Software Testing and Reliability for
Telecommunication Systems

Wohlin, C.

In Software Engineering “86, pp. 27-42,
edited by D. Barnes and P. Brown,
Peter Peregrinus Ltd, United Kingdom, 1986.

Software Testing and Reliability for Telecommunication Systems

by

Claes Wohlin, Lund Institute of Technology, Sweden

SUMMARY

This paper deals with software testing, and
how to estimate reliability through models
during testing. An existing classification
of software reliability models are
described. The existing mocdels do not work
during function testing of telecommunication
systems and due to this an investigation of
a couple of projects was made. A Markovian
model for prediction of software error
occurrences is developed and the use of the
model is described in three parts; early
use, main use and further development.
Results obtained from the model are compared
with software error data from another
telecommunication project, than those
investigated. The necessity of a
mathematical and scientific foundation of

Software Engineering is stressed.

SOFTWARE TESTING AND RELIABILITY
FOR TELECOMMUNICATION SYSTEMS

Claes Wohlin
Lund Institute of Technology, Lund, Sweden

1. INTRODUCTION

One aim in Software Engineering must be to make
software testing unnecessary, i.e. we have to develop error
free software. This calls for better methods and tools
during specification, design, coding and maintenance.
However, today we are far from this ideal situation. Instead
30-50% of the total development effort is spent on software
testing (verification and validation), see Boehm (1).

Without exaggeration we can claim that:

Software testing is today our best weapon against
software errors, which makes testing an important (and
necessary) part in both developing and maintaining reliable
software.

Before we discuss software testing any further, we must
be aware that the goal of software testing is to find errors
and not to prove the absence of them.

We will here consider telecommunication systems, but
the ideas are applicable to all other types of systems and
the specific results are applicable for systems with a
similar structure to those considered. The main point of the
paper is not the model itself, but the way it is possible to
investigate an environment and develop a model suitable for
that specific environment.

Telecommunication systems are often built in a
hierarchical structure and as the project progresses we
apply different test techniques, e.g. unit testing, function
testing, system testing and field testing. These are applied
during different phases in the development process. The test
techniques are, of course, dependent on the system
structure, but if we consider a system with hierarchical
structure, then these techniques are applicable. It is
important to understand the different test techniques and to
know what to expect from them and to be aware of the
relations between them. We will only be concerned here with
function testing. This form of testing can be described as
follows;

Function testing :

This is the verification of a specific function
performed by the system. A function often involves more than
one unit, see Fig.1.1. A unit is often a program module. We

have in this case six units and we consider three different
functions. This form of testing includes what we call
integration testing, e.g. the verification of interfaces
between the system parts. During function testing the system
grows unit by unit until we finally obtain the complete
system.

Expectations: To find errors caused by problems arising
when different units communicate and influence each other,
and errors introduced during the design phase.

Lt unit L Unit Unit
2.1 2 i B L
21 2/ 1
Y !
Unit Unit s Unit i
3] & 5 6 3

3

Fig.1.1 An example of how the units can communicate,
when a number of functions are performed

The work in this paper emphasizes the development of a
software reliability model®, which is used during function
testing or similar test methods, and to show how it can be
used to control the development of our software product. The
existing models are not applicable during this early phase
of testing, due to the assumptions made when developing
them, (see below). The need of a model during function
testing led to an investigation, which will be described
shortly in this paper. For more information on the
investigation see Wohlin (2). The investigation leads to a
software reliability model for function testing. The model
will take the stochastic behaviour of software error
occurrences into account.

*When we use the word model, we mean a software reliability
model in general. If something else is meant, it will be
indicated. :

2. SOFTWARE RELIABILITY MODELS

The reliability of a software product is one of the
most essential measures of its quality. The traditional
definition of reliability is applicable to software too.

Software reliability - the probability that software
will not cause the failure of a system for a
specified time under specified conditions, see Goel
(3) .

A first prediction of the product's reliability could
be obtained early in the project by estimating the
correctness, through complexity measures. For fuller
information on this see Lennselius (4). We are, however,
concerned here with estimating the reliability while testing
the product. We can obtain an estimation of the reliability
through parameters as mean time to failure (MTTF) or number
of remaining errors.

Independently of how we define a software error,
applying more testing should reduce the number of remaining
errors and thereby make the software more reliable. We would
now like to know how reliable our software product is, and
to obtain a measure of this, we have to have a software
reliability model. There are a number of models presented in
the literature and according to reference (3) the software
reliability models can be placed in four classes. This
classification is made on the basis of the failure process
studied. Goel defines the following classes:

1. "Times between failures" models
Explanation: The general approach for this class is to
assume that the time between failure number (i-1) and
failure number (i) follows a distribution, whose
parameters depend on the number of errors remaining. One
of the first and most commonly used models is the
Jelinski-Moranda De-Eutrophication Model (5).

2. "Failure count" models
Explanation: This class of models assume that the number
of detected failures in an interval follows a stochastic
process with a time dependent discrete or continous
failure rate. A well-known model from this class is the
Goel-Okumoto Non-Homogenous Poisson Process Model (6).

3. "Fault seeding" models
Explanation: In this class we "seed" a known number of
errors in to our product and when testing the product we
find both seeded and unseeded errors. If we look at the
proportion of seeded errors found compared to the number
of unseeded errors found, we can estimate the total
number of errors in the software product. The most widely
spread model of this class is probably Mills' Seeding
Model (7).

4., "Input domain based" models '
Explanation: The basic approach in this class is to
generate a set of test cases from a distribution. This
should be chosen so that it is representative of the
operation of the software product.

Most developed models fall into classes 1 and 2, and
the author feels that this is no coincidence. These two
classes are time dependent, which gives us an opportunity to
estimate the forthcoming software error occurrences. Classes
3 and 4 only give us a stationary value, e.g. the initial
number of errors in the software product, but we do not get
any information on how they will (hopefully) decrease. The
different classes of models will be suitable during
different times in the project and applications. We will,
however, not consider this problem here.

The classification does not say that there is no
connection between the classes. It is well-known from
probability theory and queueing theory, (Kleinrock (8)),
that there is a relationship between the distribution for
the time between two consecutive events and the distribution
of the number of events in an interval. This fact is further
discussed in Wohlin (9), where this relationship is used to
compare the models developed in references (5) and (6).

Two software reliability models, see references (5) and
(6), have successfully been used in earlier telecommunica-
tion projects and the results were presented by Vrana and
Wallander (10). They adopted, adjusted and applied the
models to several projects, during the operation phase of
the system. Encouraged by their success these models were
applied to new projects. Unfortunately they did not work.

The difference, between the new applications and the
ones made earlier, was that in the new projects the models
were applied early, during function testing. The problem
during this phase is that some of the assumptions made for
the models are far from fulfilled. There are, however, some
assumptions we accept and some we do not accept. One
assumption we probably have to accept is an assumption made
by almost all models. They assume either that the times
between failures are independent or that the number of
errors detected during non-overlapping intervals are
independent. This independence is mostly not true, but
experience shows that this violation does not in any
significant way affect the results. Without assuming
independence in probability theory we soon end up with very
complex problems that are difficult, if not impossible, to
solve.

We wanted a software reliability model for testing done
in parallel, i.e. function testing, on a system with
hierarchical structure. That is, we wanted a model for a
given system structure and test environment. We could not,
however, find any suitable software reliability model that
fulfilled our requirements and therefore we had to develop a
model of our own. But before we could do this we had to
examine how the function testing is done in more detail.
While examining this we will be able to identify the
assumptions violated. And when we have identified the
violations, we have the possibility of developing a more
suitable model for function testing than the existing
models.,

3. THE INVESTIGATION

The problem outlined above led to an investigation. A
couple of different telecommunication projects were
investigated: we talked to managers, programmers, test
groups etc. and tried to get a picture of what happens
during the different test stages, especially during function
testing.

We will only present here those parts of the
investigation that are of interest in developing the
software reliability model for function testing. For fuller
information about the investigation and the results of it
see reference (2).

In Fig.3.1 a simplified picture of the function testing
environment is shown. This figure shows the main parts
involved and how they communicate. The numbers and arrows in
the figure call for some explanations.

(1) el

b ¢ w
Test sites

+u - (2)

\ (3)

Fig.3.1 A simplified picture of the function testing
environment

Parts

(1) We assume a special testing department, with one or many
test sites depending on the size and cost of the system
or project.

(2) An error report is written for every error that is
found. The report is filed at a department for error
collection.

(3) One department is occupied with construction and
developing, i.e. programming.

(4) The fourth part is a model: We assume that when a unit

is ready it is put aside. And when all (see Fig. 1. 1)
units for a function test are ready, it is put into a
queue. The test remains in the queue until a test site
is ready to accept it for testing.

Information flow

(a) When a test site is empty and the queue is not, test
preparations are made and the test started.

(b) If an "easy" error is found the tester makes a
correction, writes an error report and continues the
test.

(c) The error report is sent to a special department for
filing,

(d) If it is a "difficult" error, the tester stops the test,
writes an error report and starts a new test if there
are any tests waiting. If the queue is empty, wait until
it is not. All error reports always go back to the
programmer responsible. If it is an "easy" error the
programmer should either approve of the correction or
make a new one. And if it is a "difficult" error the
programmer is responsible for correcting the error.

(e) A new or corrected unit is put aside and, when suitable,
put into the queue, see point (4) above.

(f) The function test is done according to the test
specification and the tester's ingenuity. When all
(found) errors are corrected, it is considered
completed.

We are now able to pin-point the assumptions which make
the existing models fail, and they are:

1. Testing is representative of the operational usage, (or
the tests are at least made on one test site, one after
the other).

2. A detected fault is immediately corrected.

3. The failure rate is proportional to the number of
remaining errors or decreases with test time.

For fuller information on these and other assumptions see

reference (3).

The assumptions mentioned above are not valid, because:
1. The function testing is usually done at more than one

test site at a time, which means that we have different
tests going on in parallel.

2. Depending on the severity of the error, it is either
corrected by the tester or, after a while, by the
programmer.

3. Since we are testing different functions in different
tests, the failure rate will not decrease in all tests
just because we find an error in one function.

The third point is very important, because the failure
time distribution is an important parameter when predicting
the number of remaining errors etc. This is shown in Wohlin
and Vrana (11).

From the information obtained here, it is possible to
develop a software reliability model that is more suitable
for function testing than any other existing model known by
the author.

4. MODEL DEVELOPMENT

Now we have a background and therefore it is possible
to develop a software reliability model. This model will be
based on mathematics, probability theory and transform
theory. For those who need an introduction or additional
information on these subjects we recommend Feller (12) and

reference (8).

Before we can do any mathematical derivations, we have
to make some assumptions.

Assumptions for the model

1. Independent times between failures.

2. The rate of finding an error is constant and equal for
all test sites at all times.

3. The number of test sites is constant and each test site
can be in four different states:
a) Searching for errors.
b) Correcting an "easy" error and writing an error report

o it

Cc) Writing an error report on a "difficult" error or
finishing a test and then starting a new one.
d) The same as c), but waiting for a function test to be

ready.

The times spent in state b)-d) (tg, ty and t3) are the
mean values of the times in the different states.

4. We assume that 3. b)-d) can be weighed together to a mean
value and that this value gives us a rate for correction
of errors, which is constant and equal for all test sites

at all times.

With these assumptions it is clear that a test site can
be in one of two states; that is, searching or correcting
errors. Both these states are left at a constant rate, not
necessarily the same rate. This is equivalent to the fact
that the times in each state are exponentially distributed
with mean value 1/(the rate to leave the state). That is,
each test site works as a two-state machine. The stochastic
process involved when the times in a state are exponentially
distributed are often referred to as a Markov process. The
problems arising for this type of process can be solved with
the methods developed for Markov chains. The Markov process
is central both in queueing and reliability theory. The
process is characterized by its "memoryless" properties.

The following notation will be used:

P() - -
F(t)=P(t<t) -
£(t)=dF(t)/dt
Fkts)_ -

E(X)=x -
E(xk)=xk ”
V(X) -
M e

the
the
the
the
the
the
the
the

probability that () is true
probability distribution function (PDF)
probability density function (pdf)
Laplace transform of f(t)

mean value of X

k:th moment of X

variance of X

number of test sites

state k k test sites in correction state and M-k in

searching state

Xy - the time in state k, (pdf £(t,k))

Yk - the time until an error is found, when we
are in state k, (pdf g(t,k))

¥ - the time until an error is found, from an
arbitrary time, (pdf k(t))

A - the rate of finding an error for a test site

v - the rate of correcting an error for a
test site

Using assumption (4) from above, we obtain

1/u=P("easy" error)*t; +P("difficult" (4.1)
error or finished and new test -
available)*ty+P("difficult"

error or finished and wait)*t3

As we said before, the time each test site spends in
its two states is exponentially distributed, that is if we
let u(t) be the pdf for the time in searching state and v(t)
be the pdf for the time in correction state, we obtain

u(t)=Aexp(-At) and v(t)=pexp (-ut) (4.2)

We can now draw a Markov chain (see Fig.4.1), where
state k is defined above. And knowing from the 'mathematics,
that the merging of many exponential distributions still
gives us an exponential distribution, where the rate is
equal to the sum of the rates from the merging
distributions, we obtain

£(t,k)=(ku+(M-k)A)exp ((~kp+(M=k) A)t) (4.3)

that is the pdf for the stochastic variable Xy.

To be able to continue our derivations, we need to know
the probabilities of being in state k and go to either state
(k=1) or state (k+1) and we also need the stationary
probabilities of being in state k. Let g(k,k-1) be the
probability to go to state (k-1) if we are in state k, and
p(k) be the stationary probability of being in state k.

From Figure 4.1 we immediately obtain

q{k,k.—1)=k—u';“]:;_—klxandq(k,k+1}=i%}m (4.4)

It is a little more work to obtain p(k), but there are
methods for this presented in the literature, reference (8)
and (12). One method is to make a cut through the Markov
chain and study the flow across the cut, doing this we
obtain

kup (k) = (M= (k=1)) Ap (k=1) (4.5)
This can be solved recursively in k, and we find that

P (k)= (1) () %p (0) (4.6)

p(0) is obtainable, because we know that

M
I plk)=1 (4.7)
k=0
That is
p(0)=1/(3 M) XXy =1/ (162 M (4.8)
pog & T " ’

Finally we obtain

e O A M
p(.k)—(kl (H) /(1+E} (4.9)

(M-k)A

(%)
A
)
S
(M-(k-11)A a ku
@
°
o
0

Fig.4.1 A Markovian chain for the test sites

We can find a relationship directly from the notation
and by the use of the transition probability q(k,k-1),
between some of the times considered, that is

Yy =Xy +a(k,k=1)¥, (4.10)

A valuable property of the Laplace transform is that,
when we have a sum of stochastic variables we obtain a
product of transforms. If we use this property and knowing
the pdf (f(t,k)) of X;, with Laplace transform F*(s,k), we
obtain a recursive formula in G*, where G*(s,k) is the
Laplace transform of the pdf (g(t,k)) of ¥y

G*(s,k) =F*(s,k) *G* (g (k,k-1)s,k-1) (4.11)
where

G*(q(0,-1)s,-1) =1 (4.12)

Solving this recursively, we obtain

k k
G*(s,k)= m F* (g7 qgl(i,i~-1),3) (4.13)
§=0 i=j+1
Let
Akl T gt) (4.14)
i=j+1
We define Y as
M
¥= 2 p(k)Y, (4.15)
k=0

Applying the Laplace transform on this

M
K*(s)= m G*(p(k)s, k) (4.16)
k=0

And finally we arrive at

k

m F*(p(k)a(j,k)s,]) (4.17)
0 j=0

n 3=

K* (s) =
k

where p(k), a(j,k) and F*(s) are easily found.
5. THE MODEL AND ITS USE

Let us stop here and consider what we have obtained
through the derivation. The result from the derivation was a
Laplace transform of the stochastic variable for the time it

takes to find an error from an arbitrary time. The transform
can be inverted numerically, by methods found in, for
example, Karlsson and Stavenow (13). It is, however,
probably more interesting to find the mean and variance of
the time until next failure is found. This can be done by
using the moment generating properties of the Laplace
transform, see reference (8).

That is, we have derived a formula for calculating some
interesting parameters during function testing, or similar
tests, where we have many tests going on in parallel.

If we now turn to the use of the model, we can divide
it into three parts: early use, main use and further
development. Let us consider them one by one:

Earlz use

1. X and p are decided through experience and knowledge of
the methods to be used in the forthcoming project.

2. We can at this early stage, even before the project is
started, test different values on M and see what happens.
Supposing that the initial number of errors (Ny), when
the function test starts, is known through experience, we
can find the mean and variance of the time to remove a
certain number of them. This will give us an opportunity
to see if it is at all possible to meet the expected
target date or if we have to invest in more test sites.

Main use

1. The project, on which the model is to be applied, has now
started and the methods for correcting errors are
well-known. This means that we can estimate tyr o, t3and
the probabilities concerned to calculate p. We can alSo
obtain an estimate of the initial number of errors
through estimations from complexity measures, see
reference (4) and (10).

2. When the function test is started, we record the times
between failures. These times are compared with the
calculated mean value from the model, and by the use of
the principle of least squares, we can get the best
possible estimate of A. The estimation gives us the
possibility of calculating some other interesting
parameters, (see below).) can be reestimated as the
function test continues and we obtain more data from the
test.

3. We can, for example, calculate a new estimate of the
initial number of errors (NO}. This estimation can be
compared with the one obtained from the complexity
measures. We would like to suggest an easy formula for
estimation of N,, that is

Ng =C = 2 {5.11

where C is a constant, known from earlier projects.

4. The forthcoming behaviour of the stochastic process that
rules the error occurrences can be estimated, e.g. the
mean value and variance for the time until the next
failure occurs and thereby the same for the time until a

certain number of failures have occurred. This problem is
further discussed in (11).

The estimation of A can also be used in simulations of
the stochastic process mentioned above.

We have now (hopefully) obtained an improvement of the
estimation of Ng and, of course, we know how many errors
we have removed, which means we also know the number of
errors remaining when the system test starts. There is
now an input value to another software reliability model,
which is more suitable for system testing and operation,
see for instance (5), (6) and (10).

Further development

e

We can introduce correction factors: factors that reflect
feelings rather than facts. The project manager should
try to compare a number of factors with what we can call
a "normal" project.

Some example of factors:

1) How well is the task of writing error reports carried
out?

How experienced are the people involved?

What is the rate of rotation?

How is the project influenced by other projects?

How is the project influenced by holidays, courses,
conferences etec.?

The list of factors can be made much longer. We would
like to measure these factors in some way, for instance
in percentage. Suppose that 50% is normal and over 50% is
better than normal and consequently less than 50% is
worse than normal.

Let us call the measure of factor (i) for a(i) and we can
also introduce weighing factors c(i), that is if we feel
that one factor is more important than another we can
give this c(i) a higher value.

We would like to suggest that we can estimate the mean
time to failure (MTTF) as

U wiN
— v —

MTTF(corr)=MTTF'%EC(i)/(ZZc(i)ali]) (5.2)
i

In a "normal" project MTTF(corr) is equal to MTTF.
Correction factors call for a very fair judgement by the
project manager.

The experiences, from this Markovian model for function
testing, can be used, when developing a more detailed
model. It will probably be possible to treat a company as
a queueing network, similar to a computer network with
nodes and packets. This is if we let, as an example, the
departments be the nodes and the documents the packets.
We can in this way obtain a very detailed picture of what
happens in the company. This also gives us an opportunlty
to identify bottlenecks and test different changes in the
organization in theory, before we implement it into our
environment. The possibilities of an analytical solution
to a model of this type are small, but we can simulate
the model in most cases.

We have now discussed the use of the developed model,
but there are other factors to be considered before we start
using a software reliability model at all. Some of the most
important ones are:

1. It is essential that we do not take models developed for
other applications and try to squeeze them into our
environment and needs. We have to investigate the
assumptions made for the models and compare them with our
environment before we decide if they should be used.

2. All information about our projects must be thoroughly and
objectively recorded. Perhaps we even have to have a
seperate metric group as proposed by DeMarco (14).

3. We believe that one model is probably not enough, what we
need is different models during different phases of the
software life cycle. As pointed out above and shown in
(10), existing models may well apply if we look at the
whole life cycle or just the operation phase.

6. RESULTS

This is an example of the use of the developed model:

To be able to use it we have to derive formulas for the
mean and variance of the time until the next failure is
detected. This is done from formula (4.17) and by using the
moment generating properties of the Laplace transform, see
reference (8) and (12).

By taking the two first derivatives on K*(s) and then
letting s+ 0, we obtain

M k _
B(¥)= E pik) 2 ali.k)x: . {5.3)
k=0 §=0 J
and
2, M 5 % =%
E(y")= Z(p{li ‘E(a(J,k}) X. +
k=0 j=0]
M k M
+ Ip(k) Za(j,k)x.-5p(r)- (5.4)
k=0 j=0 Jr=0
.- {0 if_(k=r) and (j=i)
i=0 al(i, r}x else

From these two we are able to calculate the variance,
since

V(Y) =E (¥%) -E (¥) 2 (5.5)

The mean value can be found quite easily directly from
Fig.4.1. A closer look at the mean value, shows that it
satisfies our intuitive interpretation of what it ought to
be, if we take all possibilities into consideration.

Here we will only consider the main use of the model,
(see above). The results in Table 6.1 have been found by:

1. Estimation of the mean number of test sites in use, M,
and of the correction rate, y.

2. Collection of failure time data.
3. We use the collected data to find the best possible
estimate of the failure rate,)\ .

4. The value of X is now used in formulas (5.3) and (5.4) to

obtain the mean and variance of the time until the next
failure is found.

5. We can also calculate the mean and variance until a
certain number of errors has been detected, since
the mean time to N errors = N« E(Y)
the variance in the time to N errors = N.V(Y)

6. This gives us an opportunity to calculate a confidence
interval for the time until a certain number of errors
has been found. A 95% confidence interval is shown in
Table 6.1. The number of errors used for prediction is
shown in the left column.

7. As the function test proceeds we collect more and more
data, i.e. goto 2.

TABLE 6.1 - 95 % confidence interval for prediction of the
time until error number (i) has been found.

The time
until error 79 119 149 195
number (1)
was found

Error 50 70 90 110
number (1)

Number of

errors used 95 % confidence intervals

for predicH

tion
10 60.1-89.9 | 86.7-123.3 [113.9~156.1| 141.4-188.6
50 - 99.4-121.8 [126.3-158.1| 154.3-193.3
70 - - 140.1-164.7 | 168.5-203.1
100 - - - 190.8-209.6

of

the
tra
dat
err
tes
tha
get
can
car

The results show that we are able to get a good picture
how errors are detected during function testing by use of
developed model. The predictions will improve if we keep
ck of the number of hours used for testing each day. The
a used for prediction in this example was collected from
or reports so, we do not know exactly how effective the
ting was in different periods. We are, however, convinced
t if data are collected directly for the model, we will
very good estimates of the times concerned. Before we
state this definitely we have to evaluate the model
efully on some other projects.

The model seems to have a high potential as a tool for
prediction of the time until a number of errors has been
found, during function testing.

7. CONCLUSIONS

We have developed a model to be used for prediction of
software error occurrences during testing done in parallel,
e.g. function testing. It is essential to try to understand
the stochastic behaviour of how software errors occur, in
order to obtain an efficient, reliable, maintainable and
manageable software product.

This can only be done if we make a survey of software
projects and find the critical parts, the main points, and
get an overall view of the behaviour of the underlying
processes. This survey has already been done for hardware,
but it is also necessary to do it for software. Our current
systems are continually getting larger and more complex. If
we do not want to end up with a software product that is out
of control, it is necessary to adopt or adapt the model
presented in this paper or develop a model similar to this
one. ' :

The process of developing and maintaining software will
soon be so complicated that we are bound to lose control of
it if we do not establish a mathematical and scientific
foundation for Software Engineering. A more scientific view
would help to make Software Engineering into an industrial
process instead of looking at it as an art. We are convinced
that it is essential to use models and metrics for
parameters such as complexity, reliability and quality in
the future, in order to be able to manage projects and
develop high quality products.

8. ACKNOWLEDGEMENT

This project is supported by Telelogic AB and the
Swedish Telecommunication Administration, Sweden.

9. REFERENCES

1. Boehm, B., 1981, "Software Engineering Economics”,
Prentice-Hall Inc., Englewood Cliffs, USA.

2. Wohlin, C., 1985, "Software Testing", Lund Institute of
Technology, Lund, Sweden, (in Swedish).

3. Goel, A., 1983, "A Guidebook for Software Reliability
Assessment", Syracuse University, Syracuse, USA.

4. Lennselius, B., 1986, "Software Complexity and its
Impact on Different Software Handling Processes", Proc.
IEE, 259, 148-153.

5. Jelinski, %., and Moranda, P., 1973, Statistical
Computer Performance Evaluation, Academic Press,
465-484.

10.

1.

12,

13

14.

Goel, A., and Okumoto, K., 1979, IEEE Trans. on
Reliability, Vol. R-28, No 3, 206-211.

Mills, H.D., 1972, "On the Statistical Validation of
Computer Programs", IBM Federal Systems Division,
Gaithersburg, MD, USA, Report 72-6015.

Kleinrock, L., 1976, "Queueing Systems, Vol 1. Theory",
John Wiley and Sons, New York, USA. ;

Wohlin, C., 1986, "A Comparison Between Two Software
Reliability Models", Technical Report, Lund Institute of
Technology, Lund, Sweden.

Vrana, C., and Wallander, A., 1983, "S/W Quality and
Complexity - Different Aspects and Measurement Results"”,
Proc. IEE, 223, 121 -127.

Wohlin, C., and Vrana, C., 1986, "A Quality Constraint
Model to be Used During the Test Phase of the Software
Lifecycle", Proc. IEE, 259, 136-141.

Feller, W., 1957, "An Introduction to Probability Theory
and its Applications", John Wiley and Sons, New York,
USA.

Karlsson, J., and Stavenow, B., 1980, "Methods for
Numerical Inversion of Laplace- and z-transform”,
Technical Report, Lund Institute of Technology, Lund,
Sweden.

DeMarco, T., 1982, "Controlling Software Projects",
Yourdon Press, New York, USA.

