
The Waterfall Model in Large-Scale
Development

Kai Petersen1,2, Claes Wohlin1, Dejan Baca1,2

1 Blekinge Institute of Technology, Box 520,
SE-37225 Ronneby, Sweden

kai.petersen@bth.se,claes.wohlin@bth.se,dejan.baca@bth.se
2 Ericsson AB, Box 518,

SE-37123 Karlskrona, Sweden
kai.petersen@ericsson.com,dejan.baca@ericsson.com

Abstract. Waterfall development is still a widely used way of working
in software development companies. Many problems have been reported
related to the model. Commonly accepted problems are for example to
cope with change and that defects all too often are detected too late
in the software development process. However, many of the problems
mentioned in literature are based on beliefs and experiences, and not
on empirical evidence. To address this research gap, we compare the
problems in literature with the results of a case study at Ericsson AB
in Sweden, investigating issues in the waterfall model. The case study
aims at validating or contradicting the beliefs of what the problems are
in waterfall development through empirical research.

1 Introduction

The first publication on the waterfall model is credited to Walter Royce’s arti-
cle in 1970 (cf. [1]). In literature there seems to be an agreement on problems
connected to the use of the waterfall model. Problems are (among others) that
the model does not cope well with change, generates a lot of rework, and leads
to unpredictable software quality due to late testing [2]. Despite the problems
identified, the model is still widely used in software industry, some researchers
are even convinced that it will be around for a much longer period of time (see
[3]). The following trends can be seen in research. First, the model seems to be
of very little interest for researchers to focus on as it seems to be old-fashioned.
Instead, recent studies have much more focus on agile and incremental develop-
ment. Secondly, there is very little empirical research backing up what we believe
to know about the waterfall model. In order to identify the evidence provided
by empirical research on the waterfall model we conducted the following search
on Inspec & Compendex:

– (”waterfall model” OR ”waterfall development”) AND (”empirical” OR ”case
study” OR ”industrial”)

Inspec & Compendex was selected as it integrates many full-text databases
in computing and thus is considered a good starting point. The search resulted in



2 Kai Petersen, Claes Wohlin, Dejan Baca

33 publications where none of the publications had an explicit focus on studying
the waterfall model in an industrial setting. Thus, most of the problems reported
on the waterfall model are mainly based on researchers’ beliefs and experience
reports. Consequently, in order to provide substantial evidence on the useful-
ness of the waterfall model in industry empirical studies are needed. Evaluating
the usefulness empirically aids decision making of whether to use the model in
specific context (here large-scale-development).

To address this research gap we conducted a case study focusing on identify-
ing issues in waterfall development and compare them to what has been said in
literature. Furthermore, the issues identified are ranked based on their criticality.
The case being studied is a development site of Ericsson AB, Sweden. The wa-
terfall model was used at the company for several years. The case study has been
conducted according to the guidelines provided by Yin (see [4]). The case study
makes the following contributions to research on waterfall development: 1) Illus-
tration of the waterfall implementation in practice within large-scale industrial
software development, 2) Identification of issues related to the waterfall model
and their prioritization showing the most critical issues, and 3) Comparison of
case study results with state of the art (SotA).

The remainder of this paper is structured as follows: Section 2 provides an
overview of related work. Thereafter, Section 3 illustrates the waterfall model
used at the company. Section 4 presents the case study design. The analysis of
the collected data is provided in Section 5 (qualitative analysis) and Section 6
(quantitative analysis). Section 7 presents a comparison of the case study findings
and state of the art. Section 8 concludes the paper.

2 Related Work

Literature identifies a number of problems related to the waterfall model. An
overview of the problems identified in literature is shown in Table 1. In addi-
tion to the identified articles we considered books discussing advantages and
disadvantages of the waterfall model.

The waterfall model is connected to high costs and efforts [2][5]. That is, it
requires approval of many documents, changes are costly to implement, iterations
take a lot of effort and rework, and problems are usually pushed to later phases
[2]. Few studies are explicitly focused on the waterfall model and some reasons for
the failures of the waterfall approach have been identified. One reason mentioned
by several studies is the management of a large scope, i.e. requirements cannot
be managed well and has been identified as the main reason for failure (cf. [7] [9]
[8]). Consequences have been that the customers’ current needs are not addressed
by the end of the project [7], resulting in that many of the features implemented
are not used [9].

Additionally, there is a problem in integrating the overall system in the end
and testing it [10]. A survey of 400 waterfall projects has shown that the soft-
ware being developed is either not deployed or if deployed, it is not used. The
reasons for this are the change of needs and the lack of opportunity to clarify



The Waterfall Model in Large-Scale Development 3

Table 1. Issues in Waterfall Development (State of the Art)

ID Issue Reference

L01 High effort and costs for writing and approving documents for
each development phase.

[2][5]

L02 Extremely hard to respond to changes. [2][5][6]
L03 When iterating a phase the iteration takes considerable effort

for rework.
[2]

L04 When the system is put to use the customer discovers problems
of early phases very late and system does not reflect current
requirements.

[1] [2] [7]

L05 Problems of finished phases are left for later phases to solve. [2]
L06 Management of a large scope of requirements that have to be

baselined to continue with development.
[8] [7] [9]

L07 Big-bang integration and test of the whole system in the end of
the project can lead to unexpected quality problems, high costs,
and schedule overrun.

[10][1][11]

L08 Lack of opportunity for customer to provide feedback on the
system.

[10]

L09 The waterfall model increases lead-time due to that large chunks
of software artifacts have to be approved at each gate.

[12]

misunderstandings. This is caused by the lack of opportunity for the customer
to provide feedback on the system [13]. Specifically, the waterfall model fails in
the context of large-complex projects or exploratory projects [3].

On the other hand, waterfall development comes with advantages as well. The
waterfall model is predictable and pays attention to planning the architecture
and structure of the software system in detail which is especially important when
dealing with large systems. Without having focus on architecture planning there
is a risk that design decisions are based on tacit knowledge and not explicitly
documented and reviewed [14]. Thus, the probability of overlooking architectural
problems is high.

3 The Waterfall Model at the Company

The waterfall model used at the company runs through the phases requirements
engineering, design & implementation, testing, release, and maintenance. Be-
tween all phases the documents have to pass a quality check, this approach is
referred to as a stage-gate model (see for example [15]). An overview of the
process is shown in Figure 1.

We explain the different phases and provide a selection of checklist-items
to show what type of quality checks are made in order to decide whether the
software artifact developed in a specific development phase can be passed on to
the adjacent phase.



4 Kai Petersen, Claes Wohlin, Dejan Baca

Main Product Line

Requirements

Engineering
MaintenanceReleaseTesting

Design &

Implementation

Quality Door

(Checklist)

Main Development Project

Quality Door

(Checklist)

Quality Door

(Checklist)

Quality Door

(Checklist)

Fig. 1. Waterfall Development at the Company

Requirements Engineering: In this phase, the needs of the customers are iden-
tified and documented on a high abstraction level. Thereafter, the requirements
are refined so that they can be used as input to the design and implementation
phase. The requirements (on high as well as low abstraction level) are stored in
a requirements repository. From this repository, the requirements to be imple-
mented are selected from the repository. The number of requirements selected
depends on the available resources for the project. As new products are not built
from the scratch, parts from the old product (see main product line in Figure 1)
are used as input to the requirements phase as well. At the quality gate (among
others) it is checked whether all requirements are understood, agreed upon, and
documented. Furthermore, it is checked whether the relevant stakeholders are
identified and whether the solution would support the business strategy.

Design and Implementation: In the design phase the architecture of the sys-
tem is created and documented. Thereafter, the actual development of the system
takes place. The developers also conduct basic unit testing before handing the
developed code over to the test phase. The quality gate checklist (among others)
verifies whether the architecture has been evaluated, whether there are devia-
tions from the requirements compared to the previous quality gate decision, and
whether there is a deviation from planned time-line, effort, or product scope.

Testing: In this phase the system integration is tested regarding quality and
functional aspects. In order to make a decision whether the the system can
be deployed, measures of performance (e.g, throughput) are collected in the test
laboratory. As the company provides complete solutions (including hardware and
software) the tests have to be conducted on a variety of hardware and software
configurations as those differ between customers. The outcome of the phase is
reviewed according to a checklist to see whether the system has been verified
and whether there are deviations from previous quality gate decisions in terms
of quality and time, whether plans for hand-over of the product to the customer
are defined according to company guidelines, and whether the outcome of the
project meets the customers’ requirements.

Release: In the release phase the product is brought into a shippable state.
That is, release documentation is finalized (e.g. installation instructions of the
system for customers and user-guides). Furthermore, build-instructions for the
system have to be programmed. Build-instructions can be used to enable and dis-
able features of the main product line to tailor the system to specific customer
needs. At the quality gate (among others) it is checked whether the outcome



The Waterfall Model in Large-Scale Development 5

meets the customers’ requirements, whether the customer has accepted the out-
come, and whether the final outcome was presented in time and fulfilled its
quality requirements. A post-mortem analysis has to be performed as well.

Maintenance: After the product has been released to the customer it has
to be maintained. That is, if customers discover problems in the product they
report them to the company and get support in solving them. If the problems
are due to faults in the product, packages for updating the system are delivered
to the customers.

4 Case Study Design

The context in which the study is executed is Ericsson AB, a leading and global
company offering solutions in the area of telecommunication and multimedia.
Such solutions include charging systems for mobile phones, multimedia solutions
and network solutions. The company is ISO 2001:2000 certified. The market in
which the company operates can be characterized as highly dynamic with high
innovation in products and solutions. The development model is market-driven,
meaning that the requirements are collected from a large base of potential end-
customers without knowing exactly who the customers will be.

4.1 Research Questions

The following main research questions should be answered in the case study:

– RQ1: What are the most critical problems in waterfall development in large-
scale industrial development?

– RQ2: What are the differences and similarities between state of the art and
the case study results?

The relevance of the research questions can be underlined as follows: The
related work has shown a number of problems related to waterfall development.
However, there is too little empirical evidence on the topic and thus more data
points are needed. Furthermore, the criticality of problems is not addressed in
any way so far, making it hard to decide in which way it is most beneficial to
improve the model, or whether the introduction of a new way of working will
help in improving the key challenges experienced in the waterfall model.

4.2 Case Selection and Units of Analysis

The case being studied is one development site of Ericsson AB. In order to
understand the problems that occurred when the waterfall model was used at
the company, three subsystems (S1, S2, and S3) are analyzed that have been
built according to the model. The systems under investigation in this case study
have an overall size of approx. 2,000,000 LOC (as shown in Table 2). The LOC
measure only includes code produced at the company (excluding third-party



6 Kai Petersen, Claes Wohlin, Dejan Baca

libraries). Furthermore, the number of persons involved in building the system
are stated. A comparison of the system considered for this study and the size
of the Apache web server shows that the system being studied is considerably
larger and thus can be considered as large-scale.

Table 2. Units of Analysis

Language Size (LOC) No. Persons

Overall System >5,000,000 -
S1 C++ 300,000 43
S2 C++ 850,000 53
S3 Java 24,000 17
Apache C++ 220,000 90

4.3 Data Collection Procedures

The data is collected through interviews and from process documentation.

Selection of Interviewees The interviewees were selected so that the over-
all development life cycle is covered, from requirements to testing and release.
Furthermore, each role in the development process should be represented by at
least two persons if possible. The selection of interviewees was done as follows:

1. A complete list of people available for the system being studied. Overall 153
people are on this list as shown in Table 2.

2. For the selection of persons we used cluster sampling. At least two persons
from each role (the roles being the clusters) have been randomly selected
from the list. The more persons are available for one role the more persons
have been selected.

3. The selected interviewees received an e-mail explaining why they have been
selected for the study. Furthermore, the mail contained information of the
purpose of the study and an invitation for the interview. Overall, 44 persons
have been contacted of which 33 accepted the invitation.

The distribution of people between different roles is shown in Table 3. The
roles are divided into ”What”, ”When”, ”How”, ”Quality Assurance”, and ”Life
Cycle Management”.

– What: This group of people is concerned with the decision of what to develop
and includes people from strategic product management, technical managers
and system managers.

– When: People in this group plan the time-line of software development from
a technical and project management perspective.

– How: Here, the architecture is defined and the actual implementation of the
system takes place. In addition, developers test their own code (unit tests).



The Waterfall Model in Large-Scale Development 7

– Quality Assurance: Quality assurance is responsible for testing the software
and reviewing documentation.

– Life Cycle Management: This includes all activities supporting the overall de-
velopment process, like configuration management, maintenance and support,
and packaging and shipment of the product.

Table 3. Distribution of Interviewees Between Roles and Units of Analysis

S1 S2 S3 Total

What (Requirements) 2 1 1 4
When (Project Planning) 3 2 1 6
How (Implementation) 3 2 1 6
Quality Assurance 4 3 - 7
Life Cycle Management 6 4 - 10

Total 18 12 3 33

Interview Design The interview consists of five parts, the duration of the
interviews was set to approximately one hour each. In the first part of the in-
terviews the interviewees were provided with an introduction to the purpose of
the study and explanation why they have been selected. The second part com-
prised questions regarding the interviewees background, experience, and current
activities. Thereafter, the issues were collected through a semi-structured inter-
view. To collect as many issues as possible the questions have been asked from
three perspectives: bottlenecks, rework, and unnecessary work. The interviewees
should always state what kind of bottleneck, rework, or unnecessary work they
experienced, what caused it, and where it was located in the process.

Process Documentation Process documentation has been studied to gain an
in-depth understanding of the processes. Documentation for example includes
process specifications, training material for processes, and presentations given
to employees during unit meetings.

4.4 Data Analysis Approach

The problems related to the waterfall model at the company have been identified
conducting the four steps outlined below. The steps are based on more than 30
hours of interview transcriptions and have been executed by the first author over
a three month period.

1. Clustering: The raw data from the transcriptions is clustered, grouping state-
ments belonging together. For example, all statements related to require-
ments engineering are grouped together. Thereafter, statements addressing
similar areas within one group (e.g,. all areas that would relate to require-
ments engineering lead-times) are grouped.



8 Kai Petersen, Claes Wohlin, Dejan Baca

2. Derivation of Issue Statements: The raw data contains detailed explanations
and therefore is abstracted by deriving problem statements from the raw
data, explaining them shortly in one or two sentences. The result was a
number of problem statements where statements varied in their abstraction
level and could be further clustered.

3. Mind-Mapping of Issue Statements: The issue statements were grouped
based on their relation to each other and their abstraction level. For ex-
ample, problems related to requirements lead-times are grouped within one
branch called ”long requirements lead-times”. This was documented in form
of a mind-map. Issues with higher abstraction level are closer to the center
of the mind map than issues with lower abstraction level.

4. Validation of Issues: In studies of qualitative nature there is always a risk
that the data is biased by the interpretation of the researcher. Therefore,
the issues have been validated in two workshops with three representatives
from the company. The representatives have an in-depth knowledge of the
processes. Together, the steps of analysis described here have been repro-
duced together with the authors and company representatives. For this a
subset of randomly selected issue statements have been selected. No major
disagreement has been discovered between the workshop participants on the
outcome of the analysis. Thus, the validity of the issue statements can be
considered as high.

After having identified the problems they are prioritized into A-problems
(critical), B-problems (very important), C-problems (important), D-problems
(less important), and E-problems (local). The actual limits on the classes is
based on the results. The main objective of the classification is to systematize
and structure the data and not to claim that these classes are optimal or suitable
for another study.

A. The problem is mentioned by more than one role and more than one sub-
system. Moreover, the problem has been referred to by more than 1/3 of the
respondents.

B. The problem is mentioned by more than one role and more than one sub-
system. Moreover, the problem has been referred to by more than 1/5 of the
respondents.

C. The problem is mentioned by more than one role and more than one subsys-
tem. Moreover, the problem has been referred to by more than 1/10 of the
respondents.

D. The problem is mentioned by more than one role and more than one subsys-
tem. Moreover, it has been referred to by 1/10 of the respondents or less.

E. The problem is only referred to by one role or one subsystem and thus con-
sidered a local or individual problem.

4.5 Threats to Validity

Threats to the validity of the outcome of the study are important to consider
during the design of the study allowing to take actions mitigating them. Threats



The Waterfall Model in Large-Scale Development 9

to validity in case study research are reported in [4]. The threats relevant to the
study are: construct validity, external validity and reliability.

Construct Validity: Construct validity is concerned with obtaining the right
measures for the concept being studies. One threat is the selection of people to
obtain the appropriate sample for answering the research questions. Therefore,
experienced people from the company selected a pool of interviewees as they
know the persons and organization best. From this pool the random sample was
taken. The selection by the representatives of the company was done having
the following aspects in mind: process knowledge, roles, distribution across sub-
systems, and having a sufficient number of people involved (although balancing
against costs). Furthermore, it is a threat that the presence of the researcher
influences the outcome of the study. The threat is reduced as there has been a
long cooperation between the company and university and the author collecting
the data is also employed by the company and not viewed as being external.
Construct validity is also threatened if interview questions are misunderstood
or misinterpreted. To mitigate the threat pre-tests of the interview have been
conducted.

External Validity: External validity is the ability to generalize the findings
to a specific context as well as to general process models. One threat to validity
is that only one case has been studied. Thus, the context and case have been
described in detail which supports the generalization of the problems identified.
Furthermore, the process model studied follows the main principles of waterfall
development (see Section 3) and thus can be well generalized to that model. In
addition, the outcome is compared to state of the art.

Reliability: This threat is concerned with repetition or replication, and in
particular that the same result would be found if re-doing the study in the
same setting. There is always a risk that the outcome of the study is affected
by the interpretation of the researcher. To mitigate this threat, the study has
been designed so that data is collected from different sources, i.e. to conduct
triangulation to ensure the correctness of the findings. The interviews have been
recorded and the correct interpretation of the data has been validated through
workshops with representatives of the company.

5 Qualitative Data Analysis

In total 38 issues have been identified in the case study. The majority of is-
sues is categorized in class E, i.e, they are only referred to by individuals or are
not mentioned across subsystems (see Table 4). Furthermore, the distribution
of issues between the phases requirements engineering (RE), design and devel-
opment (DI), verification and validation (VV), release (R), maintenance (M),
and project management (PM) is shown. The distribution of issues is further
discussed in Section 7.

In the analysis of the issues we focus on classes A to D as those are the most
relevant ones as they are recognized across roles and systems. Thus, they have a
visible impact on the overall development process. However, this does not imply



10 Kai Petersen, Claes Wohlin, Dejan Baca

Table 4. Number of Issues in Classification

Classification RE DI VV R M PM No. of Issues

A 1 - 1 - - - 2
B - - 2 - - - 2
C 1 2 - - 1 1 5
D 1 1 2 - - - 4
E 1 1 2 3 8 10 25

Sum 4 4 7 3 9 11 38

Table 5. Issues in Waterfall Development

ID Class Process Area Description SotA

P01 A Requirements Requirements work is wasted as documented and vali-
dated requirements have to be discarded or reworked.

L02,
L03,
L08

P02 A Verification Reduction of test coverage due to limited testing time
in the end.

L07

P03 B Verification Amount of faults found increases with late testing. L05
P04 B Verification Faults found later in the process are hard and expen-

sive to fix.
L07

P05 C Requirements Too much documentation is produced in requirements
engineering that is not used in later stages of the pro-
cess.

L01

P06 C Design Design has free capacity due to long requirements en-
gineering lead-times.

L09

P07 C Design Confusion on who implements which version of the
requirements.

-

P08 C Maintenance High effort for maintenance (corrections released to
the customer).

L04

P09 C Project Mgt. Specialized competence focus of team members and
lack of confidence.

-

P10 D Requirements The impact of requirements on other parts of the sys-
tem are not foreseen.

L06

P11 D Design Design is overloaded with requirements. -
P12 D Verification High amount of testing documentation has to be pro-

duced.
L01

P13 D Verification Problems in fault localization due to barriers in com-
munication.

-

that local issues are completely irrelevant, they just have little impact on the
overall development process and thus are not recognized by other roles. Table 5
shows an overview of the identified issues in classes A to D and their mapping
to literature summarized in Table 1.



The Waterfall Model in Large-Scale Development 11

5.1 A Issues

P01: The long lead-times of the requirements engineering phase led to the need
to change requirements or discard already implemented and reviewed require-
ments as the domain investigated (telecommunication) is very dynamic. Further-
more, the distance to the customer caused misunderstandings which resulted in
changed requirements or discarded requirements. Due to the complexity of the
scope to be defined the number of requirements was too high for the given re-
sources which resulted in discarding requirements (and sometimes this was done
late in the development process). Furthermore, the interviewees emphasized that
the decision what is in the scope and what is not takes a lot of time as a high
amount of people that have to be involved.

P02: Test coverage in waterfall development was reduced due to multiple
reasons. Testing is done late in the project and thus if there have been delays
in development, testing has to be compromised as it is one of the last steps in
development. Furthermore, too much has to be tested at once after the overall
system has been implemented. Additional factors are that testing related to
quality is often given low priority in comparison to functional testing, trivial
things are tested too intensively, and test resources are used to test the same
things twice due to coordination problems.

5.2 B Issues

P03: The later the testing, the higher the amount of faults found. The num-
ber of faults and quality issues is influenced negatively when using waterfall
development. The main cause for this is late testing after everything has been
implemented. This provides far too late feedback from test on the software prod-
uct. Furthermore, basic testing is neglected as there has been low interaction
between design and testing, resulting in lack of understanding of each other in
terms of consequences of neglecting basic testing. Also due to communication
issues, testing started verifying unfinished code which led to a high number of
false positives (not real faults).

P04: Having late testing results in faults that are hard to fix, which is es-
pecially true for issues related to quality attributes of the system (e.g. perfor-
mance). These kinds of issues are often rooted in the architecture of the system
which is hard to change late in the project.

5.3 C Issues

P05: The interviewees emphasized that quite a lot of documentation is pro-
duced in the requirements phase. One of the reasons mentioned is limited reuse
of documentation (i.e., the same information is reported several times). Further-
more, the concept of quality gates requires producing a lot of documentation
and checklists which have to be fulfilled before passing on the requirements to
the next phase. Though, in waterfall development the quality gates are required



12 Kai Petersen, Claes Wohlin, Dejan Baca

as they assure that the hand-over item is of good enough quality to be used as
input for all further development activities.

P06: Design and implementation have free capacity, the reasons being that
requirements have to be specified in too much detail, decision making takes a
long time, or requirements resources are tied up due to the too large require-
ments scope. This has a negative impact on design, as the designers have to wait
for input from requirements engineering before they can start working. As one
interviewee pointed out ”For such large projects with so many people involved
half the workforce ends up working for the rest”. In consequence, the lead-time
of the overall project is prolonged.

P07: From a design perspective, it is not always clear which version of the
requirements should be implemented and by whom. The cause of this problem
is that work often starts on unfinished or unapproved requirements which have
not been properly baselined.

P08: Support is required to release a high number of corrections on already
released software. This is due to the overall length of the waterfall projects
resulting in very long release cycles. In consequence, the customers cannot wait
for the corrections to be fixed for the next release, making corrections a time-
pressing issue. Furthermore, the development model requires to handle parallel
product branches for customer adaptations of the main product line. In this
domain, products have a high degree of variability and thus several product
branches have to be supported (see Figure 1).

P09: The competence focus of people in waterfall development is narrowed,
but specialized. This is due to that people are clearly separated in their phases
and disciplines, and that knowledge is not well spread among them. As one
interviewee pointed out, there are communication barriers between phases. Fur-
thermore, a lack of confidence has been reported. That is, people are capable
but do not recognize their particular strength to a degree they should.

5.4 D Issues

P10: New requirements do not have an isolated impact, instead they might affect
multiple subsystems. However, due to the large requirements scope, requirements
dependencies are often overlooked.

P11: The scope of the requirements was too big for the implementation re-
sources. In consequence, designers and architects were overloaded with require-
ments which could not be realized with the given resources. Furthermore, after
the project has been started more requirements were forced into the project by
the customer. In consequence, emergent requirements cannot be implemented
by architects and designers as they already face an overload situation.

P12: Test documentation has been done too extensively as the documents
became obsolete. The reason for the high amount of documentation was mainly
that the process has been very documentation centric.

P13: When dealing with different subsystems, the fault localization is prob-
lematic as a problem might only show in one subsystems, but due to communi-
cation barriers not all subsystem developers are aware of the problem. In con-



The Waterfall Model in Large-Scale Development 13

sequence, due to the lack of communication (see P09) the localization of faults
reported by the customer is time consuming.

6 Quantitative Data Analysis

Table 6 shows the distribution of time (duration) in the development process.
The requirements engineering phase takes very long time in comparison to the
other phases. The actual implementation of the system seems to be the least
time-intensive activity.

Table 6. Distribution of Time (Duration) over Phases (in %)

Req. Impl.&Design Verification Release Total

41 17 19 23 100

Furthermore, we measured the number of change requests per implemented
requirement, the discarded requirement, and the percentage of faults found in
system test that should have been found in earlier tests (function test and com-
ponent test). The figures quantify the issues identified earlier. In particular, the
high number of discarded requirements and the cause of change requests are re-
lated to issue P01. The long lead-times of requirements engineering increase the
time-window for change requests and approximately 26 % of all requirements
become obsolete. From a quality perspective the fault slip of 31 % is a symptom
of P03 (increase of number of faults with late testing) and P04 (the types of
faults found in system tests could have been found earlier and thus would have
been easier to fix).

Table 7. Performance Measures

Measure Value

CRs per implemented requirement 0.076
Discarded requirements 26 %
Fault slip to system test 31 %

7 Comparative Analysis of Case Study and SotA

Table 5 relates the issues identified in the case study to the issues mentioned in
literature. If an issue from the case study is identified in literature the column
SotA provides the ID of the issue identified in literature (listed in Table 1).
Through this comparison it becomes apparent that four issues not mentioned



14 Kai Petersen, Claes Wohlin, Dejan Baca

in the identified literature have been discovered in the case study, namely P07,
P09, P11, and P13. Vice versa all issues acknowledged in literature have been
identified in the case study. Table 5 also shows that the highest prioritized issues
(A and B) have all been mentioned in literature describing the waterfall model.
In conclusion researchers and practitioners are aware of the most pressing issues
related to waterfall development, while lower prioritized (but still important)
issues have not been linked to the waterfall model to the same degree.

The issues in the case study are formulated differently from those identified
in literature as the formulation is an outcome of the qualitative data analysis.
Therefore, we explain how and why the issues of high priority from the case
study and SotA are related to each other. The most critical issues are related
to the phases of requirements engineering, and verification and validation (both
identified in literature). We found that requirements often have to be reworked
and or discarded (P01). The qualitative analysis based on the interviews ex-
plained the issue with long lead-times for requirements and large scope making
responding to changes hard (related to L02), distance to the customer (related
to L08), and change in large scope leads to high effort due to that many people
are involved (related to L03). The quantitative analysis shows that 41 % of the
lead-time is consumed for requirements engineering. Having to define a large
requirements scope extends lead-time and thus reduces requirements stability.
In consequence the waterfall model is not suitable in large-scale development in
the context of a dynamic market. Regarding verification issue L07 identified in
literature states that testing the whole system in the end of the project leads to
unexpected quality problems and project overruns. This issue relates to the case
study in the following ways: First, testing has to be compromised and thus test
coverage is reduced when having fixed deadlines which do not allow for project
overruns (P02). Secondly, the faults found late in the process are hard to fix,
especially if they are rooted in the architecture of the system (P07).

The issues categorized as C are quite mixed, i.e. they include issues related
to requirements, design, maintenance and project management. The issues cat-
egorized as D show a similar pattern as the most critical ones (A and B), i.e.
they are related to requirements, and verification and validation. Furthermore,
one issue is related to design. As mentioned earlier, less than half of the issues
classified as C and D have been identified in literature before. An explanation
of the issues not yet identified has been provided in the qualitative analysis (see
Section 5).

It is also interesting to observe that a majority of local issues is related to
project management and maintenance (see Table 4). Thus, it seems that there
is a high number of issues which do not have such an impact on the process that
knowledge about them spreads in the organization.

8 Conclusion

This case study investigates issues related to the waterfall model applied in the
context of large-scale software development and compares the findings with lit-



The Waterfall Model in Large-Scale Development 15

erature. The results are that the most critical issues in waterfall development
are related to requirements and verification. In consequence, the waterfall model
is not suitable to be used in large-scale development. Therefore, the company
moved to an incremental and agile development model in 2005. The comparison
of the case study findings with literature shows that all issues found in litera-
ture are found in the case study. Though, the case study findings provide more
detailed explanations of the issues and identified four new issues, namely 1) con-
fusion of who implements which version of the requirements, 2) high effort for
maintenance, 3) specialized competence focus and lack of confidence of people,
and 4) problems in fault localization due to communication barriers.

References

1. Royce, W.: Managing the development of large software systems: Concepts and
techniques. In: Proc. IEEE WESCOM, IEEE Computer Society Press (1970)

2. Sommerville, I.: Software Engineering (7th Edition). Pearson Eductation Ltd.
(2004)

3. Raccoon, L.B.S.: Fifty years of progress in software engineering. SIGSOFT Softw.
Eng. Notes 22(1) (1997) 88–104

4. Yin, R.K.: Case Study Research: Design and Methods, 3rd Edition, Applied Social
Research Methods Series, Vol. 5. Prentice Hall (2002)

5. McBreen, P.: Software craftsmanship : the new imperative. Addison-Wesley,
Boston (2002)

6. Pfleeger, S.L., Atlee, J.M.: Software engineering : theory and practice. 3. ed. edn.
Prentice Hall, Upper Saddle River, N.J. (2006)

7. Jarzombek, J.: The 5th annual jaws s3 proceedings (1999)
8. Thomas, M.: It projects sink or swim. British Computer Society Review 2001

(2001)
9. Johnson, J.: Keynote speech: Build only the features you need. In: Proceedings of

the 4th International Conference on Extreme Programming and Agile Processes in
Software Engineering (XP 2002). (2002)

10. Jones, C.: Patterns of Software Systems: Failure and Success. International Thom-
son Computer Press (1995)

11. Sametinger, J.: Software engineering with reusable components : with 26 tables.
Springer, Berlin (1997)

12. Anderson, D.J.: Agile Management for Software Engineering: Applying the Theory
of Constraints for Business Results (The Coad Series). Prentice Hall PTR (2003)

13. Cohen, D., Larson, G., Ware, B.: Improving software investments through require-
ments validation. In: Proceedings of the 26th Annual NASA Goddard Software
Engineering Workshop (SEW 2001), Washington, DC, USA, IEEE Computer So-
ciety (2001) 106

14. Boehm, B.: Get ready for agile methods, with care. Computer 35(1) (2002) 64–69
15. Karlström, D., Runeson, P.: Combining agile methods with stage-gate project

management. IEEE Software 22(3) (2005) 43–49


