A Quality Constraint Model to be
Used during the Test Phase of
the Software Life Cycle

Wohlin, C. and Vrana, C.

Proceedings 6th International Conference on Software Engineering
for Telecommunication Switching Systems, pp. 136-141,
Eindhoven, The Netherlands, 1986.

A Quality Constraint Model to be Used During
the Test Phase of the Software Lifecycle

by
Claes Wohlin, Lund Institute of Technology
and
Ctirad Vrana, Telelogic AB

Sweden

SUMMARY

This paper deals with the problem of when to
stop the test phase in the software
lifecycle, in order to get an efficient,
reliable, manageable and maintainable
software product. A guality constraint model
is introduced and formulas for the means and
variances of the number of remaining errors
at a specific time and the time when a
specific number of errors are remaining are
~derived. A natural approach to the use of
the model and results for some different
failure time distributions are presented.
The impact of the different failure time
distributions is discussed and some ideas of
what to do about the situation that the
model (and the reality) leads to are

presented.

A QUALITY CONSTRAINT MODEL TO BE USED DURING THE TEST PHASE OF THE SOFTWARE LIFECYCLE

C. Wohlin*, C. Vrana**

*Lund Institute of Technology, **Telelogic AB, Sweden

1. BACKGROUND

The software industry is an industry in
crisis. The reason for this is not the same
as for many other industries, where jobs are
disappearing. On the contrary, the problems
and work are growing faster than we are able
to cope with. '

The problems in the software industry are of

several different types:

- The software projects are often missing
their target dates (due to lack of
appropriate methods), and even more often
not fulfilling the quality constraints,
and consequently the software product will
be difficult to manage and maintain during
operation.

- The software projects are often way over
budget, and at the same time it is getting
worse because resources are missing.

- The software projects are often badly
planned, if planned at all, and out of
control. This leads to unmanageable,
unmaintainable, unreliable and inefficient
software products and, in the worst case,
to no product at all.

The list of problems could be made much
longer, but the point is that it is
necessary to increase the effectiveness of
software handling routines and of the tools,
both during construction, testing and
operation. The condition for doing this is
to improve understanding of laws and
relations which concern the structure and
handling processes of software products.

During work in different projects we have
studied economical and quality (here in the
sense of correctness and reliability)
aspects, metrics and models describing
different relations concerning the software
product and its handling. At the moment the
studies focus on some local phenomena, but
in the long run the aim is to lower the
total cost for handling software products
throughout the whole lifecycle. -

‘This paper presents a model, which describes
some of the relations in the lifecycle. The
model deals with the problem of when (if
ever) to let the product enter the field. We
will here consider the transition from the
test phase to the operation phase.

Specifically the studies focus on the

following aspects, which will be surveyed

and analyzed:

~ planning

- a realistic decision (estimation) of the
(optimal) time of release

- problems we meet (sometimes unprepared and
without understanding) while performing
the transition from the test phase to the
operation phase

— some inevitable consequences that the
model leads to (and we can find in reality
as well).

2. INTRODUCTION TO THE PROBLEM

Common sense and all experiences points to
the fact that only software products which
fulfil the given (whatever they are) quality
constraints could be successfully used,
managed and maintained.

One of the most important (and fundamental)
quality constraints is reliability. An
important condition, to cbtain the desired
reliability, is that the errors do not
appear, i.e. that the software product is
correct (i.e. that the quality constraint of
correctness is fulfilled).

There are four ways of making the programs

correct:

- to use better methods and tools for design
and construction.

- to spend more time on design and
construction.

- to use better methods and tools for
testing (correcting errors).

- to spend more time testing (correcting
errors).

The first point is, for obvious reasons, the
best one, but in reality the solution of the
problem is a combination of all four ways.

Very early in the lifecycle, often when the
system and project specifications are
written, one usually decides the different
target dates to meet. Primarily the time to
put the software product into operation is
decided, see Figure 1.

Because reliable tools for planning are
still missing, (both in planning the need of
resources and obtainable quality in ‘a given
time), it will probably be impossible, at
the predetermined time to put the product
into operation, and obtain the planned
quality. Or, at best, the estimation is true
as far as the mean value, but because of the
stochastic nature for many of the processes
the estimation will be problematic. The
stochastic behaviour in which the errors
occur will be taken into account in the
model and we will not only consider the mean
values but also the variances.

For example, if we are forced to keep to the
planned target date the number of remaining
errors in the software product will partly
be uncontrollable. The worst thing to do,

without any doubt, is to accept the product
just because the target date is reached.
This may cause serious consequences while
the system is in operation. It will probably
be very expensive to maintain the system, if
it is at all maintainable. An extended test
phase does not have to be viewed as a
failure, often rather as an inevitable
consequence of the stochastic aspects in the
handling processes.

3. MODEL DEVELOPMENT

The derivations of formulas found in this
section are made in Wohlin and Vrana (1).

3.1 Considering the number of errors at a
specific time

We want to solve the following problem: How
many errors remain after testing a time t
and how do the number of remaining errors
vary?

The problem will be solved with the

following three assumptions:

1. The initial number of errors, when the
test phase is started, are known through
estimation.

2. The failure time distribution is known.

3. If a failure is found, it is corrected
and no new failures are introduced,

Comments to the assumptions:

1. The initial number of errors are supposed
to be known through estimation from some
complexity measure and/or experiences
from earlier projects, this is discussed
further in Vrana and Wallander (2) and
Lennselius (3). A complexity measure is a
measure of the degree of difficulty of
the product, e.g. from a graph or a
program. There are many different
complexity measures presented in the
literature, e.g. McCabe's Cyclomatic
Number (4) and Halstead's Software
Science (5).

The estimation of the initial number of

errors could be improved during testing

by using failure rate models, some
results are presented in (2). Two of the
most used and accepted failure rate
models are:

* Jelinski-Moranda's De-Eutrophication
Model (briefly described later in this
paper, (6))

* Goel-Okumoto's Non-Homogenous Poissen
Process Model (7)

2. The failure time distribution could be
found through measurements on earlier
projects. There are two different ways to
approach the problem: either we could use
an existing failure rate model, or
develop a model of our own that fits our
environment and applications. Results for
different failure time distributions will
be presented below, and we will see that
the failure time distribution will have a
great influence on reliability, number of
remaining errors and the times
considered.

3. This assumption is quite natural, despite
the fact that it is not always true. This
is, however, always the aim when
correcting errors. The derivation of
results will be easier with this
assumption, it is, however, possible to
find some results if we assume that the
error is corrected with the probability
@, but we will not consider this case
here.

To be able to derive the desired formulas,

we introduce the following notation:

* F(t)=P(t<t) - the probability
distribution function (PDF)

* £(t)=dF(t)/dt- the probability density
function (pdf)

* F*(g) - the Laplace transform of
f(t)

* P(z) - the z-transform of

P =P(n=k)
* B(X)=x - the mean value of X
* V(X) - the variance of X
* E{Xk)z;E - the k:th moment of X
* Ny - the initial number of

errors, i.e, when the test
phase begins

* 4N, = the uncertainty in the
estimation of the initial

number of errors

* Ng - the number of remaining
errors at time t,
(pdf gk(t))

* X = the time between error

number (i-1) and error
number i, (pdf £5(x))

* 8n - the time to error number n,
(pdf k,(t))

For those who need an introduction or a
refresher to the probability theory or the
transform theory, we would like to recommend
Feller (8), Kleinrock (9), Cox (10) and Cox
and Miller (11).

With these definitions we obtain Figure 2.
It should be noted that the starting point
for the analysis, (in Figure 2), is any
suitable point after the beginning of the
test phase.

We need to derive the z-transform for N¢ and
then, by using the moment generating
properties of the z-transform, we are able
to obtain the Laplace transform of the mean
and variance of the number of errors
remaining at t, which can be inverted
numerically and in some special cases
analytically, for more details see

Wohlin (12).

If we let H(t)=E(Nt) and M(t)=E(N2) with
Laplace transforms H*(s) and M*(s), we
obtain

1 Np n
H*(s)=§(N - I T Fi*(s)) (1)

0 n=1 i=1
and
O n
M*(s)==(Ny- L (2(N,-n)+1) w F.*(s)) (2)
s 0 n=1 0 i=1 =

H*(s) and M*(s) can be inverted numerically,
The inversion is done by computer programs.
Some methods and example of Fortran programs
are found in Karlsson and Stavenow (13).

The variance is now easy calculated as
V(N,)=E(N2)-E(N,)> (3)
t t =

We have now obtained a possibility to
calculate the mean and variance of the
number of remaining errors in the software
product at time t.

Particularly we could invert H*(s) and M*(s)
at the target date, and get a good idea of
the number of remaining errors and how they
vary at the target date. Before we release

the product, we have to ask ourselves the
question: Are we satisfied with the quality
of the product?

If Fi(s)=F"(s), i.e. £(x) is independent of
the number of errors that have occurred.
This will give us a little simpler formulas
for H*(s) and M*(s) and if we then let
No+~, hopefully not realistic, we could
obtain asymptotic results.

3.2 Considering the time when a specific
number of errors are remaining

We discussed above the variation of Nt. We
should now look at the variation of t, when
we specify the number of errors remaining
(or those which have occurred). This would
be a better way to do the testing, i.e. to
put a quality constraint on the product and
then adjust the time to put the product into
operation. An example of how to decide the
quality constraint will be discussed below.

Using the notation and assumptions from
above we can derive formulas for the mean
and variance of the time when a specific
number of errrors are remaining. This is
done by deriving the Laplace transform for
Sp and then, by using the moment generating
properties of the Laplace transform, we are
able to obtain E(Sp) and V(Sn).

When using the moment generating properties
of the Laplace transform, we find

n -
E(S)= L X (4)
i=1
and
n e n
E(S%)= T (xZe2%, 3 %) (5)
o= T k=i+1
which leads to
inialia 2
V(Snl-E(Sn) E(Sn} (6)

We have now obtained a possibility to
calculate the mean and variance of the time
when a specific number of errors are
remaining.

Using the results obtained here will give us
a good idea of the amount of time we have to
test the product, to fulfil the quality

constraints and how the time varijes.

3.3 A natural approach to the use of the
model

It is well-known that it costs more to
correct an error in the operation phase than
in the test phase, but it is not economical
to make the test phase too long either, just
to get rid of all errors. This simple
discussion leads to the observation that
there has to be an economical minimum at
some time, see Figure 3.

The cost function is hard to find. It
depends on many factors, e.g. the systenm,
the environment, testing methods, the
market, maintenance routines etc., But if we
could find the cost function, then we would
be able to find out how many errors we
should try to correct during the test phase,
before we release the software product to
obtain the economical optimum.

A natural approach to our problem, would be

to:

1. Decide how many errors we should remove
in the test phase to obtain minimum of
the cost function.

2.- Use the developed model to obtain the
mean and variance of the time we have to
spend in the test phase,

3. The project management and the marketing
department could plan for different
cases, from the best to the worst
depending on how the test phase goes. We
should always be prepared for the worst
and not be surprised if it happens,
rather, be happy if it does not.

3.4 A short presentation of an important
parameter in the model: the failure time
distribution

To be able to use the developed model, we
have to know the failure time distribution.
We are in this paper interested in the
principle results when assuming different
failure time distributions. The problem of
finding a realistic distribution, for a
specific environment and application, will
not be considered here.

A model which is often used for the time
between errors is the Jelinski-Moranda
De~Eutrophication Model, (6).

A brief description of the J-M model:

The following notation will be used:

* A (1) - error rate

* fi(x) - pdf for the time to discover
error number i

* NO - the initial number of errors

* n - the number of removed
(corrected) errors

* ¢ - proportionality factor

The time between error occurrences is
assumed to be exponentially distributed.

fi(x)=k(i]exp(—k(i)t) (7)

The error rate is proportional to the number
of remaining errors in the system.

A(il=¢(N0—n} (8)

¢ and a better estimation of Ny will be
found as the test phase progresses, by
application of the maximum likelihood
method.

The J-M model is developed under the
condition that we have an environment
similar to the one we have during the
operation phase. This is not always the
case. The model is not suitable for module,
unit or function testing, where we have the
problem of how to book the time. An
investigation has been made and it seems
more reasonable to assume that we have a
distribution with a failure rate that is
independent of the number or remaining
errors while we are doing the module, unit
or function testing. This is understandable,
because correcting errors in one unit will
not make the other units better. The failure
time distribution is, however, dependent on
other factors, e.g. test methods, number of
test cases etc. Problems arising when
considering the failure time distribution
during functional testing are presented in
Wohlin (14).

If we assume fj (x)=f(x), we could look at
some results using well-known distributions.
We have chosen to look at the following four
distributions a little closer:

1. Exponential distribution

(pdf £(x)= Aexp(-Ax)) (9)
2. Two-stage Erlangian distribution
(pdf £(x)=41%x exp(-2:x)) (10)

3. Two-stage hyperexponential distribution
(pdf f(x)=aiq exp(-iqx)+

(1-c) Az exp(-Ayx)) {(11)
4. Deterministic distribution
(pdf £(x)=3(x-1/1)) (12)

4. RESULTS FROM THE MODEL USING DIFFERENT
FAILURE TIME DISTRIBUTIONS

We should keep in mind that the results
presented in this section are example on the
inevitable consequences that the derived
formulas lead tc. When using the formulas we
should be aware of:

- we have to find our own failure time
distributions, which are applicable to our
specific problems,.

- we have probably different failure time
distributions during different phases in
the software lifecycle.

The principal results can best be seen in a
figure, see Figure 4. This figure is valid
for all failure time distributions, where
the number of remaining errors decrease. If
we consider a number of distributions with
the same mean value, the difference in
Figure 4 will be the variance, i.e. the
length of the arrows in the figure.

Explanation to the figure:
We have estimated the initial number of

errors to be Ng and we would like to test
the software product until we reach Ngpt.
This happens at Te if we do not consider the
variations in Ny and Tg.
But let us consider variations of both Ngand
Te and see what happens. If we assume that
we have estimated Ng to be somewhere in the
interval (Np-ANp,Np+ANg), then we observe
that we have a best and a worst case,
remembering that Ngp was the initial number
of errors. If we study the best and the
worst case and assuming that T, varies as
marked in the figure by the minor arrows,
then we obtain an interval, marked in the
figure by the big arrow (AT), in which Ts
lies. This interval is rather big and to get
a good estimate of Te we have to make this
interval much smaller, otherwise we are
bound to get a software product that is (at
least) partly out of control.

We have now looked at the principle result,
let us consider some results using some
specific failure time distributions. Results
are presented in Table 1 for the J-M model
and the four distributions mentioned above.
We have chosen the parameters for the
distributions, so that we have the same mean
value until error number Ny is detected. We
have chosen this approach to get an
oppertunity to compare the variances
dependence on the failure time distribution.
We have to assume something about the
distribution for S, and Ny, to obtain the
length of the arrows, in Figure 4., It is
possible to show that S, and N+ are
asymptotically normally distributed, more
details on this are found in (10). Assuming
a normal distribution for Sp and N:, we can
find confidence intervals, that is we can,
with a certain probability, find the length
of the arrows in Figure 4. In the table we
have chosen a 95 % confidence interval.

TABLE 1 - The mean time (To) to reach Nopts and its variance due to the variances

in N and the failure time distribution,

Suppose: N;=200 and AN3=10% - N=20

Distribution \Nope 100 50 20 10 0
Exp. E(T,) 100 150 180 190 200
A=1 v (TS) 100 150 180 190 200

AT 62.5-141.5 107.7-195.6 135.2-227.7 144.4-238.4 153.7-249.1
Erlang. E(Te) 100 150 180 190 200
A=1 . y(Te) 50 75 90 95 100

AT 67.6-135.2 114.2-188.1 142.5-219.6 151,9-230.1 161.4-240.6
Hyper.* .
07=0.5 E(Te) 100 150 180 190 200
a1=0.5 V(Tg) 232.0 348.0 417.6 440.8 464.0
keE AT 53.3-152.7 96.0-208.9 122.2-242.2 131.1-253.3 139.9-264.3

2=

Hyper.*
01=0.8 E(Te) 100 150 180 190 200
42=0.2 V(Tg) 1911.8 2867.8 3441.3 3632.5 3823.7
\7=37/10 AT 3.35-213.9 32.2-2681.7 51.5-321,2 58.3-334.2 65.0-347.1
A2=37/90
Deter. E(Te) 100 150 180 190 200
A=1 V(Tg) 0 0 0 0 0

AT 80-120 130-170 160-200 170-210 180-220
J-M E(Te) 23.5 46.9 77.6 100.3 200
2=0.02939 v(Tg) 5.75 174 50.7 104.4 1898.6

AT 15.5-31.6 35.3-58.4 60.1-94.8 76.8-123.7 111.0-288.6

* a9 + a2 = 1 and we have chosen A1

and A2 so that X1/hg = 9,

5.

We have looked at the situation today during

CONCLUSIONS

the test phase, (see Figure 4), and

something has to be done about it. There are

four ways of making the situation better,
two primary ways and two secondary ways.
The two primary ways deal with the problem

of

making the test phase shorter and they

are:;

1s

To lower the number of initial errors.
This could be done by developing better
methods and tools for the design and
construction. It is necessary to look at
design and construction (programming) as
a part of an industry and not as a form
of art. The work and documentation have
to be standarized.

To develop better methods and tools for

the test phase, i.e. we need to find more

errors in a shorter time and this calls
for more systematic testing routines.

The two secondary ways of making the
situation better deal with the problem of
making the variances smaller and they are:

1

If we do not make the estimated interval for

To obtain a better estimate of the
initial number of errors. This could be
done by developing and applying better
methods and tools for the estimation of
Ny. We have to find methods and tools

that are suitable for our environment and

our applications.
To decrease the variance in t. This also

calls for better methods and tools during

testing and more systematic testing
routines. If we could decrease the
variance in the times between failures,
then we automatically obtain a smaller

variance for t. In the model this will be

shown by the fact that we have to find
another failure time distribution. The
optimal distribution is a deterministic
distribution with a small mean value.

t smaller this could lead to two things,
both of them uneconomical, namely:

T
2.

6.

We stay in the test phase longer than
necessary, just to be on the safe side.
We leave the test phase too early, which
could lead to the software product being
very expensive to maintain and if the
worst comes to the worst, we will end up
with an inefficient, unreliable,
unmanageable and unmaintainable software
product.

ACKNOWLEDGEMENT

This project is supported by Telelogic AB
and the Swedish Telecommunication
Administration, Sweden.

Fa

1.

REFERENCES

Wohlin, C., and Vrana, C., 1985,
"Derivation of Formulas for the Quality
Constraint Model", Technical Report,
Lund Institute of Technology, Lund,
Sweden.

Vrana, C., and Wallander, A.,1983,"S/W
Quality and Complexity - Different
Aspects and Measurement Results", Proc.
5th Int. Conf. on SETSS, 121-127.

Lennselius, B., 1986, "Software
Compexity and its Impact on Different
Software Handling Processes", Proc. 6th
Int. Conf. on SETSS.

10.

11.

f2k

14.

McCabe, T., 1976, IEEE Trans. on
Software Eng., Vol. SE-2, No 4, 308-320

Halstead, M., 1977, "Elements of
Software Science", Elsevier North
Holland Publishing Co., New York, USA.

Jelinski, %., and Moranda, P., 1973,
Statistical Computer Performance
Evaluation, Academic Press, 465-484.

Goel, A., 1983, "A Guidebook for
Software Reliability Assessment",
Syracuse University, Syracuse, USA.

Feller, W., 1957, "An Introduction to
Probability Theory and its
Applications”, John Wiley and Sons, New
York, USA. 5

Kleinreck, L., 1976, "Queueing Systems,
Vol 1. Theory", John Wiley and Sons, New
York, USA.

Cox, D.R., 1962, "Renewal Theory",
Methuen Co, London, England.

Cox, D.R., and Miller, H.D., 1965,
"Stochastic Processes”, Methuen Co,
London, England.

Wohlin, C., 1985, "An Analytical
Comparison between two Software
Reliability Models", Technical Report,
Lund Institute of Technology, Lund,
Sweden.

Karlsson, J., and Stavenow, B., 1980,
"Methods for Numerical Inversion of
Laplace~- and z-transform”, Technical
Report, Lund Institute of Technology,
Lund, Sweden.

Wohlin, C., 1986, "Software Testing and
Reliability for Telecommunication
Systems", Proc. 6th Int. Conf. on SETSS.

Development —<—

Con-

——

s‘rruc’rionl

Test

=>

—= Operation and
maintenance

—> |Inuse

Release

Figure 1 A simple software lifecycle

Cost q

-
Testing time

Figure 3 The principal relationship between
testing time and the cost for

correction of errors

N; 4

No-l-ANo'
No 1
Np-ANg 4
T T T Pl
X)__Xp X3 Xn1 ' Xn |t

Figure 2 An example of how the number of
remaining errors decreases

Figure 4 The principal result

LUND INSTITUTE OF TECHNOLOGY CODEN : LUTDEX (TETS-7097)
Dept of Communication Systems /1-7/(1985) & local 10

Derivation of Formulas for the Quality Constraint Model
by
Claes Wohlin, Lund Institute of Technology
and
Ctirad Vrana, Telelogic AB

Sweden

Lund in october, 1985

1. INTRODUCTION

The model is introduced in Wohlin and Vrana (1).
The problem is to derive formulas for:

- the mean and variance of the number of remaining errors at

a specific time

- the mean and variance for the time until a specific number
of errors remain

when the failure time distribution is known.

The following notation is used in (1):

* P(t)=P(t<t) -
* £(t)=dF(t)/dt-
* F*(s) —
* P(Z) 2
* E(X)=x -
* V(X)) -
x E(xK)=xK -

*NO —_

the
the
the
the
the
the
the

probability distribution function (PDF)
probability density function (pdf)
Laplace transform of f£(t)

z-transform of py=P(n=k)

mean value of the stochastic variable X
variance of the stochastic variable X

k:th moment of the stochastic

variable X

the

initial number of errors, i.e. when the

test phase begins

the

uncertainty in the estimation of the

initial number of errors

the number of remaining errors at time t,
(pdf gy (t))
the time between error number (i-1) and

error number i, (pdf f;(x))

the

time to error number n,

With these definitions we find:

- e =

Figure 1. An example of how the number of remaining
errors decrease.

The derivations will be made with the following three
assumptions:

1. The initial number of errors, when the test phase is
started, are known through estimation.

2. The failure time distribution is known.

3. If a failure is found, it is corrected and no new
failures are introduced.

For comments to the assumptions, see reference (1).

2. SOME DEFINITIONS

Let us first look at some definitions:
Laplace transform (for continuous stochastic variables):

o
Fx(s) = f e °F f(x)dx
x=0
z-transform (for discret stochastic variables):

pl(z) = ~

-
8

P(X=k)z

(1)

The k:th moment for a stochastic variable:

Continuous stochastic variable:

[=s]

B(x5) = 5 %X f(x)ax (3)
x=0
Discret stochastic variable:
ety = 3 S B, (4)
k=0
Variance:
V(X) = E(X?) - E(x)2 (5)

The definitions of the transforms give us the moments for
the stochastic wvariable as:

Continuous stochastic variable:
First moment (mean value):

_ _ lim 9F*(s)

E(X) s+0 s

(6)

Second moment:

. 2
E(x%) = oo 2E0I8) (7)
3s
The k:th moment:
k
kK, _lim ; ..k 3 F*(8)
E(X7) = S50 (-1) __;;E__ (8)

Discret stochastic variable:
First moment (mean value):

lim 9P (z)

E(X) = z>1 9z

(9)

Second moment:

lim 3%p(z) . 9P(2)

z>+1 (3 2 0z
z

E(x2) =) (10)

3. DERIVATION

We are now able to derive the desired formulas.
For fuller details on the theories used in this section, we
would like to recommend Cox (2).

3.1 Derivation of the mean and variance of the number of
remaining errors at a specific time

We introduce the time-dependent z-transform for N as

GlEt.2) = I P(Ntzk)z (11)
k=0
but
P(Nt=k) = P(Nt>k-1) - P(Nt>k) . (12)

and we realize, from Figure 1, that

P(Nt>k) = P(Sn>t) because k=N0-n (13)
=>
P(N =k) = P(N ,=Ny-n} = P(N >N,-n-1) - P(N >N, -n) =
(14)
= P(Sn+1>t) - P(Sn>t) = Kn(t) = Kn+1(t)
=>
Np -
Glt,2) = I (K (£)-K_,,(£))z 0" =
n=0
(15)
N No Ng-n
= Ky (t)z 0 + 5 2V07R(1-z)K_(t)
n=1 R
but knowing that
Ko(t) = Ptsogt) = 1 (16)

and then taking the Laplace transform on t, we obtain

Np o
(zN0+ ¢ ZNO T(1-2)K_*(s)) (17)

G*(s,z) = %
n=1

It is easily seen that

n

Sp = 2 % (18)
i=1

and it can be shown that a sum of stochastic variables form
a product, when applying the Laplace transform on the sum.

=>

n
Kn*(s} = Fi*(s) (19)
i=1

We then finally obtain

No _ n
(z¥0 + 5 ZNOTP(q_z) ¢ F.*(s)) (20)
n=1 i=1

G*(s5,2) = %

Remembering the moment generating properties of the
z-transform, we obtain the Laplace transforms for the first
two moments of the number of remaining errors.

Taking the first two partial derivatives and then letting
z~+ 1, we obtain

; * Ng n
n=1 i=1
and
, 2 N
lim 8°G*(s,z) _ 1 - 0 - *
s ___EEE——— =i (NO(NO 1) 2n51 (NO n)Kn (s)) (22)

If we let H(t)=E(N.) and M(t}=E(N%) with Laplace transforms
H*(s) and M*(s), we get that

p N n
_ lim 8G*(s,z) _ 1 _ 0
H*(s) = =~ B (N0 E 'f Fi*(S)) (23)
n=1 i=1
and
2 N n
_lim. 3"G*(5,2) ,9C* (8,2), _1...2 0

If we invert these two transforms, we can obtain the
variance as

D 2
V(N,) = E(N{) - E(N,) (25)

3.2 Derivation of the mean and variance for the time until a
specific number of errors have occurred (or are remaining)

We know from (19), that

=29

Kn*(S) =

*
mF; (s)
1

1

Using the moment generating properties of the Laplace
transform, we immeditely find the first two moments as

. 9K_*(s)
o lim n 26
and
2
., 9 K_*(s)
) lim n
E(S7) = —— (27)
n s>0 352
Let us take the derivatives on K*(s)
=>
3K_*(s) n aFi*(s) n
= ————— 1 F.*(8) (28)
3s i=1 ds j=1 J
and Lt
2 2
3"K_*(s) n o Fi*(s) n n aFi*(s) n aFk*(s) n
n2 =z s— T F.*(S)+ E —S——— I —=e— T F_*(s)
3s i=1 8s® j=1 i=1 k=1 j=1
Jj#i k#i Jj#i
: j¥k
From this follows that
n —_—
E(S)= ¢ X, (30)
i
and
2 n— n_ n_ n — n _
E(S7)= L xi+ b xi z xk= z (xi+2x. r xk) (31)
Doi=1 Y i=1 Yk=1 B o= k=i+1
ki

We can now easily obtain the variance as

2 2
V(Sn} = E(Sn) = E(Sn) (32)

(29)

In the special case, when f;(x)=f(x) we obtain simpler
formulas for E(Sp) and E(S%) We find that

E(S_) = nx (33)
n
and
n —_— n
E(Sz) = ¥ (§2+2§2(n-i))=nx2+2n2§2—2§2 T i=
n L :
i=1 i=1
= ;7+2n x -X n(n+1) n(;j-x)+n2x2 (34)
=>
V(S) = nV(x) (35)

n

This concludes the derivation of formulas for the Quality
Constraint Model (QCM) presented in (1).

4. REFERENCES

1. Wohlin, C., and Vrana, C., 1986, "A Quality Coénstraint
Model to be Used During the Test Phase of the Software
Lifecycle", Proc. 6th Int. Conf. on Software Engineering
for Telecommunication Switching Systems.

2. Cox, D.R., 1962, Renewal Theory, Methuen Co., London,
England.

