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ABSTRACT 

Software is an integral part of many products, ranging from durable goods such as 

household appliances to large and complex commercial and industrial systems. With the 

increasing dependency on software in our daily lives, the size and complexity of 

software systems has grown dramatically. This trend is of great interest to the software 

industry, calling for more practical analysis and prediction techniques of the reliability of 

software systems. Various modelling techniques for the analysis of software reliability at 

different development stages have appeared in the recent literature. This chapter 

describes the analysis of software failure data with commonly used non-homogeneous 

Poisson process (NHPP) models to track the reliability growth trend during the testing 

phase. This chapter deals with the use of available information from earlier releases of a 

project for early reliability prediction. A detailed case study is presented to illustrate the 

approach. 

 

 

1   INTRODUCTION 

 
Software is playing an increasingly important role in our systems. With well-developed 
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hardware reliability engineering methodologies and standards, hardware components of 

complex systems are becoming more and more reliable.  In contrast, such methodologies 

are still lacking for software reliability analysis due to the complex and difficult nature 

of software systems. The lack of appropriate data and necessary information needed for 

the analysis are the common problems faced by software reliability practitioners. In 

addition, practitioners often find it difficult to decide how much data should be collected 

at the start of their analysis and how to choose an appropriate software reliability model 

and method from the existing ones for that specific system.   

 Here the data is assumed to be failure time data during testing and debugging. 

The most informative data is the actual time each failure occurred, but grouped data 

might be sufficient. It could also be useful for detailed analysis if software metrics and 

other information can be collected during the testing. However, we will not discuss this 

as their main uses are not for reliability analysis, but for quality and cost prediction. 

In a well-defined software development process, data should be collected 

throughout the software life cycle. These data usually indicate the status and progress of 

planning, requirement, design, coding, testing and maintenance stages of a software 

project. Among all these data, failure data collected during the system testing and 

debugging phase are most critical for reliability analysis. During this period of time, 

software failures are observed and corrective actions are taken to remove the faults 

causing the failures. Hence there is a reliability growth phenomenon with the progress of 

testing and debugging. Appropriate reliability growth models can be used to analyse this 

reliability growth trend (Musa et al., 1987, Xie, 1991 and Lyu, 1996). The results of the 

analysis are often used to decide when it is the best time to stop testing and to determine 

the overall reliability status of the whole system, including both hardware and software. 

A good analysis will benefit a software company not only in gaining market advantages 

by releasing the software at the best time, but also in saving lots of money and resources 

(Laprie and Kanoun, 1992).  

However, the applications of software reliability growth models are often limited 

by the lack of failure data. This is because the traditional approach is based on the 

goodness of fit of a reliability growth model to the failure data set collected during 

testing. With a focus on the convergence and accuracy of parameter estimation, the 
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traditional approaches commonly suffer from divergence at the initial stage of testing 

and usually need a large amount of data to make stable parameter estimates and 

predictions. In many cases, this means reliability analysis could only be started at a later 

stage of software testing and results of the analysis might have been too late for any 

changes in the decisions made.  

To overcome this problem, reliability analysis should be started as early as 

possible and to make this possible, additional information should be used in the analysis 

until enough data from testing can be collected. It is noted that software systems today 

are often put on the market in releases. A new release is usually a modification of an 

earlier one and tested in a similar way. In the current practice, the data collected from the 

previous releases are often discarded in the reliability analysis of the current release. 

Although realising that this is wasteful of information, practitioners are uncertain of how 

to make use of these old data. In our studies, we found that although the two consecutive 

releases can be considerably different, the information from an earlier release could still 

provide us with important and useful information about the reliability of a later release 

from a process development point of view; at least, the information about the testing of 

an earlier release will help in understanding the testing process that leads to reliability 

growth in the software system. Thus, a simple approach on early reliability prediction 

with the use of information from previous releases is introduced in the chapter. 

The organization of this chapter is as follows. In Section 2, we first introduce a 

selection of traditionally used software reliability models with an emphasis on Non-

homogeneous Poisson Process (NHPP) models, as they are by far the most commonly 

used and easily interpreted existing models. In Section 3, a data set from the latest 

release is introduced and traditional modelling techniques are used for the illustration of 

their analysis. The convergence and accuracy problems faced by this traditional 

approach are explored in Section 4.  In Section 5, we discuss a new approach that can be 

taken at a very early stage of software testing for reliability analysis of the current 

release, making use of the previous release information. A comparison of the two 

approaches is also conducted as part of the case study. A brief discussion of the 

conclusions of the case is given in Section 6. 
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2  NHPP SOFTWARE RELIABILITY GROWTH MODELS 

 
When modelling the software failure process, different models can be used. For an 

extensive coverage of software reliability models, see Xie (1991) and Lyu (1996), where 

most existing software reliability models are grouped and reviewed. In this section, we 

summarise some useful models that belong to the non-homogeneous Poisson process 

category. Models of this type are widely used by practitioners because of their simplicity 

and ease of interpretation. Note that here a software failure is generally defined as the 

deviation from the true or expected outcome when the software is executed. 

 

2.1. Introduction to NHPP Models 

Let )(tN  be the cumulative number of failures occurred by time t. When the counting 

process { }0);( ≥ttN  can be modelled by an NHPP which is a widely used counting 

process model for inter-event arrival (Xie, 1991), NHPP software reliability models can 

be used for its analysis. In general, a NHPP model is a Poisson process whose intensity 

function is time-dependent (Rigdon and Basu, 2000). This type of model is also 

commonly called the Software Reliability Growth Model (SRGM), as the reliability is 

improving or the number of failures per interval is decreasing during testing with the 

discovery and removal of defects found. The expected cumulative number of failures in 

[0,t) can be represented using a so-called mean value function )(tμ . With different mean 

value functions, we have different SRGMs. The basic assumptions of NHPP SRGMs are: 

 
1. Software failures occur at random, and they are independent of each 

other; 

2. The cumulative number of failures occurred by time t, )(tN , follows a 

Poisson process; 

 
Here a software failure is said to have occurred when the output from the 

software is different from the expected or true one. During the testing and debugging of 

the software, a software fault is identified after each failure, and the fault caused that 

failure is removed, and hence the same failure will not occur again. In this way, the 
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failure frequency is reduced and the software can be release when it is expected to be 

lower than certain acceptable level. 

Usually, a software reliability growth model is specified by its mean value 

function )(tμ  with an aim to analyse the failure data. To determine the mean value 

function, a number of parameters have to be estimated using the failure data collected. 

The maximum likelihood estimation method is the most commonly used technique for 

the parameter estimation of software reliability models, using the failure data, such as the 

number of failures per interval data or exact failure time. To perform the maximum 

likelihood estimation of the model parameters, the likelihood function is used: 
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where in (i=1,…, m) is the observed number of failures in interval ),[ 1 ii tt −  during each of 

m time intervals, with 0 ≤ t0 < t1 < … < tm.  In general, to find the maximum likelihood 

estimates, we take the derivative of the log-likelihood function, equate the derivative to 

zero, and solve the resulting equation. Often the maximum likelihood equations are 

complicated and a numerical solution will be possible only using computer programs and 

libraries.  

 

2.2. Some Specific NHPP Models 

The first NHPP software reliability model was proposed by Goel and Okumoto (1979). It 

has formed the basis for the models using the observed number of faults per time unit. A 

number of other models were proposed after that, for example, the S-shaped model, the 

log-power model, and the Musa-Okumoto model, etc. The Goel-Okumoto model has the 

following mean value function 

 
 μ ( ) ( )t a e bt= − −1 ,  a>0, b>0     (2) 

 

where a = ∞μ ( )  is the expected total number of faults in the software to be eventually 

detected and b indicates the failure occurrence rate per each software fault.  
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The Goel-Okumoto model is probably the most widely used software reliability 

model because of its simplicity and the easy interpretation of model parameters to 

software engineering related measurements. This model assumes that there are a finite 

number of faults in the software and the testing and debugging process does not 

introduce more faults into the software.  

The failure intensity function )(tλ  is obtained by taking the derivative of the 

mean value function, that is:  

 

 btabe
dt

tdt −==
)()( μλ .       (3) 

 
Another useful NHPP model is the S-shaped reliability growth model proposed 

by Yamada and Osaki (1984), which is also called the delayed S-shaped model. This 

model has the following mean value function 

 
 ))1(1()( btebtat −+−=μ , a>0,  b>0.    (4) 

 
The parameter a can also be interpreted as the expected total number of faults eventually 

to be detected and the parameter b represents a steady-state fault detection rate per fault. 

This is a finite failure model with the mean value function )(tμ  showing the 

characteristic of S-shaped curve rather than the exponential growth curve of the Goel-

Okumoto model. This model assumes that the software fault detection process has an 

initial learning curve, followed by growth when testers are more familiar with the 

software, and then levelling off as the residual faults become more and more difficult to 

detect.  

Xie and Zhao (1993) proposed an NHPP model called Log-Power model. It has 

the mean value function 

 
 )1(ln)( tat b +=μ ,  a>0, b>0.    (5) 

 
This model is a modification of the traditional Duane (1964) model. An important 

property is that the log-power model has a graphical interpretation. If we take the 

logarithmic on both sides of the mean value function, we have 
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 )1ln(lnln)(ln tbat ++=μ .     (6) 
 

If the cumulative number of failures is plotted versus the running time, the plot should 

tend to be on a straight line on a log-log scale. This can be used to validate the model 

and to easily estimate the model parameters.  When the plotted points cannot be fitted 

with a straight line, the model is probably inappropriate, and if they can be fitted with a 

straight line, then the slope and intercept on vertical axis can be used as estimates of b 

and lna, respectively. 

 Note that the log-power model, as well as the Duane model for repairable system, 

allows )(tμ  to approach infinity. These models are infinite failure models with the 

assumption that the expected total number of failures to be detected is infinite. This is 

valid in the situation of imperfect debugging where new faults are introduced in the 

process of removing the detected faults.  

Musa and Okumoto (1984) proposed an NHPP model called the logarithmic 

Poisson model. It also has an unbounded mean value function 

 
 )1ln()( btat +=μ , a>0, b>0.      (7) 

 

This model was developed based on the fact that faults that contribute more to the failure 

frequency, are found earlier, and it often provides good results in modelling software 

failure data. However, unlike the log-power model, there is no graphical method for 

parameter estimation and model validation. 

The models introduced in this section are just a glimpse of the many SRGMs that 

have appeared in the literature. For other models and additional discussion, see Xie 

(1991). Understanding the software reliability models and their selection and validation 

is essential for successful analysis (Musa et al., 1987, Friedman and Voas, 1995 and Lyu, 

1996).   

 

2.3 Model Selection and Validation 

Model selection and validation is an important issue in reliability modelling analysis. 

However, no single model has emerged to date that is superior to the others and can be 

recommended to software reliability practitioners in all situations. To successfully apply 
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software reliability modelling techniques, we need to select the model that is the most 

appropriate for the data set we need to analyse. Goodness-of-fit tests can normally be 

performed to test the selected model. Some tests are reviewed in Gaudoin (1997). 

Models can also be compared in order to select a model that is best fit for the data set we 

want to analyse. On the other hand, as Musa et al (1987) has discussed, there are many 

practical aspects in model selection. 

Models can go wrong in many different ways. Each model has its own 

assumptions for its validity. To validate a model, we can compare a model prediction 

with the actual observation that is available later. An appropriate model should yield 

prediction results within the tolerable upper and lower limits to the users. When a chosen 

model is proven to be invalid, a re-selection process should begin to find a more 

appropriate model. 

Data collection is also critical for both model selection and validation. Good 

quality data not only reflect the true software failure detection process but also form the 

foundation to successful analysis. 

 
 
3  CASE STUDY 

 
In this section, a case study is presented based on a set of failure data obtained during the 

system test of a large telecommunication project. The case study is used to illustrate how 

a traditional NHPP software reliability model introduced in Section 2 is implemented in 

practice. 

The case study is based on the following background. A telecommunication 

company under study has been collecting failure data for each of its software releases. 

The data has been collected for documentation purpose without any further analysis to 

make use of the data. However, they decided, as they started developing release j (j > 1) 

of the system, to try applying software reliability modelling techniques to predict the 

software system reliability.  

 Although we have an earlier version of the software that had been tested and 

failure data recorded for that version, when no such information is available, the standard 

method assuming unknown parameters can be used. Graphical and statistical methods 
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can be employed for model validation and parameter estimation. The software failure 

process is then described as failure process similar to any standard repairable system. 

Hence, in this case study we will focus on the use of the earlier information and assume 

that the information is made available, which is the case in our case study. On the other 

hand, the use of traditional approach will be described first. 

 

3.1.  Data Set from Release j 

Table 1 shows the failure data set collected during the system testing of the jth release of 

a large and complex real time telecommunication system. There are 28 software system 

components with the size of each component between 270 and 1900 lines of code. The 

programming language used is a company internal language targeted at their specific 

hardware platform. For each of the components, a problem report is filled in after the 

detection of a failure during the testing, and corrective actions are taken to modify the 

code, so similar problems will not be repeated. Each problem report corresponds to the 

detection of one software failure. By the 28th week of release j, the number of problem 

reports collected from testing was counted and are summarized in Table 1.  

Although it is desirable to know the performance of the system as early as 

possible, at this point the project manager of release j is interested knowing how reliable 

this software system is, based on traditional reliability modelling prediction techniques.  

 

3.2. Analysis of Reliability after the Release 

To illustrate how traditional software reliability modelling techniques are used, first a 

model has to be selected. For its simplicity in illustration, we use the Goel-Okumoto 

model as an example in this case study. As mentioned, this model is the most widely 

used NHPP model and the parameters have clear physical meaning. 

Second, the parameters of the select software model should be estimated to 

determine its mean value function )(tμ . The two parameters a and b of the Goel-

Okumoto model can be estimated by the maximum likelihood estimation (MLE) method 

using the following non-linear equations: 
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The second equation can be solved numerically using the data set in Table 1 with 

k=28. Then the estimate of b can be inserted into the first equation to obtain an estimate 

of a. Solving the equations, we have 

 
0999.0ˆ2.249ˆ == banda      (9) 

 
The software reliability model is determined by its mean value function, 

estimated by 

 

)1(2.249)(ˆ 0999.0 tet −−=μ .      (10) 

 

With the mean value function, the reliability R(x|t) of the software system for a given 

time interval (t,t+x) can be calculated as follows: 

 
)]1(2.249exp[)]1(exp[)|(ˆ 0999.00999.0 −×=−= −−−− ttbtbt eeeaetxR .  (11) 

 
Given t=0.2, we get R=0.74 at the end of the 28th week. 

In addition to reliability, other types of analysis can be conducted. For example, 

we can determine when to stop testing and release the system based on the criteria of 

whether certain failure rate level 0λ  has been achieved.  To determine the release time τ, 

we find the smallest t that satisfies the following requirement:  

 
 0)( λλ ≤= −btabet .      (12) 

 

That is, b
ab

/ln 0
⎥⎦
⎤

⎢⎣
⎡−=

λ
τ . 
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For example, with our estimated model, tet 0999.00999.02.249)( −××=λ . Suppose 

that the system can be released when the failure intensity is less than 1. Then 

2.32/1ln =⎥⎦
⎤

⎢⎣
⎡−= b

ab
τ . That is, the system can be released after five more weeks of 

testing. 

 

4. PROBLEMS AND ALTERNATIVES 
 
4.1. Some Practical Problems 

In the previous section, we used a case study to show how traditional modelling 

techniques are used for software reliability analysis. The maximum likelihood method is 

commonly used to obtain the parameters of the model. However, the MLE requires a 

large data set for an estimate to be reasonably stable. That is only when the number of 

failures is large, the estimates will fluctuate slightly around the true value. A problem 

with the MLE method is that there might be no solution, especially at the early stages of 

software testing. This problem has been noticed in Knafl and Morgan (1996). A common 

approach is to wait until we have a large number of failures and the estimation can then 

be carried out. In the software industry, the availability of a large data set is often an 

issue. Waiting for a large data set also means reliability analysis could only be done at a 

later stage of the project development cycle when critical decisions have already been 

made. On the other hand, we may not know how long we should wait and, when 

estimates can be obtained, it is possible that after the next interval, there is again no 

solution to the likelihood equations. 

To illustrate the problems encountered in model parameter estimation using the 

MLE in early stages of testing when only a small number of failures is collected, again 

we use the data set presented in Table 1. We conducted model parameter estimation from 

the 11th week onwards. The MLEs using the data collected at the end of each week are 

given in Table 2. It can be noted that the estimates are not stable, and even may not exist 

at the beginning. In fact, MLE does not exist before the 12th week. It is also not until the 

24th week that the estimates start to stabilise. This is very late in the testing phase and 

change of any decision-making can be difficult and costly. The release date probably has 
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already been decided by that time. 

In fact, it is common that the MLE yields no solution or unstable solutions for 

model parameter estimations at the early stage of software testing. This is a practical 

problem that prevents the use of MLE in many cases.  

Another problem revealed in the previous case study is perhaps the waste of 

information. We noticed that the system was developed and tested in a series of releases, 

which is quite common in the software industry today. However, the data collected from 

the previous releases are ignored.  

To solve these problems, the case of analysing software in previous releases 

needs to be studied and a procedure for early stage software reliability predictions based 

on this information is needed. It can be noted here that there are other approaches that 

could be adopted, such as Bayesian approach. When using a Bayesian approach, prior 

distributions are needed for the model parameters, and posterior distribution can then be 

obtained via conditional probability. In the following, we will describe a simple 

approach that has shown to be useful in our case study. 

 

4.2. The Case with k Releases 

In fact, nowadays, most large software systems are developed in such a way that each 

version is a modification of an earlier release. A complete software product thus consists 

of a series of releases. Traditional software reliability growth models require a large 

amount of failure data, which is not usually available until the system has been tested for 

a long time. Although such an analysis is useful for the prediction of field reliability and 

for the estimation of software failure cost, many software developers would be more 

interested in estimating the software reliability as early as possible for their planning 

purpose. In our studies, we found that although two consecutive releases are not the 

same, some information from the previous release is useful for early reliability prediction 

of the current release. 

Here we are concerned with a number of releases of a certain software system 

and the underlying trend of software reliability. For the case of k releases, we use Nj 

(j=1,2, ..., k) to denote the total number of faults and use bj (j=1,2, ..., k) to represent the 

fault detection rate for the jth release in the series of k releases. If traditional reliability 
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modelling techniques are employed, failure information of that particular release is used. 

During the early stage of the software fault detection process, we cannot provide any 

reliability predictions before enough failure data become available to build a reliability 

model of the release. However, after studying the characteristics of the fault detection 

rate, we found that the fault detection rate bj-1 of the (j-1)th release can be used for the 

early prediction of the jth release, which can be given as 

 
 bj(t)= bj-1 (t),   t>0.       (13) 

 

An unknown fault detection rate of most of the existing SRGMs always makes 

the parameter estimation non-linear and requires regression or other estimation 

techniques. On the other hand, once the fault detection rate bj is known, determination of 

an SRGM becomes very straightforward. A procedure for making use of this early 

information for reliability prediction using Goel-Okumoto model is illustrated in the next 

section. 

Note that equation (13) is an important assumption that should be verified. The 

justification of that could be subjective by studying the actual testing process as a total 

change of test personnel or testing strategy will certain lead to different fault detection 

rate over the release. The verification could also be based on the data assuming both 

parameters are unknown and estimated without using prior information. However, this 

will require a large data set. In fact, when we have a sufficiently large data set, the prior 

information may not be useful and the simple method of using a model and estimation 

approach as described in Section 3.2 will be sufficient. 

 

4.3. A Proposed Approach 

A procedure for accurate software reliability prediction by making use of the information 

from an early release of the software in the series of k releases is presented here. For 

illustration, we use the Goel-Okumoto model as an example. We know that the current 

jth release being developed has a previous (j-1)th release and we have some reliability 

information about that release. We can apply the following procedures (see Figure 1) for 

the early reliability prediction for the jth release (current release). A similar method was 
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presented in Xie et al. (1999). 

First, according to the data collected in the previous (j-1)th release, a suitable 

software reliability model μ j t−1( )  is selected. Then we apply μ j t−1( )  to the failure data 

collected from the (j-1)th release and estimate the model parameters.  

After the (j-1)th release, a new release j is developed, normally by the same 

programming group. The traditional approach is to analyse this data set independently to 

obtain the two parameters in the Goel-Okumoto model, aj and bj. However, we found that 

the fault detection rate is quite stable for the consecutive releases, assuming that the 

same team is performing the testing. It can be expected that the value of the fault 

detection rate bj of the jth release is similar to the previous (j-1)th release, which is bj = 

bj-1. Parameter aj is then estimated as a simple function of the known parameter bj. 

Figure 1 indicates the flow of software reliability modelling and analysis by this 

sequential procedure. Our focus in this chapter is on the first four boxes. The bottom four 

boxes will be briefly discussed here. 

There are different ways to carry out goodness-of-fit tests. The methods can be 

different for different models. Standard tests such as the Kolmogorov-Smirnov test, the 

Cramer-von Mises test and the Anderson-Darling test can be used. If a model is rejected, 

another reasonable model should be selected. Usually this has to be based on experience 

and physical interpretation. It is important to also compare with the case when no prior 

information is used. This is because it is possible for earlier data to be, for example, of 

different type or based on different failure definition, and hence the proposed approach is 

no longer suitable.  

For illustration of the proposed approach, the same data set used in Section 3 are 

reanalysed in the following section, making use of additional information from the 

earlier releases. 

 
 
5  CASE STUDY (CONTINUED) 

 
In the case study introduced in Section 3, based on the actual failure data given in Table 

1, the MLEs of the parameters using the data available after each week were calculated 

in Table 2. We have discussed the problems associated with this traditional reliability 
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modelling approach in the previous section and proposed a new approach enabling 

reliability analysis to start as early as possible. In this section, we carry on with the case 

study, looking at the reliability analysis of release j from the early stage of testing based 

on the information from the previous release j-1. 

 

5.1. Data Set from the Earlier Release 
 
The system for which the failure data of release j was shown in Table 1, was one of the 

company’s main products. The product went through a couple of releases and the 

releases under investigation are considered typical releases of this particular system. 

Prior to release j, the failure data of its previous release j-1 were also collected for 

documentary purpose. The number of failures detected during the testing of release j-1 

were summarised on a weekly basis as shown in Table 3. The Goel-Okumoto model was 

chosen again for its reliability prediction. Based on Table 3, the MLEs of parameters aj-1 

and bj-1 of release j-1 are obtained by solving equation (8). We get 

 
 098076.0ˆ48.199ˆ 11 == −− jj banda .     (14) 

 
In the following this assumption will be used. Of course, when a large number of failures 

have occurred, it is more appropriate to use the complete failure data without assuming 

any prior knowledge of b. In fact, this was done in section 3.2 and an estimate of b is 

0.0999 in equation (9) which is very close to that in equation (14). On the other hand, the 

justification of making the assumption initially should be based on process and 

development related information which is the case here; the products were developed in 

a similar environment and tested with the same strategy and hence the occurrence rate 

per fault is expected to remain the same. 

 

5.2. Earlier Prediction for Release j 

Using the procedures discussed in Section 4, we can actually start reliability analysis at a 

very early stage of release j making use of the information from its previous release j-1. 

First, we estimate the two parameters aj and bj of the Goel-Okumoto model for release j. 

Note that in this case, we assume that 
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 098076.0ˆ

1 == −jj bb      (15) 
 
The estimate of parameter aj for release j is obtained by 
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where in (i=1,…, k) is the observed number of failures in interval ),[ 1 ii tt − as before.  

Table 4 shows the re-estimation of parameter ja  of release j at the end of each 

week starting from the 11th week by using the parameter 1
ˆ
−= jj bb  from release j-1. 

Second, the mean value function )(tjμ of release j can be easily obtained using 

equation (2) and Table 4. Actually, with this information available from the (j-1)th 

release, the reliability prediction can be started as early as the second week of the system 

testing after the failure data were collected for the first week.  
 

5.3. Interval estimation 

A comparison of the early reliability prediction approach with the case of traditional 

approach without using the previous release information is made in this section. We only 

need to compare the estimates of parameter a using these two approaches. However, in 

addition to the comparison of two point estimates, we also show the 95% confidence 

intervals of the values of parameter aj using the proposed early prediction approach. In 

fact, for practical decision making and risk analysis, interval estimation should be more 

commonly used as it provides the statistical significance with the values used. 

For the interval estimation, we first estimate the parameters ja  and jb  of the 

Goel-Okumoto model using our proposed early prediction method and can construct 

95% confidence intervals for the estimated parameter aj. To obtain confidence limits, we 

calculate the asymptotic variance of the MLE of the parameter aj and we get (Xie and 

Hong, 2001), 
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Applying this result to the Goel-Okumoto model, we get 
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For a given confidence level α , the two-sided confidence intervals for parameter a is  
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where 2/αz  is the [100(1-α )/2]th standard normal percentile. Given α =0.05, for 

example, we get 96.1025.02/ == zzα . 

The 95% confidence intervals for the prediction of parameter ja  using parameter 

1−= jj bb  are shown in Table 5. Interval estimation provides more information than a 

point estimate and it can help the decision maker to consider the risk when a bound is to 

used for further analysis or resource allocation. 

Also, from Table 5, we can see that the 95% confidence intervals are very wide 

and this is because of the limited amount of data and the variability of the failure 

process. In fact, this is a typical situation in the analysis of software failure data, 

especially when only a small number of failures have occurred. When the testing is 

continued and more failures are observed, the confidence interval will become narrower. 
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6   DISCUSSION 

 
Early software reliability prediction has attracted great interests from software managers. 

Most large software systems today are developed in such a way that they are a 

modification of an earlier release. Although two releases of software are not the same, 

some information should be useful for the predictions. We know that the common way of 

estimating parameter b of the Goel-Okumoto model usually requires programming and 

only numerical solutions can be obtained. This means obtaining an analytical solution for 

parameter b is not practical for many software managers. The proposed method of 

estimating the model parameter by making use of the information of a previous release 

solves this problem nicely.  Two case studies were presented and compared in this 

chapter. 

However, there are also some limitations. The usage of early information for 

reliability prediction is based on the assumption that the testing efficiency is the same 

and the current software release can be analysed using the same type of reliability 

models as the prior release. When these assumptions are not satisfied, the method 

proposed in this chapter is not longer applicable. 
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Exercises 

1. It is possible to use an S-shaped NHPP model for the data set in Table 1. Use this 

model and estimate the model parameters. Discuss the pros and cons of this model. 

2. The Duane model is widely used for repairable system reliability analysis and 

software system reliability during the testing can be considered as a special case. Use 

the Duane model and discuss the estimation and modelling issues. In particular, 

explain if this model should be used. 

3. Derive the MLE for the log-power model. Note that you can get an analytical 

solution for both parameters. 

4. The Goel-Okumoto model, although commonly used, assumes that each software 
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fault contributes the same amount of software failure intensity. Discuss this 

assumption and explain how it can be modified. 

5. Software reliability model selection is an important issue. Study the failure intensity 

function of the Goel-Okumoto model and log-power model and give some 

justification for using each of them in different cases. 

6. Use the MLE and the graphical method for the log-power model to fit the data set in 

Table 1. Compare the results. 

7. Discuss how the proposed method of earlier estimation in Section 4 can be used for 

more complicated NHPP models, such as those with three parameters. 

8. What is the estimated intensity function at the time of release for release j? You may 

use the Goel-Okumoto model with the estimated parameter in (9). 

9. Discuss how the intensity function can be used to determine the release time. For 

example, assume that there is a failure rate requirement,.that is, a requirement that 

the software cannot be released before the failure intensity reaches a certain level. 

10. When prior information is to be used, an alternative approach is to use Bayesian 

analysis. Comment on the selection an of appropriate probability model, including 

prior distributions, in the context of the available information, and discuss the 

application of the Bayesian methodology in this type of study. 
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Table 1 Number of failures per week from a large communication system 

Week Failures Week Failures Week Failures Week Failures 
1 3 8 32 15 7 22 3 
2 3 9 8 16 0 23 4 
3 38 10 8 17 2 24 1 
4 19 11 11 18 3 25 2 
5 12 12 14 19 2 26 1 
6 13 13 7 20 5 27 0 
7 26 14 7 21 2 28 1 

 

 

 

 
Table 2 The ML estimates of the model parameter for Release j. 

(Note that prior to the 12th week, the ML estimates do not exist) 

Week 
jâ  

jb̂  Week 
jâ  

jb̂  

11 NA NA 20 NA NA 

12 211.3 0.180 21 276.8 0.0771 

13 NA NA 22 269.5 0.0819 

14 NA NA 23 NA NA 

15 NA NA 24 261.9 0.0878 

16 269.4 0.0924 25 259.6 0.0896 

17 483.5 0.0335 26 256.3 0.0923 

18 NA NA 27 250.2 0.0991 

19 NA NA 28 249.2 0.0999 
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Table 3. Number of failures per week from the previous release (j-1). 

Week Failures Week Failures Week Failures Week Failures Week Failures
1 2 11 17 21 1 31 0 41 0 

2 11 12 31 22 1 32 0 42 0 

3 18 13 8 23 1 33 0 43 1 

4 10 14 7 24 0 34 0 44 1 

5 12 15 10 25 1 35 1 45 0 

6 4 16 2 26 1 36 0 46 0 

7 28 17 2 27 0 37 1 47 1 

8 6 18 0 28 0 38 0 48 0 

9 7 19 3 29 0 39 0 49 0 

10 6 20 2 30 1 40 0 50 1 
 

 

Table 4 Parameter ja estimation assuming 1
ˆ

−= jj bb  

Week aj ( 1
ˆ

−= jj bb ) Week aj ( 1
ˆ

−= jj bb )
11 262.12 20 264.58 
12 270.32 21 268.20 
13 269.23 22 264.58 
14 269.20 23 261.39 
15 270.01 24 258.57 
16 262.70 25 256.05 
17 258.86 26 253.82 
18 256.97 27 251.83 
19 254.48 28 250.05 
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Table 5  95% confidence intervals for parameter ja assuming 1−= jj bb  

Week 
ja ( 1

ˆ
−= jj bb ) jUa  jLa  jâ (Traditional) 

12 270.32 309.07 219.29 211.32 
14 269.20 306.41 231.58 N.A. 
16 262.70 298.40 231.98 269.42 
18 256.97 291.94 226.99 N.A. 
20 254.48 289.84 222.46 N.A. 
22 264.58 298.49 230.68 266.51 
24 258.57 291.69 225.44 260.22 
26 253.82 286.34 221.30 257.39 
28 250.05 282.09 218.01 249.22 
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Figure 1 Procedures of using early information in reliability prediction 

 

 


