-the-Art: Software Inspections after 25 Years April 25, 2003 20

been found and that many research questions still are open, although inspections have matured
considerably during the last 25 years. Some of the open research questions are:

• What is an efficient reading technique? The research is inconclusive on this issue and more
work is needed.

• Which reading technique should be used for which type of artefacts? The inability to find a
superior way of reading may be due to different reading techniques being better suited for dif-
ferent artefacts or even applications.

• How should models, in for example UML, be inspected? Object orientation, UML and Java
have been major changes in the last couple of years, but it is not clear how to efficiently inspect
these models and notations.

• What is the best way to support inspectors in their work? There is little work done on how to
develop checklists in an efficient way and also how to best support different scenarios when
using scenario-based techniques.

• What is the best way to plan and staff software inspections? Research is needed toward sup-
porting the person who takes the decisions prior to an inspection. Support is required so that a
person in a cost-effective and efficient way can determine the number of reviewers needed and
the competence of the reviewers.

• Is it possible to develop a benchmark that can provide a general measure of the performance of
software inspections which can also be further tailored for specific applications? Software
inspections are carried out in a number of ways and at a large number of places, but so far it was
not possible to make comparisons between different ways of conducting software inspections.
Research along this line should aim at establishing methods for benchmarking software inspec-
tion processes.

• In what way can the decision making process after an inspection be supported? Work has been
conducted regarding estimation of remaining software defects, but little work has been carried
out of how to use the information. When is it suitable to add reviewers, make a re-inspections
or continue with the development process?

• What is the relationship between software inspections and software testing? Both these tech-
niques aim at identifying software defects, but which defects are best found by which tech-
nique? What is the best way to ensure that the techniques complement each other in the best
possible way?

• What is the best way to pool the comments from individual reviewers? Some work has been
done regarding inspection meetings, but using electronic support to view each others comments
may be helpful and possibly it is more efficient to only include a sub-group of the reviewers for
these meetings.

• Are the estimation methods good estimators of the actual number of defects? This research
question includes evaluation and validation of defect estimation methods in industrial case
studies, where the actual data may be compared with the estimated value.

• Is it possible to identify relationships between different parameters in software inspections?
This includes empirical studies related to different parameter in software inspections, for exam-
ple, inspection pace versus effectiveness and defect density versus inspection pace.

• Are inspections different between different application domains such as real-time systems ver-
sus information systems or web-based systems?

Published in Software Testing, Verification and Reliability, Vol. 12, No. 3, pp. 133-154, 2002.

State-of-the-Art: Software Inspections after 25 Years April 25, 2003 21

These open research questions illustrate that although a lot of research has been devoted to soft-
ware inspections during the last 25 years, there are still many unresolved issues. The research has
come far since 1976, but it is important to continue to increase our understanding of software
inspections to allow for improvements in the area. Given the potential, in terms of increasing soft-
ware quality throughout the software development process, research into software inspections is
still very relevant and important for the success of software development.

Acknowledgment

This research was partially conducted during a sabbatical visit by Dr. Aurum to the Department of
Communication Systems, Lund University. Dr. Aurum was partially supported by the Swedish
Institute Research Grant and a Research Grant from Department of Communication Systems,
Lund University.

References

Ackerman, F. A.; Buchwald, L. S.; Lewski, F. H. (1989): ‘Software Inspections: An Effective Ver-
ification Process’. IEEE Software, 31-36, May.

Barnard, J. and Price, A. (1994): ‘Managing Code Inspection Information’. IEEE Software, 59-69,
March.

Basili, V. R.; Selby, R. W. (1987): ‘Comparing the Effectiveness of Software Testing Strategy’.
IEEE Transactions on Software Engineering, 13(12), 1278-1296, Dec.

Basili, V. R.; Green, S.; Laitenberger, O.; Lanubile, F.; Shull, F.; Sörumgård, S., Zelkowitz, M.
(1996): ‘The Empirical Investigation of Perspective-Based Reading’. International Journal on
Empirical Software Engineering, 1(12), 133-144.

Bisant, D. B. and Lyle, J. R. (1989): ‘A Two Person Inspection Method to Improve Programming
Productivity’. IEEE Transactions on Software Engineering, 15(10), 1294-1304, October.

Briand, L. C.; El Emam, K.; Freimut, B. G.; Laitenberger, O. (1997): ‘Quantitative Evaluation of
Capture-Recapture Models to Control Software Inspections’. Proceedings of the 8th International
Symposium on Software Reliability Engineering, 234-244.

Briand, L. C.; El Emam, K.; Freimut, B. G. (1998): ‘A Comparison and Integration of Capture-
Recapture Models and the Detection Profile Method’. Proceedings of the 9th International Sympo-
sium on Software Reliability Engineering, 32-41.

Briand, L. C.; El Emam, K.; Freimut, B. G.; Laitenberger, O. (2000a): ‘A Comprehensive Evalua-
tion of Capture-Recapture Models for Estimating Software Defect Content’. IEEE Transactions on
Software Engineering, 26(6), 518-539, June.

Briand, L. C.; Freimut, B.; Vollei, F. (2000b): ‘Assessing the Cost-Effectiveness of Inspections by
Combining Project Data and Expert Opinion’. Proceedings of the 11th International Symposium
on Software Reliability Engineering, 124-135.

Burr, A. and Owen, M. (1996): Statistical Methods for Software Quality. Thomson Computer
Press, ISBN 1-85032-171-X.

Published in Software Testing, Verification and Reliability, Vol. 12, No. 3, pp. 133-154, 2002.

State-of-the-Art: Software Inspections after 25 Years April 25, 2003 22

Chillarege, R.; Bhandari, I. S.; Chaar, J. K.; Halliday, M. J., Moebus, D. S.; Ray, B. K.; Wong, M.
(1992): ‘Orthogonal Defect Classification: A Concept for in-process Measurements’. IEEE Trans-
actions on Software Engineering, 18(11), 943-956.

Christenson, D. A.; Huang, S. T.; Lamparez, A. J. (1990): ‘Statistical Quality Control Applied to
Code Inspections’. IEEE Journal on Selected Areas in Communications, 8(2), 196-200.

Ebenau, R. G. and Strauss, S. H. (1994): Software Inspection Process. McGraw Hill (System
Design and Implementation Series), ISBN 0-07-062166-7.

Eick, S. G.; Loader, C. R.; Long, M. D.; Votta, L. G.; Vander Wiel, S. (1992): ‘Estimating Software
Fault Content Before Coding’. Proceedings of the 14th International Conference on Software
Engineering, 49-65.

Fagan, M. E. (1976): ‘Design and Code Inspections to Reduce Errors in Program Development’.
IBM Systems Journal, 15(3), 182-211.

Fagan, M. E. (1986): ‘Advances in Software Inspections’. IEEE Transactions on Software Engi-
neering, 12(7) July.

Fusaro, P.; Lanubile, F.; Visaggio, G. (1997): ‘A Replicated Experiment to Assess Requirements
Inspection Techniques’. International Journal on Empirical Software Engineering, 2(1), 39-57.

Gilb, T. and Graham, D. (1993): Software Inspection. Addison Wesley Publishing Company. ISBN
0-201-63181-4

Gough, P. A.; Fodemski, F. T.; Higgins, S. A.; Ray, S. J. (1995): 'Scenarios- an Industrial Case
Study and Hypermedia Enhancements'. Proceedings of the 2nd. IEEE International Symposium on
Requirements Engineering, 10-17.

Grady, R. B. (1994): ‘Successfully Applying Software Metrics’. IEEE Computer, 27(9), 18-25,
September.

IEEE Std., 1028-1997 (1998): Standard for Software Reviews. The Institute of Electrical and Elec-
tronics Engineering, Inc. ISBN 1-55937-987-1.

Johnson, P. M. (1994): ‘An Instrumented Approach to Improving Software Quality through For-
mal Technical Review’. Proceedings of 16th International Conference on Software Engineering,
113-122.

Johnson, P. M. (1998): ‘Reengineering Inspection: The Future of Formal Technical Review’. Com-
munications of the ACM, 41(2), 49-52, February.

Johnson, P. M. and Tjahjono, D. (1998): ‘Does Every Inspection Really Need a Meeting?’. Empir-
ical Software Engineering, 3, 9-35.

Kantorowitz, E.; Guttman, A.; Arzi, L (1997): ‘The Performance of the N-Fold Requirements
Inspection Method’. Requirements Engineering Journal, 2, 152-164.

Knight, J. C. and Myers, A. E. (1993): ‘An Improved Inspection Technique’. Communications of
ACM, 36(11), 50-69, November.

Published in Software Testing, Verification and Reliability, Vol. 12, No. 3, pp. 133-154, 2002.

State-of-the-Art: Software Inspections after 25 Years April 25, 2003 23

Laitenberger, O. and DeBaud, J. N. (2000): ‘An Encompassing Life Cycle Centric Survey of Soft-
ware Inspection’. Journal of Systems and Software, 50(1), 5-31.

Laitenberger, O. and DeBaud, J. N. (1997): ‘Perspective-based Reading of Code Documents at
Robert Bosch GmbH’. Information and Software Technology, 39, 781-791.

Linger, R. C.; Mills, H. D.; Witt, B. I. (1979): Structured Programming: Theory and Practice. Add-
ison Wesley.

Martin, J. and Tsai, W. T. (1990): ‘N-Fold Inspection: A Requirements Analysis Technique’. Com-
munications of ACM, 33(2), 225-232, February.

Mashayekhi, V.; Drake, J.; Tsai, W. T.; Riedl, J. (1993): ‘Distributed Collaborative Software
Inspection’. IEEE Software, 66-75, September.

McCarthy, P.; Porter, R.; Riedl, J. (1995): ‘An Experiment to Assess Cost-Benefit of Inspection
Meetings and Their Alternatives’. Technical Report, Computer Science, Dept., University of
Maryland.

Miller, J. (1999): ‘Estimating the Number of Defects after Inspection’. Software Testing Verifica-
tion and Reliability, 9(4), 167-189.

Murphy, P. and Miller, J. (1997): ‘A Process for Asynchronous Software Inspection’. Proceedings
on 18th. IEEE International Workshop on Software Technology and Engineering, 96-104.

O'Neill, D. (1997): ‘Issues in Software Inspection’. IEEE Software, 14, 18-19, Jan./Feb.

Owens, K. (1997): ‘Software Detailed Technical Reviews: Findings and Using Defects’.
Wescon'97, Conference Proceedings, 128-133.

Parnas, D. L. and Weiss, D. M. (1985): ‘Active Design Reviews: Principles and Practices’. Pro-
ceedings of ICSE'85, (London, England, Aug 28-30), IEEE Computer Society, 132-136.

Porter, A. A. and Votta, L. G. (1994): ‘An Experiment to Assess Different Defect Detection Meth-
ods for Software Requirements Inspections’. Proceedings on 16th International Conference on
Software Engineering, ICSE-16, 103-112.

Porter, A. A.; Votta, L. G.; Basili, V. (1995): ‘Comparing Detection Methods for Software Require-
ments Inspection: A Replicated Experiment’. IEEE Transaction on Software Engineering, 21(6),
563-575.

Porter, A. A.; Siy, H. P.; Votta, L. G. (1996): ‘A Survey of Software Inspection’. Advances in Com-
puters, 42, 40-76, November.

Porter, A. A.; Siy, H. P.; Toman, C. A.; Votta, L. G. (1997): ‘An Experiment to Assess the Cost-
Benefit of Code Inspections in Large Scale Software Development’, IEEE Transactions on Soft-
ware Engineering, 23(6), 329-346.

Roper, M.; Wood, M.; Miller, J. (1997): ‘An Empirical Evaluation of Defect Detection Tech-
niques’. Information and Software Technology, 39(11), 763-775.

Russell, G. W. (1991): ‘Experience with Inspection in Ultralarge-Scale Developments’. IEEE Soft-
ware, 25-31, January.

Published in Software Testing, Verification and Reliability, Vol. 12, No. 3, pp. 133-154, 2002.

State-of-the-Art: Software Inspections after 25 Years April 25, 2003 24

Schneider, G. M.; Martin, J.; Tsai, W. T. (1992): ‘An Experimental Study of Fault Detection in
User Requirements Documents’. ACM Transactions on Software Engineering and Methodology,
1(2), 188-204, April.

Shirey, G. C. (1992): ‘How Inspections Fail’. Proceedings of 9th. International Conference on
Testing Computer Software, 151-159.

Shull, F.; Rus, I.; Basili, V. (2000): ‘How Perspective-Based Reading Can Improve Requirements
Inspection’. IEEE, Computer, 73-79, July.

Smart, K. L. and Thompson, M. (1998): ‘Changing the Way We Work: Fundamentals of Effective
Teams’. IPCC'98. Proceedings of IEEE International Communication Conference. 2, 383-390.

Tripp, L. L.; Struck, W. F.; Pflug, B. K. (1991): ‘The Application of Multiple Team Inspections on
Safety Critical Software Standard’. IEEE, Proceedings of 4th. Software Engineering Standards
Application Workshop, 106-111.

Vander Wiel, S. and Votta, L. (1993): ‘Assessing Software Designs Using Capture-Recapture
Methods’. IEEE Transactions on Software Engineering, 19(11), 1045-1054.

Vermunt, A.; Smits, M.; Van der Pijl, G. (1998): ‘Using GSS to Support Error Detection in Soft-
ware Specifications’. IEEE, Proceedings 31st Annual Hawaii International Conference on System
Sciences, 566-574.

Votta, L. G. (1993): ‘Does Every Inspection Need a Meeting?’ Proceedings of ACM Symposium on
Software Development Engineering. Reprinted in Software Inspection: An Industry Best Practice.
IEEE, Computer Society Press, USA, (1996). ISBN 0-8186-7340-0.

Weller, E. F. (1993): ‘Lessons from Three Years of Inspection Data’. IEEE Software, 10(5), 38-45,
September.

Wheeler, D. A.; Brykczynski, B.; Meeson, R. N. (1996): ‘Peer Review Process Similar to Inspec-
tion’. Software Inspection: An Industry Best Practice. IEEE Computer Society Press, USA. ISBN
0-8186-7340-0.

Wohlin, C.; Runeson, P.; Brantestam, J. (1995): ‘An Experimental Evaluation of Capture-Recap-
ture in Software Inspection’. Software Testing, Verification, and Reliability, 5, 213-232.

Wohlin, C. and Runeson, P. (1998): ‘Defect Content Estimation from Review Data’. Proceedings
of 20th. International Conference on Software Engineering, 400-409.

Yourdon, E. (1989): Structured Walkthroughs. 4th Edition. Prentice-Hall, Englewood Cliffs, N.J.,
1989.

