

C. Wohlin and A. Andrews, "Evaluation of Three Methods to Predict Project Success:
A Case Study", Proceedings of International Conference on Product Focused

Software Process Improvement (PROFES05), LNCS-series, Springer Verlag, Oulu,
Finland, 2005.

Evaluation of Three Methods to Predict Project Success:
A Case Study

Claes Wohlin

Dept. of Systems and Software Engineering, School of
Engineering, Blekinge Institute of Technology, Box 520

SE-372 25 Ronneby, Sweden
+46 457 38 58 20

claes.wohlin@bth.se

Anneliese Amschler Andrews

School of Electrical Engineering and Computer Science
Washington State University

Pullman, WA 99164-2752 USA
+1 509 335 8656

aandrews@eecs.wsu.edu

Abstract. To increase the likelihood for software project success, it is
important to be able to identify the drivers of success. This paper compares
three methods to identify similar projects with the objective to predict project
success. The hypothesis is that projects with similar characteristics are likely to
have the same outcome in terms of success. Two of the methods are based on
identifying similar projects using all available information. The first method of
these aims at identifying the most similar project. The second method identifies
a group of projects as most similar. Finally, the third method pinpoints some
key characteristics to identify project similarity. Our measure of success for
these identifications is whether project success for these projects identified as
similar is the same. The comparison between methods is done in a case study
with 46 projects with varying characteristics. The paper evaluates the
performance of each method with regards to its ability to predict project
success. The method using key drivers of project success is superior to the
others in the case study. Thus, it is concluded that it is important for software
developing organizations to identify its key project characteristics to improve
its control over project success.

1. Introduction

There are many project characteristics that influence project success. If it is true that
certain project characteristics lead to certain project outcomes, it becomes important
to be able to identify similar projects, since they would likely lead to similar project
outcomes. Nowadays when many software systems evolve over time and come in
several releases, it becomes even more crucial to learn from past projects to increase
the likelihood for success in future projects. Software organizations must understand
which project characteristics are most important for them to ensure successful
projects. This paper contributes with a comparison of three potential methods to use
to predict project success.

Some examples of project characteristics include stability of requirements,
knowledge of developers and management, inherent difficulty of the project,

techniques and tools used (and how appropriate they are), tightness of schedule and
type of application, required levels of reliability, fault tolerance, security, use of
development techniques including use of object-oriented programming, design
patterns, extreme programming, etc. Success indicators include timeliness of delivery,
quality of software, as well as more long term properties such as maintainability and
evolvability.

Some of these project characteristics can be measured objectively, while others
have to be measured subjectively. The same is true for project success variables. We
focus here on subjective measurement of both project characteristics and project
success as also is the case in for example [1]. The focus here on subjective measures
is primarily due to availability in the case study presented below.

In order to predict project success reliably, it is first necessary to find a method to
identify similar projects. Projects are similar, if they show similar project
characteristics and/or similar project outcomes. This paper investigates three methods
to identify similar projects:
1. Nearest neighbor. This method takes a set of projects, the base set, and computes

for a new project the distance to each project in the base set. The new project is
most similar to the project with the smallest distance to the new project.

2. Friends. This approach also uses a base set of projects as well as the new project
and groups them based on Principal Components Analysis (PCA) [2]. The new
project is most similar to the projects with which it has been grouped.

3. Key success driver analysis. Not all project characteristics are equally important
in predicting project success. This analysis method reduces the full set of project
characteristics to those that behave similarly to project success. This reduced set
of project characteristics is then used to rank projects by success and failure. New
projects are identified as potentially successful or not based on this classification.

We selected these three approaches, because they represent three very different
approaches to similarity identification. The first method is focused on identification of
the most similar project using a distance measure [3], which is a simple measure used
in case-based reasoning. The second method identifies a set of similar projects using
all available information. Finally, the third method is based on identification of key
success drivers. Based on these key success drivers, the most similar projects are
identified.

Other methods would have been possible to use as for example neural networks,
clustering and so forth. However, the main objective is not to make an exhaustive
comparison of methods. The objective is primarily to investigate whether is makes
more sense to focus on a few key variables (in particular the key success drivers in the
context of this paper) rather than all data available for different projects.

All three methods are evaluated with respect to their ability to predict project
outcome (success or not). Since the impact of project characteristics on project
outcomes varies over time (for example, use of the software factory concept [4] will

influence the effect of project characteristics over time), we need to take this into
account. Our approach is to use a sliding window of projects for the base set. This
means, that the oldest projects are removed from the base set as new ones are added to
it. Given the high degree of innovation and change in software development, it is not
likely that the base set will ever be very large. This makes it important that methods
used for prediction are able to function with small amounts of data.

The paper is organized as follows. Section 2 describes related work with respect to
identifying similar projects, predicting various aspects of project success based on
measurement of objective and subjective variables, and their use for various types of
predictions like effort estimation, risk estimation, in addition to estimating various
success factors. Section 3 describes the case study data used to illustrate the approach.
Section 4 specifies the approach and illustrates the approach on the case study data.
Section 5 draws conclusions and points out further work.

2. Related Work

Most prediction work has been directed towards using quantitative data, for example,
measures of size, person-hours spent, number of defects and so forth. However,
subjective measures have only recently been analyzed more extensively in empirical
software engineering, specifically in software project assessment and evaluation. Part
of the problem stems from issues related to collecting trustworthy data [5]. On the
other hand, subjective measures have been used successfully for effort estimation [6,
7], and risk management [8]. Expert judgment in estimation tasks has been discussed
in [9].

More recently, subjective variables have been used to map project characteristics
to project success. First in [1], subjective factors were evaluated alongside objective
quantitative ones to evaluate both efficiency and success of software production for
projects from the NASA-SEL database [10]. The paper identifies which successful
projects were also efficient and determines primary (subjective) drivers of project
success. In [11], the method for analyzing subjective project characteristics and
success indicators is refined and discussed in-depth, and two case studies are
presented. The primary success drivers amongst the project characteristics are
identified and an agreement index is established that quantifies to which degree the
project characteristics that were identified as primarily connected to project success
are able to predict project success. The results identified that about one third of the
successful projects could be predicted accurately. We believe that this is due to the
limitations of the approach, specifically that projects are classified into two
categories: upper half and lower half (both based on project characteristics). The

halves are denoted “good” and “bad” respectively although it is really up to each
individual organization to judge where the limit between “good” projects and “bad”
projects is. It is reasonable to assume that projects around the border between “good”
and “bad” exhibit more uncertainty with respect to project outcome (success or
failure). This could account for some of the misclassification. To circumvent this
problem, an extension was proposed in [12], where a third class was introduced to try
to avoid classifying projects close to the border between “good” and “bad”.

However, the work so far has been focused on development of a method for
identification of key success drivers in software development. Thus, the research has
been focused on developing one model and then extending and improving the model.
Here, the main focus is on using the developed model for prediction and to evaluate
the model in comparison with two other approaches using industrial data from 46
development projects.

Prediction models in software engineering have been directed towards several
different areas. Researchers have also used a large variety of statistical methods and
approaches. This includes regression analysis (linear, multiple linear regression,
stepwise regression) [13,14], multivariate statistics [15], machine learning [16]
including neural networks [14, 17], analogies [13,18] and so forth. Some of these
methods, including for example neural networks, require a substantial amount of data
for model building. To address this problem, researchers have looked at methods for
prediction when having few data points. This includes, for example, the use of
different decision making methods such as the analytic hierarchy process [19] which
is applied to effort estimation in [20]. Case-based reasoning has also been used as a
means for prediction, for example, in [14, 20].

3. Case Study Data

The data comes from the NASA-SEL database [21]. Further information about
NASA-SEL can be found in [10]. In total, the database available to us contains data
from more than 150 projects spanning five years. Of these, we selected 46 for
analysis, based on completeness of project data recorded. These 46 projects
represented a variety of types of systems, languages, and approaches for software
development. The actual data is not intended to play any major role. The main
objective is to compare three methods for prediction purposes and in particular the
importance of using key characteristics in the prediction rather than as much
information as is available.

The selection criterion of projects in the database was completeness of data for 27
project characteristics. The characteristics are measured on an ordinal scale (1-5)

using subjective judgment. A higher value denotes more of the quality ranked. The
subjective evaluations rank the projects in terms of problem complexity, schedule
constraints, nature of requirements, team ability, management performance,
discipline, software quality, etc. Six success factors were measured per project. These
six variables are aggregated to one variable in the evaluation here, since it does not
affect the actual comparison. From an analysis point of view, it is unfortunate that the
data is on an ordinal scale as seen below. However, this is the type of data that we as
researchers many times face when collecting data from industrial environments. The
actual variables are not crucial for the comparison of methods and hence the reader is
referred to, for example, [11].

4. Analysis Method

The analysis method consists of three phases:
1. Identify a base set of projects to use in assessing new ones. This base set should

describe the current spectrum of project capability of the organization. While one
way is to simply take all projects finished by an organization to date, this might
include old projects whose relationships between project characteristics and
success indicators no longer reflects current project behavior. Reasons for
changes include: changes in capability, environment, process, successful use of
experience factory concepts, etc. Thus we propose to use a sliding window
instead, since it is most likely that older projects no longer reflect new ones.
For the case study, the first 20 projects were viewed as the initial base set, the
initial experience base. This first base set was used to identify which projects in
the base set were similar to which of the following 5 new projects (for the
purpose of predicting project success). Then the base set was updated by
removing the five oldest projects from the base set. Again, the new base set
(projects 6-25) was used to identify similar projects for projects 26-30. Projects
11-30 were used to identify similar projects for projects 31-35; projects 16-35
were used to identify similar projects for projects 36-40, projects 21-40 were
used to identify similar projects for projects 41-45 and finally projects 26-45
were used to identify similar projects for project 46.

2. Identification of similar projects. This paper investigates and compares three
ways to identify similar projects. For each window and set of new projects
identified in step one, Nearest Neighbor, Friends, and Key Success Driver are
used to identify projects in the experience base that are similar to the new
projects. The detailed analysis is described in the subsections below.

3. Evaluate prediction quality. New projects identified as similar (based on
characteristics) with projects in the base set are assumed to show similar
outcomes to those projects with respect to level of success. Since we know the
level of success through the data in the database, it is possible to evaluate
prediction accuracy. We use a diffusion matrix to illustrate correct predictions
versus false positives and false negatives. In addition, we also use the kappa
statistic as an agreement index. The agreement index is described in more detail
in a software engineering context in [22] and briefly outlined below.

We selected to work with the average rather than the median, because it takes into
consideration the effect of extreme or unusual values better and accentuates
differences in data that the median would not show (if most project success indicators
are quite similar, very little can be said about their differences). Projects are then
ranked based on this average score. Similar to the original model [11], we consider a
project to be successful, if it is in the top half of the projects ranked. It should be
noted that all projects may be successful, but the upper half is more successful than
the lower half. This is a somewhat simplistic view on success to illustrate the
prediction methods. In a real case, it would be important to actually define success
properly, for example the software was developed on time within budget with the
correct functionality and the quality expected. Anyhow, here it is primarily a matter
of relative comparison between the projects rather than distinguishing between
successful project and failed projects. Projects in the top half are ranked green, in the
bottom half, red. We have chosen not to use the extended model with three classes
[12], since the main objective here is to compare three competing methods for
prediction and the extended method tries to circumvent the prediction problem. Here,
we would like to address the prediction difficulties.

New projects identified as being similar with green projects are predicted as green,
while new projects identified as being similar with red projects are considered red. A
diffusion matrix reports agreement between prediction using the experience base and
the actual outcome (average score of success variable).

The following subsections describe the three methods for identification of similar
project(s) and evaluate the ability of the methods to predict success.

4.1. Nearest Neighbor

In this method a distance measure is calculated for each new project from the projects
in the experience base (the case study has 20 projects in the experience base for each
iteration). The measure is a measure of dissimilarity (DS), since the most similar

project in the experience base is the project with the highest value of the measure
below. The measure is for ordinal data computed as:

DS 1

C1i C2i–()2

i 1=

n

∑

---=

In the formulae, Cji is the value of variable i for project j, where only two projects are
considered. One project is the new project and then it is compared with all other 20
projects one at a time. This means that the nearest neighbor is the project with the
largest value of DS. More information about the measure in a software engineering
context can be obtained from [3].

The project in the experience base with the largest value for the distance measure
is selected as the nearest neighbor. The nearest neighbors are listed in Table 1 for
projects 21-46. The table shows that some projects end up as neighbors more often
than others. Project 16 is one of those.

TABLE 1. Identification of Nearest Neighbour.

Project 21 22 23 24 25 26 27 28 29 30 31 32 33 34

Neighbor 2 16 16 16 16 16 12 25 23 15 16 27 26 27

Project 35 36 37 38 39 40 41 42 43 44 45 46

Neighbor 20 21 35 30 26 24 30 35 35 35 26 39

The outcome of the new project is predicted as the outcome of the nearest neighbor.
The prediction is only concerned with whether the new project will be a success
(green) or not (red). One could look more closely into the prediction of the actual
value for the different success variables. However, we believe that at the stage we are
making this prediction, it is sufficient to provide an indication of where the project is
heading. When two or more projects have the same value for the distance measure,
the newest project is selected as the nearest neighbor.

The results from using this method as a prediction method for all successive
experience bases are shown in the Table 3. The method is not very accurate. Only
eight projects out of 26 (about 31%) are actually predicted correctly (green-green or
red-red). There are 5 false positives (19%) and 13 false negative (50%). An agreement

index is also calculated, which often is referred to as kappa statistic [23]. In software
engineering, the kappa statistic has been applied to inter-rater agreement of process
assessments [22]. For an introduction to the kappa statistics, please refer to these
references. An interpretation of the kappa statistics can be found in Table 2.

TABLE 2. The Altman kappa scale.

Kappa statistics < 0.20 0.21-0.40 0.41-0.60 0.61-0.80 0.81-1.00

Strength of agreement Poor Fair Moderate Good Very good

The agreement index requires comparable scales for the two classifications, for
example, as is the case when comparing the agreement between two raters using the
same scale. The problem addressed here is different since we compare one prediction
model with the actual outcome. This problem is inherently harder and hence the
mapping in Table 2 is most likely too ambitious. Informally with respect to the scale,
it is still reasonable that values below 0.20 are poor and values between 0.21-0.40 are
fair. However, given that we compare predictions with outcome, we believe that 0.41-
0.60 is good, 0.61-0.80 is very good and above 0.80 is utopia.

A random assignment of projects to the cells in Table 3 should on average result
in an agreement index (kappa) of zero. Values below zero means that the prediction
method performs worse than random assignment. This is the case for this particular
method for our data set. In other words, this method fails quite dramatically in
identifying an existing project to make a prediction of project success.

TABLE 3. Diffusion matrix for Nearest Neighbour prediction

Outcome
Kappa = -0.26

Green Red

Green

27, 32, 34, 38 22, 23, 24, 25, 26, 30, 31, 35,
36, 41, 42, 43, 44

Prediction

Red 21, 28, 29, 33,
37

39, 40, 45, 46

4.2 Friends

The second method is based on using Principal Component Analysis [2] to “package”
similar projects (friends), i.e. projects whose characteristics seem to vary in the same
way. The statistical package used for Principal Component Analysis (PCA) is
StatView version 5.0.1. Basically, PCA tries to abstract variables (or in this case
projects) that covariate into a higher level factor. The analysis method creates factors
with loadings for each variable in each factor. A variable is here viewed to belong to
the factor where the variable has the highest positive loading.

In the case study, all 27 project characteristics are measured on an ordinal 5 point
Likert scale. While this type of analysis usually requires at least interval data, it is
fairly robust with regards to using ordinal data. In addition, we only use it to identify
projects that behave in a similar fashion with respect to the project characteristics. No
other conclusions are drawn from the analysis.

The PCA is conducted for the 27 project characteristics to identify similar
projects. Table 4 shows an example of the results of this analysis for the first
experience base (projects 1-20) and one of the projects (project 21) in the first set of
projects to be classified (projects 21-25). From Table 4, we see that project 21 has its
highest loading in Factor 1. The other projects having this are projects 2, 3, 5, 7, 10,
12, 13 and 20. Thus, these eight projects are regarded as being the Friends of project
21.

The Friends approach extends the Nearest Neighbor approach from a single
project to a set of close projects (hence the name Friends). Given that a new project is
now considered to have the same level of success as its Friends, the average success
value of the new project is defined as the average of the success values of its Friends.
When the Friends analysis is unable to identify any similar project, all 20 projects are
used to compute the success value of the new project. Given this average success
value, the projects are ranked and divided into an upper (green) and lower (red) half.
This provides the prediction for the new projects in terms of either being a green or
red project.

The Friends for projects 21-46 are determined as illustrated in Table 4. Comparing
Friends with Nearest Neighbors, in 18 of 26 cases the Nearest Neighbor is also a
Friend. In three cases there is no Friend. This method is able to identify that there are
no friends, while the previous method still selects the nearest neighbor although it
may not be very close.

The results for all experience bases are shown Table 5. Table 5 shows that now 11
or 42% of the project outcomes are predicted correctly. There are 3 or 12% false
positives and 12 or 46% false negatives. While the correct predictions have increased,

they are still no better than random, as indicated by a kappa statistic that is close to
zero.

TABLE 4. PCA with loadings for projects 1-20 and project 21 as a new project.

TABLE 5. Diffusion matrix for Friends prediction

Outcome
Kappa = -0.03

Green Red

Green

27, 32, 33, 34, 37, 38 22, 23, 25, 26, 30, 35, 36, 39,
42, 43, 44, 45

Prediction

Red 21, 28, 29 24, 31, 40, 41, 46

4.3 Key Success Drivers

The third method is based on identifying key project characteristics. These are
characteristics that covariate with the success variable the most. This analysis is done
using PCA with the project characteristics and the success variable.

In cases when the number of project variables exceeds the number of projects in
the experience base, the original method developed in [11] has to be adapted.
Otherwise the principal component analysis would lead to singularities. Our approach
is to reduce the project variables to those having the highest correlations with the
success variable. This can be done by setting either a threshold for the number of
project variables to be included to a value n and taking the n project variables with the
highest correlations, or by setting a threshold c for the correlation value.

In the case study we had 27 project variables, but only 20 projects in each
experience base. We decided to set the threshold at c=0.4. The threshold is not
crucial, since the main aim was to reduce the number of variables so that an analysis
could be conducted. Moreover, the variables with the lowest correlation do not vary
together with the success variable anyway. This resulted in different sets of variables
to be investigated for the different sets of 20 projects, i.e. the experience bases
obtained through the sliding window approach.

With this reduction of project variables, it was possible to perform a principal
component analysis [2] and identify project characteristics grouped in the same factor
as the success variable.

Initially nine characteristics are identified as being important for projects 1-20 and
6-25. This then changes to only two variables being identified as the key success
drivers for the organization (projects 11-30, 16-35 and 21-40) The drivers identified
are “requirements stability” and “application experience” of the development team. In
the last experience base there is a change (projects 26-45). Four characteristics are
included in the identified key success drivers. This shows that the success drivers may
change over time, as the result of change or evolution in an organization.

Given that the key success drivers have been identified, it is possible to also store
the average of the identified project characteristics, and hence rank them based on the
average. For new projects, the average of the key success drivers was calculated and
the outcome (in terms of red or green) was predicted after comparison with the
experience base. The outcome of the prediction is presented in the diffusion matrix in
Table 6.

The third method is best for this data set. With this method, 19 or 73% of the
projects are predicted correctly. There are no more false positives, but 7 or 27% false
negatives. The kappa statistics has increased to 0.51, which in Altman’s model would
map to moderate agreement, see Table 2. However, we would like to regard it as

fairly good given the difficulty in creating accurate prediction models in software
engineering.

TABLE 6. Diffusion matrix for Key Success Driver prediction

Outcome
Kappa = 0.51

Green Red

Green 21, 27, 28, 29, 32, 33, 34, 37, 38 26, 30, 31, 36, 41, 42, 45

Prediction Red 22, 23, 24, 25, 35, 39, 40, 43,

44, 46

4.4 Discussion

Regardless of the method, this data set tends to have a relatively high number of
projects classified as red, both in terms of correct classifications and terms of false
negatives (red projects classified as green). This can be explained by the looking
closer into the data [24], which unfortunately is impossible to fit into this paper.
Anyhow, the high number of red projects among projects 21-46 can be explained
when looking at the whole data set, both project characteristics and success variables.
From the success variables, it is clear that in the beginning we have fairly low values
and then comes a set of projects with very high scores (projects 10-20). The sliding
window used in the analysis also means that the decreasing trend that we see from
project 27 until project 46 results in that a majority of the new projects will turn out to
be viewed as less successful (red), i.e. better projects were conducted in the past. A
majority of projects is however predicted to be green since the new projects are
viewed as being similar to older projects that are better and hence the level of success
is overestimated. It is clear from looking closer into the data that the data behaves
differently in terms of how it changes over time for project characteristics and success
variables respectively. Ideally, the project characteristics and success variables should
vary together as much as possible. The trends identified in the success variable are
however not visible for the project characteristics, and hence we have a challenge.
This challenge is partially addressed by the third method, where the project
characteristics that vary together with the success variable are identified. A simple
analysis of the data using descriptive statistics provides quite a lot of information that
can be valuable to use in projects to come.

Due to the idiosyncrasies of this data set, it is impossible to generalize from it,
except that it seems to make sense to have a method that identifies the key success
drivers in terms of project characteristics. This is clearly an advantage with the third
method. It provides support to identify key success drivers for organizations and use it
for prediction purposes.

All three methods are independent of the actual measures defined by a specific
organization. This makes them suitable for a wide variety of possible applications.
Each organization can determine what they believe to be a suitable set of project
characteristics to measure.

The third method also has the advantage that identifying key success drivers can
help managers to plan and control success. The first two methods are aimed at
prediction only. They cannot really be used for other purposes. Thus, the third method
has two main advantages:
• It is the best predictor of project outcome.
• It provides management support to plan and control for success.
In addition, it should be noted that since we classify the data into two halves, some of
the projects are viewed as being green although the actual average values of the
success variables are decreasing. This may have been avoided if a threshold of
success was set based on, for example, the first 20 projects. This is an area for future
research, i.e. to look at absolute values for success rather than relative values as we
have done here.

In other words, this study evaluates projects relative to other projects. When
considering the data in more detail, it clearly indicates that a major improvement in
terms of success was achieved after project 9. However, there is a tendency that the
level of success is declining after that again and the level of success is closing in on
what was seen in projects 1-9. This may be explained either with an actual decline in
success or as a changed view on what is successful, i.e. our yardstick has changed.

5. Conclusions

This paper evaluated three approaches to identify similar projects. Projects are
similar, if they (a) have similar project characteristics, and (b) have similar project
outcomes related to levels of project success. We showed that grouping projects by
key success drivers is superior to nearest neighbor and friends evaluation.

The approach also dealt with aging of projects for prediction purposes by using a
sliding window of projects. An interesting question to investigate in the future is more
sophisticated methods to determine the base set over time. For example, this paper
assumed a sliding window of 20 projects. Is there a method to determine the “best”

size for such a window of base projects? Are there ways to identify projects that
should be removed from the base set (such as “atypical” projects)? How would one
identify those? Essentially this is a question of the effect of both changing project
environments as well as the effect of using the experience factory to determine the
base set of projects that represents the key descriptors for projects (both good and
bad) for a development organization.

Although the identification of key success drivers was superior to the other two
methods, it is still a challenge to identify similar projects to predict success of new
projects. The scales (i.e. the perception of a certain score for a variable) may change
over time and hence older projects may have to be re-evaluated to ensure that we use
the same scale over time. Another challenge is to understand and have methods that
are able to cope with trends and to help address decreasing trends in the data (as
observed here). The trends in the data may be due to changes in the context of
software development. In this case it is important to be able to use information like
the one in this paper or similar information to manage software organizations.

References

[1] von Mayrhauser, A., Wohlin, C., Ohlsson, M. C.: Assessing and Understanding
Efficiency and Success in Software Production. Empirical Software Engineering: An
International Journal, Vol. 5, No. 2, pp. 125-154, 2000.

[2] Kachigan S. K.: Statistical Analysis – An Interdisciplinary Introduction to Univariate &
Multivariate Methods. Radius Press, 1986.

[3] Shepperd, M.: Case-based Reasoning in Software Engineering. In A. Aurum, R. Jeffrey,
C. Wohlin and M. Handzic (eds.): Managing Software Engineering Knowledge. Springer-
Verlag, Heidelberg, Germany, 2003.

[4] Basili, V. R., Caldiera, G., Rombach, H. D.: Experience Factory. In J. J. Marciniak:
Encyclopedia of Software Engineering. John Wiley & Sons, Inc., Hoboken, N.J., USA,
2002.

[5] Valett J. D.: The (Mis)use of Subjective Process Measures in Software Engineering. Proc.
Software Engineering Workshop, NASA/Goddard Space Flight Center, Greenbelt,
Maryland, USA, pp. 161-165, 1993.

[6] Gray A. R., MacDonell S. G., Shepperd M. J.: Factors Systematically Associated with
Errors in Subjective Estimates of Software Development Effort: The Stability of Expert
Judgement. Proc. of the Sixth Int. Software Metrics Symposium, Boca Raton, Florida,
USA, pp. 216-227, 1999.

[7] Höst M., Wohlin C.: An Experimental Study of Individual Subjective Effort Estimations
and Combinations of the Estimates. Proc. IEEE Int. Conf. on Software Engineering,
Kyoto, Japan, pp. 332-339, 1998.

[8] Ropponen J., Lyytinen K.: Components of Software Development Risk: How to Address
Them? A Project Manager Survey. IEEE Trans. in Software Engineering, Vol. 26, No. 2:
98-112, 2000.

[9] Hughes R.: Expert Judgement as an Estimation Method. Information and Software
Technology, Vol. 38, pp. 67-75, 1996.

[10] Basili V., Zelkowitz M., McGarry F., Page J., Waligora S., Pajerski R.: SEL's Software
Process-Improvement Program. IEEE Software, November pp. 83-87, 1995.

[11] Wohlin, C., Amschler Andrews, A.: Assessing Project Success using Subjective
Evaluation Factors. Software Quality Journal, Vol. 9, No. 1, pp. 43-70, 2000.

[12] Wohlin C., von Mayrhauser A., Höst M., Regnell B.: Subjective Evaluation as a Tool for
Learning from Software Project Success. Information and Software Technology, Vol. 42,
No. 14: 983-992, 2000.

[13] Myrtveit, I., Stensrud E.: A Controlled Experiment to Assess the Benefits of Estimating
with Analogy and Regression Models. IEEE Transactions on Software Engineering
25(4): pp. 510-525, 1999.

[14] Shepperd, M., Kadoda, G.: Comparing Software Prediction Techniques Using
Simulation. IEEE Transactions on Software Engineering”, Vol. 27, No. 11, pp. 1014-
1022, 2001.

[15] Ohlsson, N., Zhao, M., Helander, M.: Application of Multivariate Analysis for Software
Fault Prediction. Software Quality Journal, Vol. 7, No. 1, pp. 51-66, 1998.

[16] Mair, C., Kadoda, G., Lefley, M., Phalp, K., Schofield, C., Shepperd, M., Webster, S.: An
Investigation of Machine Learning Based Prediction Systems. Journal of Systems and
Software, Vol. 53, No. 1, pp. 23-29, 2000.

[17] Khoshgoftaar, T.M., Szabo, R.M.: Using Neural Networks to Predict Software Faults
during Testing. IEEE Transaction on Reliability, Vol. 45 No. 3, pp. 456-462, 1996.

[18] Shepperd, M.J., Schofield C.: Estimating Software Project Effort Using Analogies. IEEE
Transactions on Software Engineering 23(11): pp. 736-743, 1997.

[19] Saaty, T. L., Vargas, L. G.: Models, Methods, Concepts & Applications of the Analytic
Hierarchy Process. Kluwer Academic Publishers, Dordrecht, the Netherlands, 2001.

[20] Shepperd, M., Cartwright, M.: Predicting with Sparse Data. IEEE Transactions on
Software Engineering, Vol. 27, No. 11, pp. 987-998, 2001.

[21] NASA-SEL: Software Engineering Laboratory Database Organization and Users Guide,
Revision 2. Goddard Space Flight Center, Greenbelt, MD, USA, NASA-SEL Series,
SEL-89-201, 1992.

[22] El Emam, K., Wieczorek, I.: The Repeatability of Code Defect Classifications. Proc. the
Ninth International Symposium on Software Reliability Engineering, pp. 322-333, 1998.

[23] Altman D.:Practical Statistics for Medical Research. Chapman-Hall, 1991.
[24] Wohlin, C., Amschler Andrews, A.: A Case Study Approach to Evaluation of Three

Methods to Predict Project Success. Technical Report, Blekinge Institute of Technology,
2004, http://www.ipd.bth.se/cwo/TR-case.pdf.

