C. Wohlin, "Some New Aspects on Software Reliability Model Comparison”,
Proceedings Software Engineering '88, pp. 38-42, Liverpool, United Kingdom, 1988.

SOME NEW ASPECTS ON SOFTWARE RELIABILITY MODEL COMPARISONS

C. Wohlin

Lund Institute of Technology, Sweden

INTRODUCTION

Confidence in the quality, discussed in Kitchenham (1) and
(2), of a given software system has become an important is-
sue, as systems become more and more complex.

It is still a long way to go until a complete and comprehensive
software quality methodology exists, including measurements
and models, but a lot of studies are going on. Different meth-
ods and models, which describe the characteristics of the soft-
ware, have evolved during the last two decades.

One of the most important and studied quality aspects is the
reliability of the software, for definition see IEEE Standard 729
(3). Software reliability is discussed thoroughly in Musa et al
(4). Some general information about reliability and faults may
be appropriate at this point. An error is made by a human
being and results in a fault in the product. The manifestation
of a fault, which means a departure from what the software is
supposed to do, is referred to as a failure, IEEE Standard 982

().

The difference between reliability and fault content should be
observed. A product may have a number of faults, but if they
are located in paths that are seldom executed, the product is
considered to be reliable. It should be noted that faults con-
sidered by reliability models are those that contribute to the
reliability under present conditions, and not necessarily to the
total fault content.

During development it is possible to estimate the fault content
from complexity metrics and reliability models. The latter es-
timation is possible since, in many of the models, one of the
parameters is the number of faults. The models applicable
during development are highly dependent on the environment
and techniques used, since the behaviour of the product is de-
pendent on, for example, the testing strategies applied. This
means that the estimate during development is only an indi-
cation of possible problems during operation; this limitation is
due to the problem of imitating the operation phase. During
operation, however, it is possible to use reliability models to
estimate the reliability and the fault content. The fault con-
tent that is estimated at this time of the life cycle is the one
that the user faces, which means that these are the faults that
really contribute to the total life cycle cost. Fault content
estimations from complexity metrics and software reliability
models are discussed in Lennselius et al (6).

Techniques and tools for keeping track of the fault content and
the reliability are needed, as long as fault free software can not
be guaranteed. The customer, who buys software systems,
needs to know if the product fulfills the quality constraints
put on it, in this case on the reliability and the residual fault
content at delivery. The tools available for this are mainly
software reliability models. Various models have been pro-
posed to characterize software reliability and its dependence

on a number of factors related to the product or the software
process, some of these are presented in Jelinski and Moranda
(7), Goel and Okumoto (8), Schneidewind (9), Littlewood and
Verral (10), and Musa and Okumoto (11).

In this paper we will only be concerned with time-dependent
models and not those who only give a static value. Most mod-
els are, however, time-dependent and they are also the most
commonly used type of models. The models are used not only
for prediction of reliability and number of faults, but also in,
for example, quality constraint models and models for opti-
mal field entry. A quality constraint model for the release of
the product based on reliability models is discussed in Wohlin
and Vrana (12). Models for optimal field entry are discussed
in Kitén and Levy (13) and Wohlin and Kérner (14).

COMPARE SOFTWARE RELIABILITY MODELS

The techniques for achieving and demonstrating high reliabil-
ity are available, through the various reliability models. But
how do we use them and do we really need this diversity of
models?

To answer this question we have to compare models and study
how they relate to each other. First of all we have to study the
models and select those that are best suited for our environ-
ment, techniques and applications according to the assump-
tions made by the models. Having done this we are probably
left with either a number of models or none at all. If we are
left with none, we have to take an approach similar to the one
presented in Wohlin (15), i.e. to develop a model which is
tailored to the environment and the techniques used. Let us
suppose that we still have at least two possible models.

An easy (but time-consuming and expensive) method is to use
multi-modelling, i.e. to use all models and then choose the
best one at the end. The criterion for choosing is hard to de-
cide. Should we take the worst case, or the model which makes
the management happy, or what? Even if a couple of models
give the same result, can we be sure that it is the right result?
There is a possibility that the result is the same because the
models are similar to each other, and this result might not be
accurate. The author suggests another approach, which we
can call the pre-evaluation approach. We wish to stress the
need to compare and evaluate the software reliability mod-
els before we use them in a given environment and organiza-
tion, Goel (16). Our suggestion is that, instead of spending
money buying expensive program packages for various models
and then running them, effort should be put into investigation
and classification. Having understood the models, tools can
be selected for some of these models which are best suited to
the individual application. Some classifications already exist
(16), but they are mostly concerned with classifying the mod-
els according to the approach taken in developing them. This
information is of little interest to the user of the models. The
user is, in most cases, not especially interested in the mathe-
matical background but rather in the usefulness of the results.

We have to compare the information we get from the mod-
els. If one model gives us all the information we need, why
use the others? A thorough study of the available models,
the information obtained from them and its accuracy has to
be conducted. We have to catalogue the models and find out
where they overlap. Once this is done we can use the re-
sults as guidelines on which model(s) to choose depending on
the environment, applications and information needed. The
model has first of all to be realistic with respect to the prod-
uct’s behaviour, which is highly influenced by the environment
both during development and operation. The behaviour of
the product is influenced by, for example, the testing strate-
gies during development and the use of the product during
operation. When the model is considered to be realistic and
applicable, then the next step is to consider another important
aspect when comparing models - the accuracy of estimates ob-

tained from the models, Abdel-Ghaly et al (17).

The way to compare models and how this can be put in prac-
tice is explained in some more details below. The arguments
above are supposed to motivate the need for comparisons and
the structuring of the area, in order to make the research re-
sults of reliability models available to the industry developing
software systems.

CRITERIA FOR COMPARISONS

An attempt, and a very good one, to systematize the area of
how to compare different models is presented in Iannino et al
(18). The criteria discussed there will shortly be commented
and they will also be complemented in some parts. Then two
new criteria for comparisons will be suggested. A structure of
the seven criteria into three separate parts is presented. The
following five criteria are presented in (18):

1. Predictive validity

"Predictive validity is the capability of the model to predict fu-
ture failure behaviour during either test or operational phases
from present and past failure behaviour in respective phase.”
This is discussed in detail in (17).

2. Capability

" Capability refers to the ability of the model to estimate with
satisfactory accuracy quantities needed by software managers,
engineers, and users in planning and managing software devel-
opment projects or controlling change in operational software
systems.” It can be added here that one ought to consider
distributions-and variances as well as mean values, since they
make it possible to calculate confidence intervals and conse-
quently to prepare for different outcomes.

3. Quality of assumptions
"The assumptions should be plausible from experience, actual
data etc.”

4. Applicability

" A model should be judged on its degree of applicability across
different software products, different development environm-
ents, different operational environments, and different life cy-
cle phases.”

5. Simplicity

" A model should be simple in three aspects; simple and inex-
pensive to collect data, simple in concept, and readily imple-
mented as a program.” The second aspect ought to be comple-
mented. Simplicity is a quality of the model itself and not eas-

39

ily comparable between different models. The models should
be compared mathematically: distributions, mean values and
variances should be considered, taking both time-dependent
and asymptotic values, in order to identify similarities and dif-
ferences between models. This type of comparisons between
models ought to be incorporated in the criterion simplicity,
which means that a more appropriate name would be ”sim-
plicity and resemblance”.

These five criteria need to be complemented with two new as-
pects on software reliability model comparisons.

6. Predictive quantities

The quantities predicted from a model is an important issue.
This criterion is related to capability, but refers to the possi-
bility to predict the quantities at all, where capability refers
to the ability to estimate with satisfactorily accuracy. The
reason for introducing this new criterion is to have a criterion
which refers directly to the model, where capability refers to
the comparison of models with failure data. This means that
models can be compared with each other as to which quanti-
ties they can supply the user with. It is, for example, no use
applying a more sophisticated model than is necessary. And
on the other hand, if we need a lot of quantities, then we can
use more than one model. This criterion makes sure that the
models used complement each other.

7. Coverage

Coverage is the degree to which the model cover the stochastic
variations of the failure data. This criterion is evaluated on
past and present failure data. The evaluation of this criterion
can be divided into a number of steps. First of all, the fail-
ure data is used to estimate the parameters of the different
software reliability models. The second step is to determine
the confidence intervals for the models, based on their distri-
butions and approximations of distributions. The confidence
intervals of the different models are then plotted in a diagram
together with the observed failure data. The final step is to
see how the confidence intervals cover the failure data. If we
have chosen a 90% confidence interval, then 9 out of 10 of
observed failure data should fall inside the interval. Other-
wise the model either under-estimates or over-estimates the
stochastic variations of the failure process, i.e. if the statisti-
cal uncertainty in the estimate of the parameters is neglected.
For each model we can calculate a hit-rate, the relative num-
ber of data points inside the confidence interval, which should
be compared with the degree of the calculated confidence in-
terval. The model which has its hit-rate closest to the degree
of the confidence interval is said to be the best. An exact
match can not be expected, but the ability of the models. to
cover the variations can be judged by this criterion. The rea-
son to evaluate this criterion is that, if the coverage is high
at present it will probably be high in the future too. That
is the confidence interval of the model can be used to plan
for different outcomes of the failure process. We can plan, for
example, how to apply our resources in order to reach target
dates of the project even for the worst (probable) case.

One problem arises when to calculate the hit-rate. Should all
data points be considered, or only the one from the first time
the model converge and forward? The arguments for the lat-
ter is that the model under observation is not considered to be
realistic, until its parameters can be estimated from the failure
data. The models need a number of data points in order to find
a solution to the equations found by the maximum-likelihood
method or the minimum-square method, i.e. if they can find

a solution at all. The choice of how to calculate the hit-rate
is, however, not critical, the criterion can be evaluated in both
cases.

An example of how two models can be compared under this
criterion is presented in Wohlin (19). The two models com-
pared are the Jelinski-Moranda de-eutrophication model (the
J-M model), (7), and the Goel-Okumoto Non-Homogeneous
Poisson process model (the G-O model), (8). The choice to
compare these two models was based on three things:

o These two models are often referenced in the literature
and consequently two of the most commonly used mod-
els.

Especially, these two models have been applied to a num-
ber of Swedish software projects, as reported in Vrana
and Wallander (20) and Kristiansen (21).

o The two models are formulated for the study of two dif-
ferent processes, but they can be compared analytically
very well all the same. We will come back to the analyti-
cal comparison below, see also above under the extension
to the simplicity criterion.

These seven criteria can be divided into three parts. A struc-
ture of the criteria for comparisons is proposed in table 1.

TABLE 1 - A structure of the criteria for comparisons

Model*
Compared with Other models | Environment | Failure data
Criteria evaluated | - Simplicity - Quality of - Predictive
- Predictive assumptions validity
quantities - Applicability | - Capability
- Coverage

* The model to be evaluated.

The structuring of the criteria will make the problem of com-
parisons easier and hopefully lead to that the software industry
adopt the techniques and tools developed, in order to achieve
and demonstrate high reliability on their software products.

TWO PHASES FOR THE COMPARISONS

The problem of software reliability model comparisons can be
divided into two phases separated in time. The first phase
ought to be done once and for all and only be complemented
as the research of software reliability modelling provides new
results. While the second phase has to do with company and
project dependent factors. The three parts, mentioned above,
can now be placed in the two phases and we shall see what
they can mean in the two different phases.

Phase 1

This phase ought to render in a software reliability handbook,
which should contain the framework needed when to introduce
software reliability modelling at a company. Most of the infor-
mation, to be found in the handbook, is available today, but
in separate books and articles. The perhaps most complete
book today is (4).

Let us look at the three parts one by one.

Model - Other models. Models can be compared with each
other without any knowledge of the environment they shall be

40

used in or the failure data. It is quite obvious that it is pos-
sible to describe and list predictive quantities and simplicity,
except perhaps for the suggested extension of simplicity. That
is the problem of analytical comparison of models, which gives
a measure of the resemblance between models. We will now
return to the two models, shortly mentioned above, the J-M
model and the G-O model, and see how they can be compared
analytically. The time-dependent models can be placed in two
different classes, based on the failure process studied. This is
further discussed in (16).

"Times between failures’ models. The general approach for
this class of models is to assume that the time between failure
number (i-1) and failure (i) follows a probability distribution,
whose parameters depend on the number of faults remaining.
One of the first and most commonly used models is the J-M
model, (7).

’Failure count’ models. This class of models assumes that the
number of detected failures in an interval follows a stochastic
process with a time-dependent discrete or continuous failure
rate. A well known model from this class is the G-O model,

(®).

The possibilities for comparing models within the classes are
many, but the main problem is how to compare models when
they study different failure processes. To compare models
from different classes some common parameters have to be
found. It is well known from probability theory and queue-
ing theory, e.g. Kleinrock (22) and White et al (23), that
there is a relationship between the distribution of times be-
tween two consecutive events and the distribution of numbers
of events in an interval. Thus, if this relationship could be
used to compare one model from the ’times between failures’
and one from the 'failure count’ class, then it would be pos-
sible to use these two models as reference models for their
classes. The reference models would work as a bridge between
the classes, i.e. by comparing all models within a class with
the reference model in that class, the models will be compared
with the models from the other class too. This bridge can be
constructed between the time-dependent classes by comparing
the two models mentioned above.

The relationship between the times between occurrences and
the number of events in an interval can be used for deriving
the distribution of the number of detected faults over time t
for the J-M model; since this is known for the G-O model, it
is possible to compare probability distributions, mean values,
variances etc. for the two models.

The result is that the number of failure occurrences over time t
for the J-M model follows a binomial distribution, with exactly
the same time-dependent mean value as the G-O model. This
result is well known from queueing theory, the derivation is,
for example, done in (23). This means that we should compare
a Poissonian and a binomial distribution with the same mean
value. We also observe that the variances for these distribu-
tions are well known and can be compared with each other.
Thus we can link the two time-dependent classes. The results
from the analytical comparison between these two models are
together with the evaluation of the coverage criterion discussed
in more detail in (19).

The link gives us the possibility to compare the models from
the both classes and describe similarities and differences.

Model - Environment. In this phase we can only recommend
in which environments, e.g. for different test strategies, the

model is possible to use.

Model - Failure data. It is in this phase possible to recom-
mend the type of failure data, calendar time, workdays, exe-
cution time etc., that the model is suitable for.

Phase 2

This phase has to be carried out at the companies developing
software systems, since the customers will probably demand
it. In the near future the customer may, in the specification,
put a constraint on the reliability or the fault content. This
will enforce the developer to introduce methods for achieving
and demonstrating high reliability.

Each company will need the handbook from phase 1 and pro-
gram packages for the suitable models. In the long run the
problem of software reliability modelling at companies can be
solved with an expert system, covering phase 2. This solution
is today, perhaps, more a vision than a reality, but we can al-
ready say how the expert system ought to look like. It should:
contain basic information about models (the information from
phase 1), ask questions to the user about the environment and
information wanted, and view available failure data. Based
on this the system compare models for the seven criteria. For
each criterion the models will be given a goodness figure and
when all criteria have been evaluated the system will choose
model(s) and obtain the information wanted through the right
program package, by this way the developer will stay in control
of the fault content and the reliability of the software product.

Let us look at the three parts for this phase too.

Model - Other models. This part is the easiest one during this
phase. The only consideration which has to be done is a com-
parison between the models and the information wanted. That
is we have to evaluate the criterion of predictive quantities.

Model - Environment. As stated above the behaviour of the
software product is influenced by, for example, testing strate-
gies during development and the use of the product during
operation. The necessity to choose a specific model based on
environment considerations, as applicability and quality of as-
sumptions, is stressed in (16).

The way to do the comparison is to develop a process model of
the actual life cycle phase. The technique to develop a process
model is discussed in Huff et al (24). The process model will
give us a possibility to evaluate the environment based crite-
ria. If no software reliability model is found to be suitable
for a specific environment, it is possible to take an approach
similar to the one presented in (15), where an environment-
adapted software reliability model is developed.

Model - Failure data. The perhaps most important criterion,
predictive validity, is evaluated in this phase. This criterion

is stressed in Mellor (25) and is thoroughly investigated in
(17). Another comparison of models is presented in Schick
and Wolverton (26). The importance of predictive validity
does not mean that the other criteria should be left out. Both
the capability and the coverage have to be evaluated carefully.
The problem with these three criteria, especially predictive va-
lidity and capability, is that they can not really be evaluated
until late in the project, when it may be too late to take ad-

4

vantage of it in the project going on. It is, however, important
to build up a corporate-memory, and the evaluation can be of
great use in new similar projects to come.

SIO

Tools and techniques for achieving and demonstrating high
reliability are needed. One such is software reliability models.
In order to make these usable in the industry, the ares has
to be structured. This calls for comparisons between models
and a software reliability handbook based on the comparisons.
The comparisons have to be done based on a number of crite-
ria. In this paper we have adopted five criteria, suggested in
(18), and complemented them on some points. We have also
suggested two new criteria that have to be evaluated when
comparing models.

The criteria have been structured into three separate parts of
comparison to go through with a model; other models, envi-
ronment and failure data. A way to go to get models into
practical use has been proposed. Two phases have to be car-
ried out; phase 1: the development of a general software reli-
ability handbook, phase 2: the introduction of the handbook,
or at least suitable models, at companies.

The structuring of the criteria for model comparisons and the
suggestion of how the comparisons can be carried out is sup-
posed to encourage and simplify the work that has to be done,
i.e. the transformation of research results to practical use in
the software industry.

ACKNOWLEDGEMENT

This project is supported by'Telelogic AB and the Swedish
Telecommunication Administration, Sweden.

Many thanks to Mr B. Lennselius and Dr U. Korner at the De-
partment of Communication Systems, Lund Institute of Tech-
nology, Lund, Sweden, for constructive comments, which were
helpful in improving the quality of the paper.

Special thanks to Dr B. Kitchenham, the City University, Lon-
don who provided many valuable comments on a related pa-
per, which gave rise to this paper.

REFERENCES

1. Kitchenham, B., and Walker, J., 1986, ” The Meaning of
Quality”, in ”Software Engineering ’86”, ed. D. Barnes
and P. Brown, Peter Peregrinus Ltd, Stevenage, United
Kingdom, 393-406.

2. Kitchenham, B., 1987, Software Engineering Journal,
July, 105-113.

3. IEEE Standard 729, 1983, ”Glossary of Software Engi-
neering Terminology”.

4. Musa, J., Iannino, A., and Okumoto, K., 1987, ”Soft-
ware Reliability: Measurement, Prediction, Application”,
McGraw-Hill Book Company, New York, USA.

5. IEEE Standard 982, 1986, "Measures for Reliable Soft-
ware”.

6. Lennselius, B., Wohlin, C., and Vrana, C., 1987, Micro-
processors and Microsystems, 11:7, 365-375.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

. Jelinski, Z., and Moranda, P., 1972, Statistical Comput-

er Performance Evaluation, 465-484.

. Goel, A., and Okumoto, K., 1979, IEEE Transactions on

Reliability, R-28:3, 206-211.

. Schneidewind, N., 1975, ”Analysis of Error Processes

in Computer Software”, Conference Proceedings ”Int.
Conf. on Reliable Software”, 337-346.

Littlewood, B., and Verral, J., 1973, Applied Statistics,
22:3, 332-346.

Musa, J., and Okumoto, K., 1983, ” A Logarithmic Pois-
son Execution Time Model for Software Reliability Mea-
surement”, Conference Proceedings ”7th Int. Conf. on
Software Engineering”, 230-237.

Wohlin, C., and, Vrana, C., 1986, 7A Quality Constraint
Model to be Used During the Test Phase of the Software
Life Cycle”, Conference Proceedings ?6th Int. Conf. on
Software Engineering for Telecommunication Swithing
Systems”, 136-141.

Kiteén, O., and Levy, D., 1980, ”Software Modelling for
Optimal Field Entry”, Conference Proceedings ” Annual
Reliability and Maintainability Symposium”, 410-414.

Wohlin, C., and Kérner, U., 1988, "Software Faults:

Spreading, Detection and Costs”, Technical Report, Dept.

of Communication Systems, Lund Institute of Technol-
ogy, Lund, Sweden.

Wohlin, C., 1986, ”Software Testing and Reliability for
Telecommunication Systems”, in ”Software Engineering
’86”, ed. D. Barnes and P. Brown, Peter Peregrinus Ltd.,
Stevenage, United Kingdom, 27-42.

Goel, A., 1985, IEEE Transactions on Software Enginee-
ring, SE-11:12 1411-1423.

Abdel-Ghaly, A., Chan, P., and Littlewood, B., 1986,
IEEE Transactions on Software Engineering, SE-12:9,
954-967.

Iannino, A., Musa, J., Okumoto, K., and Littlewood, B.,
1984, IEEE Transactions on Software Engineering,
SE-10:6, 687-691.

Wohlin, C., 1986, "A Comparison Between Two Soft-
ware Reliability Models: Jelinski-Moranda’s De-Eutro-
phication Model and Goel-Okumoto’s Non-Homogeneous
Poisson Process Model”, Technical Report no. 4, Dept.
of Communication Systems, Lund Institute of Technol-
ogy, Lund, Sweden.

Vrana, C., and Wallander, A., 1983, ?Software Quality
and Complexity - Different Aspects and Measurement
Results”, Conference Proceedings ”5th Int. Conf. on
Software Engineering for Telecommunication Switching
Systems”, 121-127.

Kristiansen, L., 1983, "Swedish Hardware/Software Re-
liability”, Conference Proceedings ? Annual Reliability
and Maintainability Symposium”, 297-301.

Kleinrock, L., 1975-76, ”Queueing Systems Vol. 1 and
27 John Wiley and Sons, New York, USA.

White, J., Schmidt, J., and Bennett, G., 1975, " Analysis
of Queueing Systems”, Academic Press Inc., New York,
USA.

42

24. Huff, K., Sroka, J., and Struble, D., 1986, Software Engi-

25.

26.

neering Journal, January, 17-23.

Mellor, P., 1987, Information and Software Technology,
29:2, 81-98.

Schick, G., and Wolverton, R., 1978, IEEE Transactions
on Software Engineering, SE-4:2, 104-120.

