

C. Wohlin and U. Körner, "Software Faults: Spreading, Detection and Costs",
Software Engineering Journal, Vol. 5, No. 1, pp. 33-42, 1990.

Software faults : spreading,
detection and costs

by Claes Wohlin and Ulf Korner

The paper considers, through
modelling, how software faults are
spread throughout the entire life-cycle
of a large software product and how
fault detection and correction processes
will affect the spreading mechanism.
The study is further enlarged to
incorporate models for cost estimation.
The models can be described as being of
a qualitative rather than a quantitative
nature, in that they highlight the
effects of different approaches relative
to each other before giving ‘exact’
values for each approach. The study
reveals that the behaviour and
consequences of different ways of
spreading and detection, as well as
different cost mixtures, can be studied
and thus understood.

1 Introduction

During the last two decades we have witnessed a dramatic
and rapid change in large real-time systems (e.g. telecom-
munication systems), in that today they are often based on
huge software systems. The rapid development on the hard-
ware side, with totally new concepts as well as technologies
for increased reliability and availability, has not so far been
met by rapid development on the software side, although
the latter does often dominate in terms of developing efforts.
The demands are great for new techniques, methods and
tools throughout all phases of the life-cycle of a system for
design as well as for planning. System analysts need new
and realistic models to capture a basic system behaviour.
Models and metrics are needed for calculations and estima-
tions. As software is becoming a greater and more impor-
tant part of a system, it is necessary to incorporate metrics
and models for software performance analysis [l, 21,
together with ‘classical system’ performance measurements,

Software Engineering Journal January 1990

to get more complete and comprehensive models of a total
system. The needs for models and metrics for understand-
ing software measures, such as reliability, availability and
effectiveness, cannot be stressed enough [3, 41. It is not pos-
sible to develop new cost-effective systems without taking
software performance into account : this new dimension
must be added to the developing process. Tools for analys-
ing control situations, for dimensioning and scheduling etc.
are still vital issues, but a system analyst can no longer
overlook the software [5].

The examples of software products not fulfilling required
quality constraints are numerous. These problems can be
overcome by a thorough study of software and its per-
formance. The solution to the problem can be divided into
different steps:

0 Awakening, i.e. realising that software is a critical part
of system performance.
0 Understanding, i.e. it is necessary to understand the
process of developing software products and its conse-
quences [SI if the intention is to develop a cost-effective
system in some sense.
0 Modelling of software performance.
0 Evaluation of software performance.
0 Incorporation, i.e. models and metrics for software per-
formance have to be incorporated with other aspects of
system performance to develop cost-effective systems in the
future.

This paper will cover parts of the second step, understand-
ing, assuming that most professionals within the software
community have entered the first step, awakening. We will,
by means of models, try to understand the process of the
spreading, detection and costs of software faults.

During system development, which incorporates a
number of phases, faults are introduced and removed. The
costs caused by a fault are highly dependent on when the
fault was introduced, detected and hopefully removed. A
fault introduced during the system specification phase will
probably have a large impact on a number of software units
during the coding phase, i.e. the fault has spread. The

33

Fig. 1

spreading of a fault depends on the number of phases
between introduction and detection as well as to what
extent a fault is spread when entering a new phase.

Some general information about faults may be appropri-
ate at this point. An error is made by man and results in a
fault in the product. The manifestation of a fault, which
means a departure from what the software is supposed to
do, is referred to as a failure. These are the suggested stan-
dards in IEEE Standard 982, where it is also suggested that
a defect is a product anomaly. This may be interpreted as a
defect being the result or consequence of a fault in a preced-
ing phase. A fault may spread and cause a number of
defects.

The consequences of the spreading and the ability to
detect the fault affect the number of defects caused by that
fault. This is a critical issue that has to be addressed when
developing cost-effective software products. To understand
the behaviour of the spreading mechanisms and the ques-
tion of detection, a model is developed. The model is devel-
oped in two steps: first, a pure spreading model, and
secondly, this model will be complemented by introducing
detection. This model is further enlarged by taking costs
into account for defect removals during test and operation,
respectively. The last model can also be used to determine
an optimal time for field entry.

The primary goal of the models is to understand the
mechanism of the spreading of faults and its consequences.
It shall be pointed out that the models are in an early state
and consequently are very much simplifications of a
complex reality. Despite this, they will provide a possibility
to gain an understanding of the process studied. The
models here will, at least, give qualitative rather than quan-
titative results.

The mathematics used to develop the models may be
found in any basic book on probability theory [7]. The nota-
tion used is presented in Appendix 8, and some of the de-
rivations for the spreading model are shown in Appendix 9.

34

The spreading of one fault

The developed models will be used in a simple example
to describe the influence of different parameters in the
models. The example will help us understand the different
processes (spreading, detection and costs) modelled and
draw valuable conclusions, which can probably be extended
to be valid in more realistic cases as well.

2 The spreading model

From the very first phases of a system development, i.e.
specification, to the last phases before final testing, faults
being introduced during one phase will spread to the under-
lying phases. A fault introduced during the design may
spread, i.e. result in a number of defects during a coding
phase.

In our models we use an independent assumption, i.e.
faults are introduced and spread independently. This is a
standard straightforward assumption, which of course can
be argued. We know that in most cases it is necessary in
order to derive a model which can be solved. In general,
experiences from queueing theory modelling, for example,
show that the assumption is not critical, i.e. results obtained
with the independence assumption can often be verified
with simulations. The spreading mechanism depends on the
number of phases (or levels) the system may go through
from the very beginning of a project to the last level before
the testing phase. The number of levels before testing is
denoted by 1. During each of these levels faults may be
introduced. It is assumed that a fault, introduced and
detected during the Same phase, was never made, i.e. it is
not dealt with in our models. Let the r.v. X,, denote the
number of defects on level j caused by one defect on level
j - 1 and Zi, denote the total number of defects on level j
when a fault is introduced on level i. It should be noted that
Xi, + is the number of defects on level i + 1 caused by one
fault on level i and that Z,,, is equal to one, i.e. the fault
itself.

Software Engineering Journal January 1990

From these definitions it is possible to derive a recursive
z-transform for Zi, j , which, in turn, makes it possible to
derive the mean and variance of the total number of defects
on level j when the fault was introduced on level i. The
derivations are based on standard branch processing [SI,
and a similar approach has been used earlier for fault pro-
pagation for hardware [9]. The emphasis in this paper will
be on cost control and product release for software
products, whereas in Reference 9 they concentrated on
test strategy for hardware. The derivations are shown in
Appendix 9.

viz,. j1 = -i (V[Xi. n l ’lil EW,, “1 ir E[&, “ 1 9 (2)
k = i + l n = i + l n = k + l

where E[y1 is the mean value of r.v. Y and V[yI is the
variance of Y.

These formulas give the mean and variance of the
number of defects on an arbitrary level caused by one fault
on any preceding level. The total number of faults intro-
duced on level i will be denoted by Ai . This definition and
the formulas above make it possible, by taking the appro-
priate sums, to obtain

0 the total number of defects, independent of the level,
caused by one fault made on level i;
0 the total number of defects caused by faults introduced
on level i;
0 the total number of defects which is the result of the
errors made by the people developing the software product.

The model can, of course, be used with different probability
distributions for each Xi, j , and, when studying the sums
mentioned above, different distributions can also be used
for each A i . This means that the consequences of different
distributions can be studied. It is important to try to iden-
tify realistic distributions in order to obtain good, i.e. realis-
tic and reliable, results. We will, however, restrict ourselves
to studying a simple example to describe and illustrate the
use of the model.

Example 1

Assume Xi, follows a geometric distribution for k > 1, i.e

prob(X,, = k) = pq‘-

where p + q = 1. Here, the spreading of defects is not
dependent on the current level. This gives us

(3)

p may be assigned any value between zero and one, because
in all these cases we obtain an increase of the number of
defects from one phase to another. A low value on p leads to
an avalanche-like effect of the spreading increases, which
we will see below.

From eqns. 1 and 2, E[&, j] and V[Zi, j] are obtained as

E[Zi. j] = 6 Y - l (4)

Let us assume that i = 0 and study E[Zi, j] and V[Zi. j] for
different values of j and p. In this particular case it is pos-
sible to derive the distribution for Zi. j , but in the general
case we will have to adapt a distribution to the two
moments derived or approximate the distribution for Zi,
with a normal distribution. The reason for doing this is that
we would like to calculate confidence intervals for Zi, j . The
results are presented in Tables 1 and 2. In Table 1 it is
shown how a 90% confidence interval will increase as the
distance in levels between introduction and detection
increases. In Table 2 it can be seen how the mean number
of defects on level j increases for different values on p, i.e.
E[&, j] , when the fault was introduced on level i.

Although one may argue on our choice of the distribution
for Xi, j , the avalanche-like effect of the mean values is a
reality. For example, if the defect gives rise to four defects
on the underlying level, we will end up with, on average,
over 1000 defects five levels below the level where fault
was introduced (see Table 2). These figures show the impor-
tance of minimising the time between introduction and
detection of faults.

Let us study the total number of defects in the software
product. Assume Ai follows a geometric distribution for
k > 0, i.e.

prob(Ai = k) = ab‘

where a + b = 1. This gives us

b b
E[A,] = - V[AJ = -

a’

Table 1 The number of defects at level/
90% confidence

p = 0.25 EL?,. jI W,. J interval

j = 1 4 12 1 . l a 1 1.41
/ = 2 16 240 1.7947.42
j = 3 64 4032 4.26-191.2

14.11-788.4 256 65280
53.5c-3067 / = 5 i = 4 1024 1047552

I
Table 2 €[Z,,,]: the mean number of
defects at level I for different values on p

P

j 1 0.5 0.25 0.1 0.05

1 1 2 4 10 20
2 1 4 16 100 400
3 1 8 64 lo00 8ooo
4 1 16 256 loo00 160000
5 1 32 1024 1OOOOO 32MxKK)

Software Engineering Journal January 1990 35

Table 3 The total number of defects in
the software product

a

P
1
3 i 0.1 0.05

1 42 105 im 399
0.5 240 800 1080 2280
0.25 3636 9090 16362 34542

The average of the total number of defects in the software
product is presented in Table 3 for different values of a and
p. We assume that i = 0, ... 5, i.e. the total number of
defects is calculated after level five. The figures in Table 3
are obtained from

In Table 3 it is seen how the total number of defects at level
five vary as a function of a and p . For example, it can' be
seen that, if on average five faults are introduced at each
level (a = i) and the average spreading factor is equal to
four (p = 0.25), then we will obtain, on average, over goo0
defects in the product. It shall, however, be observed that
these figures are obtained without taking detection into
account. The model will be complemented with the possi-
bility of detection in Section 3.

The conclusions from this example are quite obvious and
perhaps not the most important result. The conclusions are
discussed in Section 5. Perhaps the most important aspects
of the example are the possibility of modelling the behav-
iour of fault spreading, and using different distributions and
parameters in the models. Finally, it should be noted that
the distributions and their parameters may depend on the
levels. In this case we might, for example, let p depend on
both the level of introduction (i) and the level of study (j) ,
and the Darameter a can be dewndent on the level of intro-

3 Spreading and detection

The detection process is modelled by constant probabilities,
which are functions of the current level and the level of
fault introduction. The probabilities are, of course, assigned
values according to the effort that is put into the fault detec-
tion mechanism on each level. This gives us the chance to
study the impact of different parameters on the spreading
and detection process. The model can be used for arbitrary
distributions regarding the number of introduced faults on
any level, as well as the distribution of Xi, j . The model
gives us the number of undetected faults when entering the
testing phase. It makes it possible to study and understand
the mechanism of fault spreading and detection. This is a
vital issue when trying to develop cost-effective systems.

It shall be observed that the stochastic behaviour of the
spreading model is used in the sense that different con-
fidence intervals can be calculated, and that these values
can be used to study different cases or outcomes from the
spreading model. Let Zi.j denote the outcome from the
spreading model, then Zi. can be set to the values obtained
when calculating the 90% confidence interval or the mean
value for example. In the formulas below, Zi. will be used
for denoting the outcome and Zi. will be substituted with
the mean value, i.e. E[Zi, j] , when the actual values are
inserted and for reason of simplicity in the cost model
present below. The detection model is in itself deterministic,
but based on the results from the stochastic spreading
model.

The detection probabilities are denoted by p i , j and
defined as the probability to detect one defect on level j
when the fault was introduced on level i. This means that, if
the outcome is assumed to be Zi, j , then (1 -pi. j)zi,~ is the
probability that none of the Zi. defects on level j , caused by
one fault on level i, will be detected. This is equivalent to
the spreading of the fault continuing to level j + 1.

It shall be noted that, in reality, the detection process is
binary; either we detect a defect or we do not. If a defect is
found it is assumed that we track the fault and correct all
defects caused by that specific fault (see Fig. 2).

In Fig. 2 the fault is tracked by following the errors from
the detected defect to the fault which caused the malfunc-
tion. When the fault is corrected, we will EO down the tree

duction (i). structure and correct all defects caused by the fault.

level i+l i+2 i+3 i+4

: I -
C

this defea
* is detected

Fig. 2 The removal of a fault and its defects

36 Software Engineering Journal January 1990

The binary effect of detection is best seen by studying
the spreading mechanism and the probabilities that none of
the defects has been detected when we reach level j . In par-
ticular, if we assume that the outcome is equal to E[Zi, j] , we
will obtain the mean number of defects on level j caused by
one fault from level i, when we have introduced the p i -
bility of detection in the model.

We will study the probabilities that none of the defects
has been detected when we reach level j and the mean
number of defects remaining on level j (see example 2). It is
also possible to study all cases from the best to the worst,
where the worst, of course, is the result obtained in Seaion
2, i.e. no detection at all.

So far in this Section we have been concerned with the
detection of defects caused by one fault. This may be
extended to a study of the total number of defects in the
same way as discussed above.

'

Example 2

We assume that Xi, and Ai belong to the same distribu-
tions as in example 1 and to this we add the assumption
that pi, = c, where 0 < c < 1. The latter assumption is
made here for reason of simplicity. Of course, the probabil-
ities for detection may depend on the levels and can be set
to realistic values according to the effort and techniques
used during different phases in the software life-cycle.

First, we will study the probability that none of the
defects will be detected for various different cases (see
Table 4). The values in the lower right part of the table
(indicated by -0) are all less than and are thus very
small, due to the fact that the chosen spreading factor is set
to 4 for all levels. In this example it is assumed that the
number of defects on a specific level, caused by one fault on
a higher level, is set to the mean. This can be compared
with the worst case, which was presented in example 1, i.e.
no detection at all.

This means that the probability that none of the defects
is detected on level j when the error was made on level i,
can be written as

where pi, = c and the outcome (Zi, j) is assumed to be equal
to E[Z,. j] , which is obtained from example 1.

To calculate the number of remaining defects, it is neces-
sary to make the study one level at the time, because the
probability of detection will have an impact on the number
of defects remaining at the next level. Let us define 2;. as
the number of defects remaining to be spread to the next
level. The difference between this new definition and that
for Zi. shall be observed. The latter shall still be inter-
preted as the number of defects on level j caused by a fault
from level i. Eqns. 9 and 10 may clarify the relationships

2. . = p. .z.
1.1 1 . J I . J

zi, j =xi. j $, j - 1

The definition of Pi, is found above. The formulas can be
used to calculate the number of defects remaining at each
level for different cases. In particular, we can study the
mean values, assuming independence between the random
variables involved, for which an example is shown in Table
5.

The total number of defects is calculated in a similar

Software Engineering Journal January 1990

Table 4 The probability that none of the
defects Is detected at level]

i
~ ~~

c 1 2 3 4 5

0.01 0.961 0,851 0.526 0.076 3 x
0.05 0.815 0.440 0.038 2 x lo-' z 0
0.1 0.656 0.185 0.001 e o %O
0.3 0.240 0 .W SO SO %O
0.5 0.062 2 x 10-5 SO zo %O

p = 0.25

Table 5 The mean number of defects at
level j

i ,!Tz. $1 p,. I m,. ,I

1 4 0.961 3.64
2 15.36 0.857 13.16
3 52.64 0.589 31.00
4 124.00 0.288 35.71
5 142.84 0.238 34.00

p = 0.25 and c = 0.01

I Table 6 The average number of defects
in the software product

a

1 - P f 0.1 0.05

1 41.6 104 107 395
0.5 213 533 959 2025
0.25 1272 3180 5724 12084

c = 0.07

manner as in example 1, i.e. we use eqn. 8 and the results
from Table 5. The results presented in Table 6 can be com-
pared with those in Table 3. In Table 6 the average number
of defects in the software product when detection has been
introduced is presented, whereas Table 3 contained the
average number of defects in the software product without
having intrduced the possibility of detection. We see that
the total number of defects has been lowered to about a
third in some cases due to the detection process; see, for
example, how the 9090 has been lowered to 3180. The
results also indicate how sensitive the total number of
defects are to the detection probabilities, especially when
there are many defects. Otherwise, they are very hard to
detect, and we have to have a higher probability to detect a
specific defect in order to lower the total number of defects
significantly.

The gain with early detection can easily be seen from the

37

values in the tables, i.e. the higher probability for detection
the better. Once again we have seen that it would be pos-
sible to model an important aspect of faults and their
behaviour. We can now study the consequences of both
spreading and detection. This means that we have obtained
a way to study the effects of different sets of parameters,
and if we could obtain realistic distributions or at least
mean values, this model will be a valuable tool in the plan-
ning and control of a software project. These aspects are,
however, not sufficient to see the consequences of faults on
the total cost. Therefore we will develop a cost model in
Section 4.

4 The cost model

Now we extend our basic model to grasp cost-effectiveness
and we assume that

0 the costs from the phases before testing depend only on
the spreading and detection of faults;
0 the time spent in phases before testing is independent of
the number of defects present and the detection;
0 no new faults are introduced during testing and the cost
during the testing phase depends on two factors: the time
spent in the phase and the number of removed faults and
how they have spread during earlier phases ;
0 the cost for fault removal during operation depends only
on the number of faults remaining when the product is
released and in which phase they were introduced;
0 costs depending on the market and customer behaviour
are neglected. (This assumption is further discussed below).

These assumptions lead to a total cost, which can be seen
as the sum of three parts, i.e. C = C, + C, + C,; where C,
is the cost for fault removal before the testing phase; C,
that during the testing phase; and C, that when the system
is in operation. C, and C, are time-dependent and they do
especially depend on the time when the product is released.

The cost model will provide a possibility to study the
costs based on spreading and detection of faults before the
testing phase, time-dependent detection during testing and
operation, and the fault removal costs during test and oper-
ation taking the behaviour before the testing phase into
account, i.e. the spreading and detection of faults.

The model will give us the chance to study the conse-
quences and impact of different parameters on the cost. The
model shall be seen as a tool for understanding, and as we
learn more and more about the actual behaviour, the model
can be adapted or changed according to the lessons learned.

We will begin by deriving the cost before the testing
phase, i.e. C,. Here the costs will be derived in terms of
mean values, but it should be emphasised that it is possible
to study different cases through variation of the parameters
in both the spreading and detection model and variation of
the various costs defined in the model in this section too.
Let Ki, be the cost to correct a defect on level j caused by
an error made on level i, and Ci the total cost, before the
testing phase, to correct a fault introduced on level i and the
defects which have occurred due to the error made. Ki , is
the cost for the correction of the fault itself. These defini-
tions give

where, as before, 1 is the number of levels and E[Zi. j] is the
number of defects on level j caused by a fault on level i. It is
assumed that all faults will eventually be detected and
removed. It should be noted that E[& j] is the mean number
of defects remaining at level j and it can be calculated
according to different detection probabilities, as discussed
in preceding Sections in the spreading and detection model.

The total cost for fault removal before the testing phase
is obtained as

I I

i=O j = i
c, = c c E [Z i . j K i , j (12)

where ,!?[Ai] is the mean number of errors made on level i.
We assume that C, covers all costs for fault and defect

removal before the testing phase; even if the fault is
detected during testing, C, is the cost for correcting the
documents produced before the testing phase. We will,
however, add an extra cost which depends on the spreading
of faults during the development phases when we calculate
the cost for fault removal during testing and operation,
respectively. This cost will be discussed below. The next
step will be to calculate these costs, which will be denoted
by C, and C, .

The mean number of remaining faults has to be calm-
lated. The reason for needing the number of remaining
faults, and not just the number of defects, is that when a
failure occurs it is assumed that the fault is located and all
defects corrected. This means that the number of malfunc-
tions during testing and operation is equal to the number of
faults or at least those of them that are detected.

Let the remaining fault vector be denoted by R, where an
element ri is the mean number of faults introduced on level i
but not detected before the testing phase. It shall once again
be noted that ri could have been defined for studying differ-
ent outcomes instead of just the mean value as here, but for
simplicity we have chosen to present the formulas for the
cost model with the mean values. The formulas can,
however, easily be transformed to incorporate the study of
different outcomes. This means that the stochastic model-
ling of the spreading model is used, since it is possible to
study different outcomes based on the confidence intervals
in the spreading model. The cost model itself is, however,
deterministic, but it is based on the outcomes from the sto-
chastic spreading model. ri can be written as

ri = E[Ai] fi (1 -pi, j) E I Z z , ~ l (13)
j = i + 1

where the product models the probability that none of the
defects is detected from level i + 1 to level 1. The number of
defects originating from one fault introduced on level i in
the testing phase is denoted by I + J, where level 1 + 1
is the testing phase.

Let the total number of remaining faults at the test start
be denoted by M,,JO), i.e.

The remaining number of faults after testing a time t is
denoted by M,(t), and it is assumed that the function,
according to which the number of faults decreases during
testing, is called fr+l(t). This function may, for example,
depend on the detection rate and the elapsed time. This is

Software Engineering Journal January 1990

further discussed in References 10 and 11. These definitions
lead to

Consequently, the number of detected faults at t can be
written as

To calculate the cost for testing, we define C, as the cost to
test one time unit independent of whether faults are
detected or not; Cl + as the cost for removing a fault during
testing; and Ci. I + as the extra cost for not finding a fault
introduced on level i until level 1 + 1, i.e. the testing phase.
Cl + may include costs for writing fault reports, adminis-
tration and other extra costs during testing because the
fault was detected. The cost is independent of the level of
introduction. On the contrary, Ci, + , depends on the level of
introduction and it should not be mixed up with C, . Ci, I + I

is used to take into account all extra costs due to the late
detection, whereas the ordinary cost for correcting the docu-
ments before the testing phase has been taken care of by
C, . The extra cost shall, for example, cover the effect of
moving development staff back into the project for fault cor-
rection and restarting several development activities, say,
block design and coding. This may lead to another project
being delayed, and the cost for this ought to be charged to
the project where the faults have been found. It may be
difficult to assign a realistic value on the extra cost, but it
ought to be possible to estimate if data from a couple of
projects have been collected.

The probability that a detected fault was introduced on
level i will be approximated by

The assumption that this factor is constant over time is
reasonable, since all defects are considered to be equal in
size, i.e. they are detected with the same probability. This
means that even after some time the above approximation
will be suitable, since faults already detected will, on
average, follow the proportion given by the equation.

This probability will be used to calculate the mean extra
cost due to the level of introduction. Thus the cost for fault
removal during testing is given by

The cost for fault removal during operation is derived in a
similar manner as C,(t). We still assume that we are inter-
ested in updating our documents because of faults found
during operation. This is a reasonable assumption, other-
wise the product will soon be unmaintainable and conse-
quently obsolute in the near future.

The same assumption will be used for the probability
that the fault was introduced on level z. Let t, denote the
time when the product is released, and let f i f 2 (t) be the
function for how the number of faults decreases during
operation. f, + 2(t) is only defined for values of t larger than
t,. Let M,&) be the number of remaining faults when the
operational phase starts. This means that

where M,&) = M,,,(0)fl+ ,(t,) and MAt) for t 2 t, is of
course equal to MI&) - M,(t). From these formulas it is
possible to determine the cost during operation as

fi,,(t) only fills a function if the product is taken out of
operation before all faults have been removed. If we assume
that t --t CO, i.e. all faults will be found and removed, we can
conclude that the three costs can be calculated from

The latter two depend on the time for release of the product.
This fact can be used to determine an optimal time for field
entry by minimising the total cost for fault removal, i.e. to
find the value oft, which minimises the cost. (This will be
discussed in more detail in example 3.)

Before anyone objects that an important cost is missing,
we will discuss this cost and try to explain why we have
chosen to ignore it in the model. The cost which has been
ignored so far is the market cost C, , which depends mainly
on two things; the release time t, and the number of remain-
ing faults at the release time Mt,,,(t,).

The cost depends on several market aspects; for example,
goodwill, policy and market shares. The two parts, i.e. t,
and Mlol(t,), which constitute the market costs can be
described partly as

0 the part which depends on the release time of the
product. The cost (or perhaps gain) comes from the depar-
ture from the predetermined target date. An overdraft will
cause a cost because of missed shares of the market or the
market may be annoyed if the product is delayed. If the
product is released before the target date, we may win
market shares and general goodwill for the company, which
will be a gain in the long run.
0 the part which depends on the number of remaining
faults at the release time. This cost comes mainly from the
quality of the product released. The quality of the product
should be related to similar products on the market.

The market costs are very complex to determine, and there-
fore we have chosen to neglect them. These effects should
be taken into account and incorporated in the entire model
when the model has been in use and calibrated, but they are
hard to grasp at this early stage. It will not be fruitful to
thoroughly investigate the market aspects of the costs for
faults until the model has been evaluated.

It should also be noted that we have not taken into con-
sideration the time spent in the phases before the testing
phase. Let us assume that the search for faults can be done
in parallel with development and that the search for faults
will not prolong the different phases in any significant way.
Another solution would be to study the transition between
two consecutive phases in the Same way as has been done

39 Software Engineering Journal January 1990

with the testing and operational phases, although this
would probably cost more effort than we would gain from
this approach.

It has, however, been shown here that it is possible to
estimate costs and probably optimise the release time in
order to minimise the total cost due to faults. The cost
model incorporates the aspects from the spreading and
detection model and ought to be a valuable tool when plan-
ning and controlling software projects.

The estimation of the total number of faults remaining
when the test phase starts, M,,,,(O), can be used in software
reliability models, for example [3, 12, 131. This can be done,
since in many reliability models the initial number of faults
is a parameter. The reliability models are probably the ones
to be used for the functionsA+,(t) andfr+,(t). The problem
of determining which model to use will not be discussed
any further here. Criteria for choosing models are discussed
in References 14 and 15.

Example 3

This example will illustrate how the cost model can be used
for determining a time for optimal field entry. The problem
of optimal field entry is also discussed in References 16 and
17, although the effects of fault spreading and detection are
not taken into account. To determine an optimal time to
release the product, the total cost for fault removal will be
minimised.

In this example we will assume that p = 0.25, c = 0.01
and a = 0.05. We also assume that the testing phase is level
number 6, i.e. 1 = 5. The costs Ki , shall be estimated or,
possibly better, be found in the data library of the company.

It is now possible to calculate C,, which is given by

where E[& j] is obtained from example 2 and E[AJ =
b,/ai = b/a = 19.

This cost will, however, not be of interest when studying
the time for optimal field entry, since it is independent of
the release time t, .

We need to determine the parameters in C, and C, in
order to minimise the total cost. Some_of them are obtained
from example 2, i.e. the vector R and E[Zi, ,] for i = 0, 5.
R is given by

R = (r 0 r r l r r 2 , r 3 , r 4 r ~ 5)

= (0.63, 2.66, 9.22, 15.65, 18.26, 19.00) (25)
The sum of the elements in R should be compared with the
total number of faults introduced. The sum of R, which is
equal to MIol(0), is 65.42, whereas the total number of faults
introduced is C;=,E[AJ = 6 x 19 = 114. The values of

Table 7 The extra costs due to late fault
detection

i
Extra
costs 0 1 2 3 4 5

6 5 4 3 2 1 Cl, I t ,

C , , , , 10 9 8 7 6 5

40

-

B[zi, jl can also be written as a vector

= (33.95, 35.72, 31.00, 13.16, 3.84, 1) (26)
The costs are assumed to be found in the project param-
eters database of the company, i.e. we have compared the
conditions for the project with earlier projects and obtained
the following estimates:

C,=50, C,+, =10 and Cl+, =100 (2.7)

Ci, + and Ci, I + have also been found through earlier
experiences; let us assume that we have obtained them as
shown in Table 7.

For simplicity we assume here that A+,@) =A+#) and
that the number of faults decreases according to an expo-
nential distribution, i.e.

A+,(t) =A+,@) = exp-" (28)
where 4 is a constant. This function is equal to how the
mean number of faults decreases according to two well
known software reliability models [12, 131. although they
assume different distributions. If we determine 4, it would
be possible to minimise the total cost and determine the
optimal time for field entry. Let us assume that we have
obtained 6 from our database and that it has been assigned
the value 0.1.

We should minimise
CIOl(t,) = c, + C,(t,) + CAt,) (29)

where C,, C,(t) and C,(t) are obtained from eqns. 21,22 and
23, respectively.

If we let

then we should minimise

Cfol(t,) = C, + C, t, + M,,,(OX1 - exp ~ @I)

x G I + + M,,,(O) exp-"'. G I + , (31)
The minimum value for this function is obtained for

We have 4 = 0.1, C, = 50, M,,,(O) = C:=ori = 65.42,
G, + , = 14.67 and G, + , = 108.67. From these figures we
observe that the minimum value of the total cost is obtained
for t, = 25.1. This value means that we should test 25.1
time units and that the minimum value of the cost is
obtained when only 5.3 faults remain when the product is
released. The initial number of faults when the test phase
started was 65.42. Fig. 3 shows C,,,(t) - C, for different
probabilities of detection, c.

It can be seen in the Figure how the cost and optimal
time for field entry decrease, with higher detection probabil-
ities during the development phases. It shall be noted that
the total number of faults when the test phase starts is
lower for a higher c, but the remaining number of faults at
the optimal time for release is about the Same for the three
cases. This is because the same costs have been assumed.

The actual values in the example are of little interest. The
important thing to point out is the necessity and importance
of adopting or adapting such a model to collect data from
projects and products and store them in a database and the

Software Engineering Journal January 1990

possibilities this will give us to plan and control software
projects.

In the example we have seen how it would be possible to
estimate a time for optimal field entry based on the spread-
ing and detection during phases before the test phase and
time-dependent fault removal during testing and operation.
Proper distributions and parameters for a model like this
would make it an invaluable tool for any software project
manager.

5 Conclusions

Three important issues have been discussed: spreading,
detection and costs. Each has been implemented in models,
which has led to a greater understanding of the conse-
quences of software faults. The model of spreading and
detection leads to a greater insight into the problems of soft-
ware faults before the testing phase. The cost model shows
the impact of the spreading and detection of faults on total
cost for fault removal, and it also shows how the fault
removal rate during testing and operation, respectively,
affects the total cost. The time for optimal field entry is an
important spin-off from the cost model.

The general conclusion from the study is that it is pos-
sible to model the behaviour of software faults in order to
understand the behaviour and consequences of it. The
understanding will make it easier to develop cost-effective
systems in the future.

It can be stated that

0 the spreading of faults is a costly fact;
0 the total cost is very sensitive to small variations in
some of the parameters; for example, the spreading factor
and the probabilities for detection;
0 the time between introduction and detection of faults is
an important factor when calculating the total cost;
0 it is possible to estimate a time for optimal field entry
based on spreading, detection and costs.

These conclusions from the proposed models, which are
supported empirically elsewhere [MI, lead to a number of
necessary actions that have to be taken in order to cope
with the problems:

0 better methods are needed for early fault removal to
make the time between fault introduction and detection
shorter;
0 models and metrics, for keeping track of the number of
remaining faults, are invaluable tools for staying in control
of the failure process; for example, software structure
metrics and software reliability models. Fault content esti-
mations are further discussed in Reference 19;
0 better description techniques and methods for trans-
formation of documents from one phase to another are
needed ;
0 resource allocation during testing ought to be based on
the time for optimal field entry and the predetermined
target date.

Finally these studies highlight the necessity of modelling
the software as well. Models of the software and its behav-
iour will make it possible to stay in control of software pro-
ducts, and they are also invaluable tools in the planning
process. The use of models for software products is a large

Software Engineering Journal January 1990

6 ‘R
0
0 20 30 40 50

lo time tor testing

I

Fig. 3 Cost as a function of time for testing

step towards complete cost-effective systems where all
aspects have been considered.

6 Acknowledgment

Many thanks to Bo Lennselius of the Department of Com-
munication Systems, Lund Institute of Technology, Lund,
Sweden for enlightening discussions and valuable com-
ments throughout the work on this paper.

I References

1 BOEHM, B.: ‘Software engineering economics’ (Prentice Hall
Inc., Englewood Cliffs, USA, 1981)

2 CONTE, S.D., DIJNSMORE, H.E., and SHEN, V.Y.: ‘Software
engineering mebics and models’ (The Benjamin/Cummings
Publishing Company Inc., Menlo Park, California, USA, 1986)

3 GOEL, A.L.: ’Software reliability models: assumptions, limi-
tations and applicability’, IEEE Trans., 1985, SE-ll, (12), pp.
1411-1423

4 WOHLIN, C., and VRANA, C.: ‘A quality constraint model to
be used during the test phase of the software life cycle’. Proc.
6th Int. Conf. of Software Engineering for Telecommunication
Switching Systems, 1986, pp. 1&141

5 KITCHENHAM, B.A., and WALKER, J.G.: ‘The meaning of
quality’ in BARNES, D., and BROWN P., (Eds.): ‘Software
engineering ’86’ (Peter Peregrjnus Ltd., Stevenage, UK, 1986)
Chap. 26, pp. 39M06

6 WOHLIN, C.: ‘Software testing and reliability for telecommuni-
cation systems’ ibid., Chap. 4, pp. 2742

7 FELLER, W.: ‘An introducton to probability theory and its
applications’ (John Wiley & Sons, New York, USA, 1957)

8 COX, DR., and MILLER, H.D.: ‘The theory of stochastic pro-
cesses’ (Chapman and Hall, London, UK, 1965)

9 SMALL, and FAULKNER, in hoc. 13th Int. Sympxium on
Fault-tolerant Computing, 1983

10 ADAMS, E.N. : ‘Optimizing preventive service of software pro-
ducts’, IBM]. Res. Deu., 1984, 28, (l), pp. 2-14

11 LITTLEWOOD, B.: ‘Stochastic reliability-growth: a model for
fault-removal in computer-programs and hardware-designs’,
IEEE Trans., 1981, R-30, (4), pp. 31S320

12 JELINSKI, Z., and MORANDA, P.: ‘Software reliability
research’ Statistical Computer Performance Evaluation, 1972,

13 GOEL, A.L., and OKUMOTO, K.: ‘Time-dependent error-
detection rate model for software reliability and other per-
formance measures’, IEEE Trans., 1979, R-28, (3), pp. 26211

14 L 4 N “ O , A., MUSA, J.D., OKUMOTO, K., and LITTLE-

41

PP. 46s484

WOOD, B.: ‘Critieria for software reliability model compari-
sons’, IEEE Trans., 1984, SE-10, (6), pp. 687491

15 WOHLIN, C.: ‘Some new aspects on software reliability model
comparisons’. In F’roc. Software Engineering ’88, 1988, pp.
3842

16 aTEN, OJ., and LEVY, D.: ‘Software modelling for optimal
field entry‘. In Proc. Annual Reliability and Maintainability
Symposium, 1980, pp. 41M14

17 ROSS, S.M.: ‘Software reliability: the stopping rule problem’,
IEEE Trans., 1985, SE-11, (12), pp. 1472-1476

18 FAGAN, M.E. ‘Design and code inspection to reduce errors in
program development’, IBMSyst.]., 1976,15, (3), pp. 182-211

19 LENNSELIUS, B., WOHLIN, C., and VRANA, C.: ‘Software
metria: fault content estimation and software process conbol’,
Microprocess. Microsys., 1987, 11, (7), pp. 365375

8 Appendix

Notation

1 = number of levels
i
j = level of study
Xi,

= level of fault introduction

= the number of defects on level j caused by one
defect on level j - 1 when the fault was intro-
duced on level i. In particular, Xi , i+ l is the
number of defects on level i + 1 caused by the
fault on level i

= the total number of defects on level j when the
fault was made on level i. In particular, &,i is
equal to one, i.e. the fault itself

Z i~

Ai = the total number of faults introduced on level i
p and q= probabilities in the distribution for Xi, j, i.e.

a and b= probabilities in the distribution of A i , i.e.
prob(Xi, = k) = pq’-

P i , j

C

Pi, j

2. j
Cl
c2

c3

Ki, j

Ci

R

1 + 1

prob(Ai = k) = abk
= detection probabilities. p i , is the probability to

detect a fault introduced on level i on level j
= the detection probabilities are assigned this value

in the presented examples
= the probability that none of the defects belonging

to a fault introduced on level i is detected on level

= the number of defects remaining to be spread to

= the cost for fault removal before the testing phase
= the cost for fault removal during testing; this cost

is time-dependent
= the cost for fault removal during operation; this

cost is time-dependent
= the cost to correct a defect on level j caused by an

error made on level i. In particular, Ki, is the cost
for the correction of the fault itself

= the total cost, before the testing phase, to correct a
fault introduced on level i and the defects which
have occurred due to the error made

= the remaining fault vector when the test phase is
to start. Its elements are denoted by ri

= level 1 + 1 is the testing Dhase

i
the next level

- _
1 + 2 = level 1 + 2 is the operational phase
M,,,(O) = the total number of remaining faults at the start

M,(f)
M&)

of the testing phase
= the remaining number of faults at time f
= the number of detected faults at time f
= the function according to which the number of

42

faults decreases during testing
C, =the cost to test one time unit independent of

whether faults are detected or not
C,,, and C,,, = the cost for removing a fault during

testing and operation, respectively
Ci, ,+ and Ci, ,+ = the extra costs for not finding a fault

introduced on level i until the testing and oper-
ational phase, respectively

f , = the time when the product is released
A+,@) = the function according to which the number of

faults decreases during operation
Mto,(tr) = the total number of remaining faults at the start

of the operational phase
4 = constant used infi+l(f)andf,+,(t)
Gn = variable introduced to simplify the notation (see

eqn. 30)

9 Appendix

Derivation of formulas for the spreading

The definitions in Appendix 8 lead to

zi. = zi. j - 1 xi,
By introducing the generating functions

m

PzJ4 = W,,, = kkk
k = O

and

The paper was first received on 3rd May 1988 and in revised form
on 25th September 1989.

The authors are with the Department of Communication Systems,
Lund Institute of Technology, Box 118, S-221 00 Lund, Sweden.

Software Engineering Journal January 1990

