C. Wohlin and D. Rapp, "Performance Analysis in the Early Design of Software",
Proceedings 7th International Conference on Software Engineering for
Telecommunication Switching Systems, pp. 114-121, Bournemouth, United
Kingdom, 1989.

PERFORMANCE ANALYSIS IN THE EARLY DESIGN OF SOFTWARE

Claes Wohlin* and David Rapp**

* Lund Institute of Technology, Lund, Sweden and +* Telelogic AB, Malmé, Sweden

INTRODUCTION

This paper introduces a methodology to transform descriptions of
systems into models suitable for performance analysis. It also dis-
cusses the need for metrics and measurements of different system
qualities throughout the life-cycle of a system, following the ideas
in Rapp and Sjédin (1). Special emphasis is put on the early de-
sign phases in the sense that most of the design-decisions are tried
out before implementing the system, to ensure anticipated behaviour.

The main idea of the modelling methodology is to divide the sys-
tem into two model types. One model concern the use processes of
the system, which are reflected in user behaviour and application
software. The other model concerns the queue structures and archi-
tecture of the system.

These two models could be combined in different ways resulting in
either a so called Queue-Flow-Model (1) or a Performance Prototyp-
ing Simulator. The maturity of the models will depend on where
in the life-cycle they are developed, i.e. how much information and
knowledge are available.

The Queue-Flow-Model is not intended to be directly analysable with
mathematical or simulation methods. Therefore refined models for
the analysis have to be derived from the Queue-Flow-Model.

The methodology suggested here is based on CCITT-SDL for the
description of the software. One of its major benefits besides from
being a standard is its formal representation, which makes modelling
and parameter extraction easier.

Parts of this work is in a early stage why further research directions
are pointed out.

DEVELOPMENT PROCESS

Design properties and structure preservation

Many studies show that the introduction of errors in the early phases
of the development process will cost considerable efforts to fix during
the operational phase. The introduction of components and changes,
that are "out of concept” regarding the original system design prin-
ciples, are also defined as errors from this viewpoint. Let us eg.
assume that some system was designed with poor capacity and per-
formance properties. Also assume that this was discovered in the
later phases. Any effort to improve these properties then, can result
in large costs due to the fact that system principles have to be vio-
lated.

This also explains the difficulty to take a part of a system and reuse
it for a completely different purpose. A system concept is namely
the derivative of the purposes of a system. A purpose may e.g. be
one of its services.

It appears that major system principles are established very early in
the design of a system. They become the very soul or the essence
of the system. Some of these "soul-principles” are very dominant
throughout the whole life-time of the system and are almost impos-
sible to change. The violation of these principles will be the most
expensive to cope with. The software developed in such cases will of-
ten be complex and thus error-prone and capacity-demanding. Such
principles often concern the architecture and the structure of a sys-
tem, on software as well as hardware level.

The property of some principles having a dominant impact on sys-
tem behaviour and characteristics throughout the system life-time,
is called principle or structure preservation, described in Zeigler (2).
Although this property may imply much trouble and cost, it can
be turned to our favour, when using methods for analyzing the per-
formance of the systems in the early phases. Thus, in case we, in
the early phases, have established acceptable performance proper-
ties of the main principles and architectures laid down for a system,
they will be preserved throughout the life-time. Performance may, of
course, have to be improved, but that may then be done in a orderly
and cost-controlled way.

A structure/architecture that dominates the complete behaviour is a
structural bottleneck. It differs from normal bottlenecks, which are
due too slow medias and/or high usage. A structural bottleneck may
often lead to usage bottlenecks. In the long run a structural bottle-
neck has to be removed if major improvements are to be expected.

Metrics and analysis driven development processes

From the above paragraph we draw the conclusion that we need
a development process that supports the collection of metrics and
perform analysis of different system properties, in this case perfor-
mance. Hence, this will ensure a safer way to design systems meeting
the requirements. Such an approach also favours that systems are
developed by using simulation and (rapid) prototyping. The devel-
opment process will then be controlled by the metrics of the system
itself, and not primarily by metrics of the process, e.g. manhours,
the number of documents.

The ideal situation for a designer is that he may in the early phases
be able to suggest different system, software and hardware architec-
tures, evaluate each of them, find and eliminate structural bottle-
necks and then choose his "favourite”. When he then proceeds to
the more costly design and implementation activities he will have a
good idea of the systems performance properties. Precise quantita-
tive measures might not be known, but the qualitative aspects of the
system’s performance are well established.

As the development process proceeds more design decisions will be
taken and thus more is known about the system. This means that
the models will also be more precise qualitatively and quantitatively.
When the system is ready the models will very much replicate the
behaviour of the real system.

SOFTWARE DEVELOPMENT ENVIRONMENTS

The development of software has become a complex and labour in-
tensive occupation, which calls for better and more effective envi-
ronments. These should include methods, both of what to produce
at different stages and how it should be done, from specification to
coding as well as different types of tools. These can be divided into
different groups, for example, development tools and tools for analy-
sis of the result throughout the life cycle. The tools for analysis often
depend on two important aspects, extraction of parameters and col-
lection of software metrics.

The rules for how to determine, for example, execution time for a
specific path or the load on a process, are referred to as parameter
extraction. While software metrics are the values of, for example the
mean time to execute one line of code. Metrics ought to be collected
for all projects and stored in a database, in order to work as a mem-

ory of an earlier product. Parameter extraction and software metrics
will be discussed further below.

The choice of methods is based on a number of factors, for example,
its applicability to the problem, the possibilities to obtain smooth
transformations between phases and the availability of tools. An
important step in the development is the design, since the dynamic
behaviour of the software is determined in this phase. This means
that the choice of the design method is crucial. Several methods exist,
for example SDL (Specification and Description Language), defined
in CCITT (3), Estelle, described in Budkowski and Dembinski (4),
and Lotos, discussed in Bolognesi and Brinksmaa (5), which could
be applied to the design phase.

The aim, here, is to show how performance analysis could be incor-
porated into the design phase, and in order to do this SDL is chosen
as the design method. The reasons for choosing SDL are:

standardized by the CCITT, and especially aimed at the de-
velopment of telecommunication systems.

several tools for graphical editing of SDL are available, see for
example Belina and Nilsson (6), which means that it would be
possible to extract parameters for performance analysis auto-
matically.

methods and tools for automatic translation of SDL into both
Ada, Karlsson and Ménsson (7), and Pascal, Karlsson and
Stavenow (8), have been presented.

tools and methods for simulation based on SDL, (8) and Sred-
niawa et al (9), have been developed.

research and tool development concerning SDL and software
structure metrics, often incorrectly referred to as complexity
metrics, are going on, see for example Lennselius (10).

SDL is well-suited for performance analysis, with its process
and signal concept.

SDL has a formal representation.

This list could probably be made longer, but it is quite clear that the
SDL environment already offers an attractive surrounding, and by
complementing it with methods and tools for performance analysis
it becomes even more favourable.

SYSTEM STRUCTURES

When modelling a system two main aspects are important: The dif-
ferent architectures of the system and its use processes. The archi-
tectures show how the system and its resources can be used. The Use
Processes show how different use needs induce different use cases in
the system. We use a layering technique so that we may in some point
in time disregard certain aspects from levels below the one of interest.

Architectures of a System

The system architecture from different views are the basis for deriving
models for capacity analysis. The complete system is modelled with
a layered architecture, in the sense of OSI. In figure 1.a the main four
levels are depicted.

o Users and uses: the users may be peoples and other systems.

o Services: Categories and functions of services in the system
that are provided to the users.

o System Architecture: The architecture of nodes, communica-
tion, protocols.

o Software and Hardware Platforms: Processes, busses, operating
systems etc.

Each layer has its own architecture and set of layers. How many lay-

ers and their individual architectures are dependent on the system.
Sometimes a layer may be so thin that it is included into another one.

115

The layering technique also implies that the upper level to a certain
level is in fact the environment to that level. We therefore realise
that the layering technique is recursive. In figure 1.a e.g. the layers
users and services are the environment (i.e. the use process) of the
system architecture.The environment that is created in relation to a
layer is called the Embedding Environment, discussed in (1).

In an early stage of development only a few set of layers exist. For
example a conceptual model of use and services.

From a designers point of view and on each level one may identify a
software structure (reflecting the use of the system and its resources)
and a resource architecture. The upper service layers are often re-
ferred to as application software.

Use processes

Use Processes describe how users (in the environment) of the system
make use of its capabilities.They show different transaction and work
flows in the architecture induced by user needs. Use Processes are of
two kinds:

e To use the system for connecting a user to other resources and
users in the environment to the system. The system may also
support the interaction.

e To use and interact with the resources within the system.

The first use process could describe subscribers to a telecommunica-
tion system. The second use process may describe the operation and
maintenance of a system.

The use of the layering technique stresses the importance to estab-
lished peer level users in order to establish to what levels different
users belong to. From the point of view of a use protocol a resource
within a system may be regarded as being on peer level with user
originally in the environment. The observation will be important
further on when we try to establish sources and sinks in the system.

MODELLING CONCEPTS
Overview

In order to perform the modelling and analysis process, four concepts
are defined. The concepts are shown in figure 1.b, and they are
denoted

o QAM - Queue-Architecture-Model

o UPM - Use-Process- Model

o QFM - Queue-Flow-Model

o PPS - Performance Prototyping Simulator

The concepts are independent in the sense that UPM and QAM are
combined so that the result either goes into the PPS or the QFM.
The PPS works with great detail on the UPMs and simple QAMs.
The QFM on the other hand works with a less level of detail on
the UPM and put more emphasis on the QAM. One methodology
would therefore to apply the QFM in the earliest studies and when
the system is rather mature. The PPS is then used when designing
the actual software.

The Queue-Architecture-Model

The QAM is a model of the systems architectures from a resource
and a queueing aspect. The QAM includes hardware architectures
as well as parts of the system software, in most cases the operating
system. What is to be included in which model is something that
evolves throughout the system design process.

The parameters and architectural features of major interest that has
to be extracted are:

o Topology, the distribution and connection of computers, pe-
ripherals,memories etc.

e Interconnection Devices, Busses, Networks, Protocols, Routing
algorithms.

¢ Resources/Servers, Databases, Basic System Features

o Operating System Features, Scheduling, Priorities, Resource
Allocation Schemes.

For most of the parts we need to extract parameters concerning ca-
pacity. Routing, priorities and scheduling are also of importance,
since these components determine the possible Flow-Paths in the

QAM.
The Use-Process-Model

The Use-Process-Model reflects aspects concerning how transactions
and work will flow in the system as a results of the use of the sys-
tem. For example, a user in the environment initiates a transaction,
this will result in a series of events inside the system. To fulfill the
function implemented by the transaction various resources will be
utilized.

The UPM can be defined at different system levels. At the highest
users in the environment initiates flows. At a lower level, a network of
resources can be seen as a environment to a specific resource causing
various internal flows in the resource. The most basic parameters in
a UPM are:

o User Categories, Service and Function Types

o Usage intensities

o Transactions in terms of resource use sequences per category
s Workloads in terms of execution-times for different process use.

The UPM is in a way a model of the applications of a system. The
UPM can have very different level of detail dependent on use and
on available information. At the highest level of detail each instruc-
tion/symbol is tagged with an execution-time, at the lowest on a
mean-execution-time is given for a complete module/process.

The Queue-Flow-Model

For the analysis of performance measures of the system and its envi-
ronment we must transform its architectures and use processes into
analysable models. In (2) concepts for classifying models of systems
are presented. There is defined the Base Model which is the max-
imum model, i.e. all that is known about a system/object. The
Base Model could never analyzed as such. For the analysis so called
Lumped or Partial Models are used. Each Partial Model (PM) re-
flects an aspect of the Base Model(system). PMs can be constructed
recursively, i.e. one PM may be a specialization of another PM. The
PMs of interest here concerns performance and capacity properties
of a system.

We define a "maximum partial” Base Model which reflects all as-
pects concerning performance and capacity, we call it the Queue-
Flow-Model (QFM). From the QFM we then derives different models
(PM) that are analysable. The notation of Queue-Flow-Models has
been discussed earlier in Rapp, (11), and Eklundh and Rapp, (12).

The definition of the QFM:

The QFM covers all aspects of a system on some level concerning its
service- and queueing mechanisms, transactions and workflows. The
QFM is built up by the two models the Queue-Architecture-Model
(QAM) and the Use-Process-Model (UPM).

Note, that when we describe Use Processes on lower system levels
there is a dependence between the UPM and the QAM, ie. Use
Processes on one level will generate flows (UPM) on the next level
between objects in the architecture on that level.

For practical uses we will define QFMs which are at a certain level of
detail. Otherwise they will be infeasible to describe. However, since
the real purpose of the QFM is to describe things in such depth that

116

all relevant mechanism on that level are understood, the models will
not be feasible for analysis, except for very special cases.

The level of detail is a modelling decision and no precise rules can
be prescribed for that. Expert knowledge is needed, but it should
as much as possible be built into tools so that the software designer
need not worry.

The method is defined so that the UPM and QAM may mature al-
most independently. This is very useful in the early stages of devel-
opment, when not so much is known about the final system and the
development is rather iterative. Often in large system development
activities around the system and processor architectures as well as
application software are done by separate groups. At a certain point
in time one group have to try their designs on a given release of mod-
els from another group.

Performance Prototyping Simulator

The goal of the PPS is to study the software itself, i.e. to find its bot-
tlenecks and workloads. It will use a very simple model of the QAM.
Either as a ideal machine represented by a capacity to execute each
instruction/symbol or a network of ideal processors, this is discussed
farther below. It may be implemented by adjusting a function/flow
simulator so that the time of executing a instruction/symbol can be
logged.

ANALYSIS PROCESS

The process of doing analysis can be divided into several aspects
that have to be considered when applying analysis techniques to a
problem. The aspects described are especially aimed at performance
analysis, but similar aspects can be identified for most types of anal-
ysis. Four aspects have been found:

1. The point of time for analysis.
The analysis can be carried out at any point in the project,
where it is possible to derive the necessary parameters. It
should also be established that the analysis process should be
repeated over and over again as the project proceeds in time.
This is very important, since the degree of information about
the product will increase with time, and consequently the qual-
ity of the analysis will increase.

2. Analysis object (or system) and environment.

The part that is to be analysed is referred to as the analysis
object, while the surrounding is called the environment. The
analysis object is often called the system, but we have to be
careful so that this system definition is not mixed up with the
real system being developed. Depending on, if a part of the
total real system or the whole real system is to be analysed,
the picture of what the analysis object and the environment are
varies. In performance analysis it is very important to identify
the sources to (i.e. users of) the analysis object. Hence, the
layering technique, described above, is very useful to divide
the system into sources (users/clients) and servers. A source
is defined as something having the initiative, the purpose to
use some of the capabilities (services) of a system. When the
sources and servers have been identified, it is possible to define
the analysis object and the environment. This means that all
sources should be placed in the environment and considered as
users of the analysis object, which is equivalent to that the two
use processes defined above are both considered as sources in
this context.

3. Modelling methods.
The method for modelling and analysis can vary, for exam-
ple when studying performance analysis we will concentrate
on simulation /prototyping and analysis of Queue-Flow-Models.
The latter can be divided into both simulation and analytic
methods, exact and approximate.

4. Modelling and analysis levels.
The analysis can be carried out at different abstraction levels,

depending on assumptions and the level of reality that is taken
into account when performing the analysis. For example, the
analysis can be done even if the actual architecture is unknown,
since it is possible to make assumptions about it and formu-
late model from the assumptions. This aspect of the analysis
process can be divided into a number of levels, but we will
primarily study three levels and they are defined below.

In figure 2 the analysis process is described. At the top the system
or the analysis object is shown surrounded by the environment and
the use processes. It is also shown how the service demand comes
into the system and how outputs, probably, are expected. The sys-
tem is divided into descriptions of software and architecture, and
units are identified for them. From these two descriptions parame-
ters are extracted to a Use-Process-Model (UPM) for the software
and a Queue-Architecture-Model (QAM) for the architecture. These
two are combined with a distribution of the software units in the
architecture, in order to obtain either a model for the Performance
Prototyping Simulator or a Queue-Flow-Model. The service demand
is then input to the two different models derived. Performance results
can be obtained directly from the Performance Prototyping Simula-
tor, while the Queue-Flow-Model has to be refined further in order
to obtain analysis results. This refinement is discussed further below.

MODELLING OF THE ARCHITECTURE - THE QAM

In the beginning of system design the QAM could only be known to
some extent. In order to be able to study some performance proper-
ties, a series of "archetypical” or ideal QAMs have to be defined. An
ideal QAM contains only the most typical features of an architecture
from a performance point of view. The simplest one is only repre-
sented by a processing capacity, i.e. an item in the software takes X
time units to execute. A more general ideal QAM, see figure 3.a, also
contains queues, priorities and simple scheduling mechanisms. Fur-
thermore we may want to connect several ideal QAMs in a network
by ideal Communication Channel, see figure 3.b. With several ideal
QAMs it is e.g. possible to study the difference in performance when
allocating software to one or to several nodes.

SDL-processes do themselves contain Software Queues, due to the
SAVE-instruction. Although they are included in the (Application)
Software they have to be modelled into the QAM at some point in
time.

As a system matures the QAM becomes more complete and often
also more complex. A final QAM will be a queueing network with
arbitrary complex interconnection and usage schemes.

The process of modelling the architectures of a system into QAM
requires experience, only in a few cases simple rules of thumb may
be given. With computer graphics, Al and such, this process will be
more automated in the future. However, the other part of going from
queueing models to performance analysis is already today supported
by several software packages on the market.

Experience from queueing modelling shows that if one manage to
model the major properties of a system, see above, the outcome of
mathematical analysis or simulation give good qualitative answers.
The selection of a sufficient QAM, may be done by combining ideal
QAMs. In cases where a very sophisticated model is required support
from experienced people is however needed.

W, - U

Background

One major problem when developing software systems is that no
method exists for doing a performance analysis from early software
design. This is surprising because a lot of the dynamic behaviour of
the system is described by the software already in the early design,
especially this is true with SDL. The use of the system is described
at this stage, which means that the Use-Process-Model (UMP) can

117

be extracted from the SDL descriptions. This waste of valuable in-
formation can not be afforded, and therefore a methodology, for in-
troducing performance analysis into the early design of software, has
been derived. This will give an opportunity to re-design at an early
stage instead of implementing a ineffective solution.

SDL is based on an extended finite-state machine model, where the
machines are described by processes and their interactions with sig-
nals. This means that by studying the processes first and then their
intercommunication, a complete picture of the dynamic behaviour of
the description will be obtained. The first question to arise is; What
information needed for performance analysis is concealed in the SDL
description? This is the first step to formulate a Use-Process-Model.

Extraction of parameters from SDL

The internal behaviour of the process depends on the signal that is
received and the decisions taken in the process. This means that

by studying a specific input signal, state and values on variables the
actual execution in the process is determined. The set of possible
combinations of execution paths, based on input signals, states and
values on variables, gives us the logical flow of the process. To obtain
the logical flow of the system, the logical flows of the processes have
to be combined into a set of execution paths for the system.

In SDL, transitions from one state to another are assumed to take
zero time. This does not, however, correspond to the implementation
of the system, which means that it would be favourable if each sym-
bol in the SDL descriptions where associated with an execution time.
The logical flow and the execution times are the two most important
parameters, see figure 2, that are possible to extract from the SDL
descriptions.

When these two parameters have been identified as essential in the
performance analysis of SDL, the next is how to extract them. In
order to find the logical fiow of the system, the interfaces between
the system and the exterior have to be studied one by one and all
different execution paths based on one specific input signal have to be
found. The execution of different paths depends on the state and the
values of the variables for each process. This means that the number
of possible execution paths through the system soon becomes cum-
bersome, that is without automating the process. This is, however,
possible since tools exist for editing SDL graphs, for example SDT
(6), and these could be complemented with a software structure anal-
yser. It can be used for several different purposes, and especially it
can be used to find the execution paths in the SDL descriptions and
to locate all decisions in the processes.

This is not enough to make it usable for performance analysis, be-
cause the execution frequency of different paths is needed too. There
are two factors that have to be determined and two different ways of
doing it. The two factors are:

e input intensities for different sources, that is signals, coming
from the two use processes defined, i.e. external and internal
signals

o the probabilities for different execution paths within the pro-
cesses, for example when coming to a decision.

The two ways of doing it are:
o knowledge of the current system

o values based on experience from an earlier, probably similar,
product

The second way of doing it means that software metrics have to be
collected and stored in a database in order to work as a corporate
memory. This could become very specific as the database grows,
since the criteria for the choice could be refined as the stored knowl-
edge grows.

The execution times are easier to find than the logical flows of the
system, since it is a little bit more straightforward. Each SDL sym-

bol has to be associated with an execution time. This is primarily
obtained through the use of a database, where metrics have been col-
lected for each symbol and classified according to the content of the
symbol. It means that the current SDL symbol should be compared
with similar symbols, according to a number of well-defined criteria,
in order to determine the execution time.

ANALYSIS

It should be observed that the first analysis could be done before
the processes have been described in detail, for example the content
of some tasks has not been specified. This could be seen as a way
of rapid prototyping with SDL and checking the performance of the
prototype. In a first analysis like this it has, likely, to be based on
mean values from the database. But as the design goes on and the
knowledge of the system being developed grows, the analysis could
be done over and over again with more and more realistic values.
Databases for software metrics will probably become an important
tool in the future software development environment.

The research has been directed towards several promising areas for
analysis, which also will be further investigated, as:
o Performance prototyping simulations of SDL.
The studies aim is to do performance simulations direct from
the SDL graphs, assumptions about the architecture, and the
methods mentioned above concerning some of the parameter
extractions and software metrics, primarily execution times and
input intensities. This is referred to as Performance Prototyp-
ing Simulator in figure 2. This type of simulations should not
be mixed up with functional simulations of SDL or performance
simulations, where SDL is used to describe the simulation prob-
lem, see for example SDL/SIM (8) or (9).

Implementation of the performance simulations into existing
SDL tools.

SDL/SIM has, however, been used as the basis for the perfor-
mance simulations of SDL. It should be observed that SDL/SIM
generates a large part of the simulation program, and that the
concept has been complemented with functions in order to han-
dle the simulation of SDL itself.

Prototyping with SDL.

The possibilities of describing the structure of the problem to
be solved, rather than specifying the details in the tasks, and
evaluate the performance of the solution are investigated. The
goal of this research is to determine the quality of these type
of descriptions and studies.

Formulation of Queue-Flow-Models.
The problems of formulating both Use-Process-Models from the
software and Queue-Flow-Models of the system are studied.

Solution of Queue-Flow-Models.

The QFM is the basis for further modelling by simplification. In
some cases it might be possible to design a simulation model di-
rectly from the QFM. What we may face as a result though, is a
to complex model that takes too long time and too much mem-
ory to complete its computations. This will aggravate mea-
surements with sufficient confidence. Mathematical modelling
offers a restricted set of tools. The analysis quickly becomes
fairly complex, and detailed analysis of simple system leads to
equatjons that are numerically difficult to evaluate in a com-
puter.

For that reason it is important to simplify the QFM in an "intel-
ligent” manner into analysable models. This can even be differ-
ent models depending on what the aim of the model is. A whole
family of analysable models could probably be derived from one
Queue-Flow-Model, depending on the information wanted, the
needed certainty of the result and the analysis method to apply.
Different methods to analyse the obtained methods are studied,
that is both exact and approximate analytic methods as well
as simulations. In order to do the analysis the possibilities of
generating a QNAP2-program, Véran and Potier (13), from the
derived analysable models, are studied. QNAP2 is a tool for

118

automatic analysis of queueing models, and it applies suitable
methods for analysis depending on the queueing model to be
analysed.

These areas are all aimed at a number of different levels of analysis
of the software, which will be discussed further below.

MODELLING AND ANALYSIS LEVEL

The model obtained from the extraction process can be used for
analysis on several different levels, independent on if the analysis
should be made by the performance prototyping simulator or by use
of Queue-Flow-Models. The discussion below will be based on the
following three assumptions:

o parameters have been extracted so that the SDL-system can be
modelled on at least one of the following levels; symbol, process
or function.

o software metrics are available, from a database or knowledge of
the current system.

o the derived model is valid, that is it models the developed SDL
description and not the SDL description that ought to have
been developed.

The third assumption calls for some explanation. It is obvious that
with unbounded queues, as in SDL, there is always a possibility of
getting into an unstable state, which makes the queues grow towards
infinity. These situations could be found by analysis, if the model is
valid for it, but if an erroneous situation occurs which has not been
modelled then the model will fail. This means that an SDL-process
becomes overloaded and this has not been found when extracting
the parameters, then the analysis will fail. It is no surprise, since
the model is based on the design we think we have designed, and not
the actual solution. This type of errors has to be found as soon as
possible, in order to avoid the error to spread into the phases to come.

This type of errors could be found by prototyping, which means that
they could be found by doing the performance simulations of SDL
discussed above. The difference between performance simulations of
SDL and the analysis of the Queue-Flow-Model should be observed,
see figure 2. The latter is based on analysis of the derived model,
while the simulation of SDL is applied on the description itself. They
do, however, have things in common, since the SDL simulation needs
execution times and input intensities. This implies that a design er-
ror which only affect the communication between processes can be
found by the performance simulations of SDL.

When it has been established that the derived model is valid, all
necessary parameters have been derived and software metrics are
available, then several different levels for analysis can be considered.

The analysis can be done on several different abstraction levels as
discussed when introducing the QAM. The following three levels are
an example on possible analysis levels:

1. Infinite number of servers with the same capacity. (Ideal pro-
Cessors)
This analysis will give us a possibility to study the behaviour
of the different SDL-processes. We will obtain a way of identi-
fying the bottleneck process, i.e. the software bottleneck. This
is a candidate to be the system bottleneck, but it can not be
evaluated finally until we combine the software with the real
architecture. It should be observed that we have three types
of bottlenecks in this concept; software, architecture and sys-
tem. The software bottleneck could be a way to determine if
re-design of some processes are necessary or if they have to be
taken care of especially when implementing the software. It
will give us a hint of how the processes should be distributed in
the architecture, or give an idea of how the architecture should
look like.

2. The right number of servers with the same capacity.
This analysis will give us a way to test the chosen distribution
of processes among the processors in the architecture. It will

give us a possibility to see if the distribution of processes seems
sensible and if the architecture at all can perform its services.

3. Taking the real architecture into consideration.
At this level the real architecture is taken into consideration,
which means that the actual capacities of the processors and
the routing algorithm are taken into account.

These three levels will give us the opportunity to study different as-
pects of the system at different times, and by isolation concentrate
on some aspects at the time. Methods and tools supporting this ap-
proach of performance analysis from SDL are being developed.

ANALYSIS METHODQLOGY

The methodology to introduce performance analysis to early soft-
ware design, especially in an SDL environment is summarized below.
The difference between the analysis methodology respectively process
should be observed. The methodology defines a number of steps that
can be taken in the order described below, while the process points
out a number of aspects that have to be considered. The steps in the
methodology belongs to one of the aspects discussed in the process.

1. Determine a suitable time for analysis.
2. Identify sources and servers in the system.

3. Identify analysis object (system), environment and use pro-
cesses.

. Supply metrics to the intensities of the use processes.
. Identify decisions in the analysis object.

. Supply metrics to the probabilities for different decisions.

= o v

. Supply metrics, that is execution times, for the different SDL
symbols.

8. Derive a Queue-Architecture-Model for the architecture.

9. Determine if the analysis should be carried out by use of the
performance prototyping simulator (goto 15) or Queue-Flow-
Models.

10. If the analysis should be done with Queue-Flow-Models, some
more parameters have to be derived, for example blocking prob-
abilities for different signals that are not saved in the SDL-
process.

11. Derive a Use-Process-Model.

12. Combine the Use-Process-Model with the Queue- Architecture-
Model into a Queue-Flow-Model, that is decide the analysis
level.

13. Derive suitable analysable models from the Queue-Flow-Model.

14. Analyse the derived model with analytic methods, exact or
approximate, or simulate. Goto 18.

15. Derive a Use-Process-Model.

16. Combine the Use-Process-Model with the Queue- Architecture-
Model into a model for the Performance Prototyping Simulator,
that is decide the analysis level.

17. Execute the derived model with the Performance Prototyping
Simulator.

18. Interpret the results obtained and draw conclusions.

19. Decide suitable actions from the conclusions, for example if
re-design of some SDL-processes or faster processor is needed.
The analysis should, of course, be carried out after each action,
otherwise it is impossible to know what the consequence of the
action is.

20. Goto 1, it should, however, be observed that only steps that
have been influenced by more knowledge have to be carried out
when the analysis is performed at new suitable points of time.

119

This methodology has to be supported by tools, for example graph-
ical editor for SDL (such as SDT), Software Structure Analyser,
Performance Prototyping Simulator, program generator for QNAP2-
programs and QNAP2.

A SIMPLE EXAMPLE

In order to explain the analysis methodology a little better, a simply
example will be described. The example will be based on two very
simple SDL-processes, see figure 4. The processes are shown both
as black boxes within blocks and separate processes. These do not
implement anything and should only be seen as an example to explain
the methodology. The example will be gone through according to the
four aspects in the analysis process described above, and we will refer
to the appropriate steps in the methodology.

1. It has been decided that it is a suitable time for analysis. (Step
1)

2. The analysis object has been identified as being the two pro-
cesses, in figure 4. The environment communicates with the
system by the signals I1, I3 and I4, while the system sends 15
to the environment. (Step 2,3 and 5)

w

It is decided that the analysis should be done by using the
performance prototyping simulator. (Step 9)

4. In figure 5 two different possibilities to distribute the processes
in the architecture are shown. The analysis can be done on both
of these architectures. The parameters for the two processes
have to be extracted and associated with metrics. (Step 4,6,7,8
and 15)

(a) The input intensities for I1, I3 and 14 are decided.

(b) The decision box, D11, has to be associated with a prob-
ability for going to the right or the left.

(c) Each box, in the graphs, has to be associated with an
execution time.

The values on the parameters extracted have to be put into the
performance prototyping simulator to obtain analysis results.
(Step 16,17,18,19 and 20)

Comment: If we had chosen to use the Queue-Flow-Model method,
some more modelling would have been needed for the processes. This
would, however, pay off later, since the analysis will become much
quicker, especially this is true if the obtained Queue-Flow-Model
could be turned into a model that can be solved analytically. Un-
fortunately, it is impossible to present the details, here, of how the
processes can be turned into a Use-Process-Model and how this can
be used to formulate a Queue-Flow-Model, together with a Queue-
Architecture-Model. This is, however, shown in Wohlin (14).

CONCLUSIONS

A methodology for introducing performance analysis in the early de-
sign of software has been suggested. It has been discussed how the
information from the software, especially SDL, and the architecture
can be extracted and turned into models. These models can be com-
bined into models for analysis, both for prototyping and queueing
theory analysis.

A basis has been presented for the methodology, i.e. several processes
influencing the performance analysis has been defined. A number of
models has been introduced in order to formalize the analysis process.
This framework was then used for describing how modelling of the
architecture and software can be performed. Several research areas
concerning aspects on modelling and analysis have been described.
The main research so far has been concentrated on how to extract
the parameters and turn them into a Use-Process-Model. The re-
search is still going on and is to be implemented into an SDL en-
vironment. Areas for further work, on the implementation of the
performance prototyping simulator and on the aspects concerning
the Queue-Flow-Model approach, have been presented.

Some tools are available today, while others are on the prototype
stage, and more tools will be developed as the research continues
and the methodology is introduced into an industrial environment.
The methodology should, in most cases, not need an expert in queue-
ing theory to be applicable.

It has been emphasized that a methodology for performance analysis
at an early stage is necessary in order to cope with the design of
complex systems, i.e. in order to re-design instead of implementing
an ineffective solution.

REFERENCES

1. Rapp, D., and Sjédin, G., 1983, "Capacity models: a quality
and a system design tool, and an aspect of systems”, Proc. IEE,
223, 128-135.

2. Zeigler, B.P., 1976, Theory of modelling and simulation, John
Wiley and Sons Inc, New York.

3. CCITT, 1984 Recommendations Z.100-Z.104 and annexes.

4. Budkowski, S., and Dembinski, P., 1987, ” An introduction to
Estelle: A specification language for distributed systems”,
Computer Networks and ISDN Systems, 14, 3-23.

5. Bolognesi, T., and Brinksmaa, E., 1987, "Introduction to the
ISO specification language Lotos”, Computer Networks
and ISDN Systems, 14, 25-59.

6. Belina, F., and Nilsson, G., 1987, “SDT: SDL design tool”,
Proc. Third SDL Forum, 8.1-8.9.

7. Karlsson, J., and Mansson, L., 1987, "Using SDL as specifica-
tion and design language and Ada as implementation language”,
Proc. Third SDL Forum, 31.1-31.13.

8. Karlsson, J., and Stavenow, B., 1987, ”SDL/SIM, a simulation
system for discrete event simulation”, Technical report, Dept.
of Communication Systems, Lund Institute of Technology,
Lund, Sweden.

9. Sredniawa, M., Kakol, B., and Gumulinski, G., 1987, ”SDL in
performance evaluation”, Proc. Third SDL Forum, 21.1-21.11.

10. Lennselius, B., 1986, "Software complexity and its impact on
different software handling processes”, Proc. IEE, 259, 148-153.

11. Rapp, D., 1980, “Capacity analysis of SPC systems - the AXE
system a case study”, Proc. NTS 3.

12. Eklundh, B., and Rapp, D., 1982, “Capacity study of the AXE
10 processor system”, Ericsson Review, 4 208-216.

13. Véran, M., and Potier, D., 1984, "QNAP2: A portable
environment for queueing systems modelling”, Technical report,
Inria, France.

14. Wohlin, C., 1989, "Turning SDL-processes and architecture
into a queue-flow-model”, Technical report, Dept. of
Communication Systems, Lund Institute of Technology,
Lund, Sweden (to be written).

120

User Interaction Flows in the Environment

System Internal Flows caused by user interactions /

1
UPM /

/

Users

Services
s Categories
. F‘unchons :

———
QAM

¢ Topology

* Resources
e Scheduling
¢ Priorities
¢ Protocols

QFM or PPS

Figure 1a A layered architecture of the Users and the System
Figure 1b The main Modelling Concepts

Architecture

@ — s
@d—

{ ~— Parameter Extraction —= |

U o) . o . ue-
*Model Distril Architecture-Model
« Logical Flow ¢ Structures
« Relative Service | unita in the : g:'p':cl:;?:
. Times architecture « Routingalg.
: .

——%1 Performance Prototyping Simulator l-%——-
mm N\
9[Queue-Flow-ModelgI—%——

_Mode] Refinement

Figure 2 The Modelling Process

Processing Capacity Transport Capacity

Queueing Facilities Queueing Facilities

Internal Busses ... IDEAL
TDEAL PROCESSOR COMMUNICATION

Figure 3 Ideal Components for the Queue-Architecture-Model

13,14

Figure 4 A simple example of two processes

21

5
P2
n
- P1
SINGLE-PROCESSOR

Save-]
Queue

PROCESSOR 2
{

PROCESSOR 1

Channel

Figure 5 The allocation of the example on ideal QAMs

