

C. Wohlin and M. C. Ohlsson, "Reading between the Lines: An Archival Study of
Software from Nine Releases", Proceedings ICSE workshop on Software Change and

Evolution", Los Angeles, USA, 1999.

Reading between the Lines: An Archival Study of Software from Nine Releases1 March 1999 1

Reading between the Lines: An Archival
Study of Software from Nine Releases

Claes Wohlin and Magnus C. Ohlsson
Dept. of Communication Systems

Lund Institute of Technology, Lund University
Box 118, SE - 221 00 Lund, Sweden

E-mail: (claes.wohlin, magnus_c.ohlsson@tts.lth.se)

1. Introduction
Today, most software systems evolve over several releases. This implies a need to
study and understand how it changes over time. Still, it is not common practice to col-
lect metrics on a regular basis with the objective to track software change between soft-
ware releases. Although, metrics may not have been collected with this objective in
mind, it may in many cases be possible to perform an archival study [Robson93]. An
archival study may provide “an after the fact” understanding of the software. Moreo-
ver, it may provide important information for future releases, and also a more general
understanding of software evolution.

This paper presents an archival study of nine software releases. The study is primarily
based on lines of code, which can be divided into comments, blank lines and non-com-
ments and non-blanks (i.e. executable lines of code) and the number of functions in the
software. The study includes a correlation study (Section 2), an evolution study, i.e.
changes between releases (Section 3), an outlier analysis (Section 4), and a study of the
percentage of different types of lines of code (Section 5). Finally, a brief discussion is
provided in Section 6.

2. Measures
The study is based on lines of code measures and the number of functions in the code.
The data has been obtained second-hand. In other words, first hand knowledge of the
data is missing. Thus, the interpretation of the study is based on the data, and not on
knowledge and experience of the actual system and projects. The code is written in C,
but no other information is available due to confidentiality. Thus, the understanding has
to be based only on the available lines of code measures. The following measures are
used:

• Lines of code (LOC): a simple count of all lines,

• Comments: a count of the number of lines with comments,

• Blank lines: a count of the number of blank lines in the code,

• NCNB: a count of the number of executable lines of code,

• Functions: a count of the number of functions in the system releases.

Some of the measures are related as follows:

LOC = Comments + Blank lines + NCNB

Reading between the Lines: An Archival Study of Software from Nine Releases1 March 1999 2

The measures are highly correlated as can be seen from Table 1.

LOC is not included in the correlation study for obvious reasons, i.e. it is the sum of the
other measures. The high correlation between the measures implies that the releases
have maintained a similar relative relationship between the different types of lines of
code as well as with the number of functions. This is further investigated below when
studying the relative differences between the different types of lines of code in Section
5.

3. Evolution between releases

3.1 Increase in measures
The high correlations between the measures mean that it is sufficient to show the evo-
lution in terms of software growth for one of the measures. This in combination with
the relative differences in the following subsection provide a comprehensive picture of
the software growth over the nine releases. The growth of lines of code (LOC) is
shown in Figure 1.

FIGURE 1. Increase in lines of code over the nine releases.

From Figure 1, it can be seen that the system has grown from 50 KLOC to a little over
250 KLOC in the nine releases. Moreover, it can be seen that the system has in particu-
larly grown in the first four releases, and that the increases have been smaller except
for the last release. This can also be seen in the following subsection.

TABLE 1. Correlations between the measures.

Correlation Functions Comments Blank lines NCNB
Functions 1 0.9844 0.9981 0.9922
Comments 0.9844 1 0.9899 0.9965
Blank lines 0.9981 0.9899 1 0.9941
NCNB 0.9922 0.9965 0.9941 1

Release vs. Lines of code

0

50000

100000

150000

200000

250000

300000

1 2 3 4 5 6 7 8 9

Release number

Lines of code

Reading between the Lines: An Archival Study of Software from Nine Releases1 March 1999 3

3.2 Relative differences
The growth of the different measures over the nine releases can be seen from the bar
chart in Figure 2.

FIGURE 2. Increase of the different measures between the releases.

The bar chart provides the growth in terms of percentage between the releases, for
example, the growth between release 1 and 2 are approximately 50%. Thus, number 1
on the x-axis indicates the growth from release 1 to 2. The bar chart supports the con-
clusions draws in the previous subsection.

4. Outlier analysis
The general understanding in the previous sections has to be complemented with an
outlier analysis. An outlier analysis of the size of the functions is shown in the box plot
in Figure 3.

FIGURE 3. A box plot of the size of the functions in terms of LOC.

It can be seen that two outliers seem to be the same from release 4 and onwards. A
closer look at the outliers show that they have a large amount of comments. Thus, the
size as such may not be a problem as long as the comments are motivated by providing
support for future maintenance rather than being a result of a large number of faults.
The latter does not seem to be the case as the comments were all added when the new
functions were introduced. If it would have been a result of corrective maintenance the
functions are likely to change over at least a couple of releases before all problems with
them have been removed. It should also be noted that the outliers from release 2 and 3
have become non-outliers from release 4 and onwards.

Changes in between different releases

0

0,5

1

1,5

2

1 2 3 4 5 6 7 8

From release n to release n+1

Changes in functions
Changes in LOC
Changes in blank lines
Changes in comments
Changes in NCNB LOC

-200

0

200

400

600

800

1000

1200

1400

1600
Box Plot

Reading between the Lines: An Archival Study of Software from Nine Releases1 March 1999 4

The outlier plot in Figure 3 should be complemented with mean values and standard
deviations of the functions over the nine releases. The mean values and standard devia-
tions of the lines of code (LOC) for the nine releases are shown in Table 2.

As can be seen from Figure 3 and Table 2, the mean lengths of functions are rather low,
but some functions are fairly large as can be seen from the box plot in Figure 3.

The outlier analysis of the size of the function should be complemented with an analy-
sis of the functions which in some way have a different structure, for example, very
few comments or very many comments in comparison with the number of executable
lines of code. Few comments could indicate functions which will be difficult to main-
tain in the future due to poor documentation. Many comments may also be a problem,
since it may be an indication of several problems. It is quite common that comments
are written when faults are corrected, and hence many comments may be an indication
of previous problems. This raises an important question, which is when measures are
collected from the code in comparison with when faults are corrected. For example, a
lot of comments and many faults cannot be interpreted as that the comments cause the
faults, on the contrary the comments may be an indication of that we have had many
faults previously. Thus, it is important to keep track of cause and effect.

In order to not only focus on the large functions, the outliers in terms of Comments/
NCNB are also investigated. The objective is to both identify functions with very few
comments and functions which contain unexpectedly many comments. The analysis of
functions with few comments include identification of functions with no comments
and functions with few comments for each executable line. The number of functions
with no comments are shown in Table 3 together with the total number of functions in
each release.

Two functions are pin-pointed when performing an outlier analysis looking for func-
tions with very few comments. Both functions were introduced in the first release and
they have not been changed since the first release. Thus, the functions seem to be fairly
stable. Based on the information from Table 3, and from the fact that the two outliers
were introduced in the first release, it is likely that comments were regarded as impor-
tant and used to a larger extent after the first release. This is also shown below, when
studying the distribution of the different types of lines of code in Section 5.

The functions with disproportionately large number of comments are a few functions
introduced in release 6 and 7. These functions contain only a few number of executable
lines of code, and it is likely that these functions contain important descriptive com-
ments. Thus, the functions are probably not a problem.

TABLE 2. Mean and standard deviation of the lines of code of the functions.

Function R1 R2 R3 R4 R5 R6 R7 R8 R9
Mean 74 84 83 98 105 109 113 101 120
Stand. dev 66 83 93 102 104 106 110 111 112

TABLE 3. Functions without comments and the total number of functions in each release.

No com. R1 R2 R3 R4 R5 R6 R7 R8 R9
Number 135 159 175 164 168 163 166 168 168
Total 763 1043 1339 1676 1650 1787 1888 1896 2189

Reading between the Lines: An Archival Study of Software from Nine Releases1 March 1999 5

5. Distribution of the different types of lines
To further increase the understanding of the software, the distribution of the different
types of lines is studied. The distribution of the different types is shown in Figure 4.

FIGURE 4. Distribution of the different types of lines of code.

From Figure 4, it can be seen that the amount of comments is large throughout the evo-
lution of the software. The number of comments was fewer in the first releases, but as
also has been shown above the number of comments increased as the system grew
larger. The number of blank lines is fairly stable over the nine releases.

6. Discussion
This paper has reported of an archival study of nine consecutive software releases. The
objective has been to try to understand as much as possible from just investigating the
software code. The study has raised several relevant questions in order to keep track of
the evolution and enable prediction of future releases. Important questions include:

• What can we learn from archival studies of code?

• What type of measures should we collect to keep track of software evolution?

• What can we predict using historical data from previous releases?

• How do we determine cause and effect, for example, complexity vs. faults? Have
we measured the complexity prior to the changes due to faults? Is the complexity a
result of the faults?

The objective of the study was to see what can be learnt from an archival study of soft-
ware code. It is clear that some lessons can be learned from studying the code, but it is
not enough. Metrics have to be collected using a goal-oriented approach to enable full
control of the evolution, and also to support prediction of, for example, critical compo-
nents from a maintenance perspective [Ohlsson98].

References

[Ohlsson98] M.Ohlsson and C. Wohlin, “Identification of Green, Yellow and Red Leg-
acy Components”, Proceedings of International Conference on Software Maintenance,
pp. 6-15, 1998.

[Robson93] C. Robson, “Real World Research”, Blackwell Publishers,1993.

Division of LOC

0

0,1

0,2

0,3

0,4

0,5

0,6

1 2 3 4 5 6 7 8 9

Release number

Blank lines
Comments
NCNB LOC

