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Abstract.  To increase the likelihood for software project success, it is 
important to be able to identify the drivers of success. This paper compares 
three methods to identify similar projects with the objective to predict project 
success. The hypothesis is that projects with similar characteristics are likely to 
have the same outcome in terms of success. Two of the methods are based on 
identifying similar projects using all available information. The first method of 
these aims at identifying the most similar project. The second method identifies 
a group of projects as most similar. Finally, the third method pinpoints some 
key characteristics to identify project similarity. Our measure of success for 
these identifications is whether project success for these projects identified as 
similar is the same. The comparison between methods is done in a case study 
with 46 projects with varying characteristics. The paper evaluates the 
performance of each method with regards to its ability to predict project 
success. The method using key drivers of project success is superior to the 
others in the case study. Thus, it is concluded that it is important for software 
developing organizations to identify its key project characteristics to improve 
its control over project success. 

1. Introduction 

There are many project characteristics that influence project success. If it is true that 
certain project characteristics lead to certain project outcomes, it becomes important 
to be able to identify similar projects, since they would likely lead to similar project 
outcomes. Nowadays when many software systems evolve over time and come in 
several releases, it becomes even more crucial to learn from past projects to increase 
the likelihood for success in future projects. Software organizations must understand 
which project characteristics are most important for them to ensure successful 
projects. This paper contributes with a comparison of three potential methods to use 
to predict project success. 

Some examples of project characteristics include stability of requirements, 
knowledge of developers and management, inherent difficulty of the project, 



techniques and tools used (and how appropriate they are), tightness of schedule and 
type of application, required levels of reliability, fault tolerance, security, use of 
development techniques including use of object-oriented programming, design 
patterns, extreme programming, etc. Success indicators include timeliness of delivery, 
quality of software, as well as more long term properties such as maintainability and 
evolvability. 

Some of these project characteristics can be measured objectively, while others 
have to be measured subjectively. The same is true for project success variables. We 
focus here on subjective measurement of both project characteristics and project 
success as also is the case in for example [1]. The focus here on subjective measures 
is primarily due to availability in the case study presented below. 

In order to predict project success reliably, it is first necessary to find a method to 
identify similar projects. Projects are similar, if they show similar project 
characteristics and/or similar project outcomes. This paper investigates three methods 
to identify similar projects: 
1. Nearest neighbor. This method takes a set of projects, the base set, and computes 

for a new project the distance to each project in the base set. The new project is 
most similar to the project with the smallest distance to the new project. 

2. Friends. This approach also uses a base set of projects as well as the new project 
and groups them based on Principal Components Analysis (PCA) [2]. The new 
project is most similar to the projects with which it has been grouped. 

3. Key success driver analysis. Not all project characteristics are equally important 
in predicting project success. This analysis method reduces the full set of project 
characteristics to those that behave similarly to project success. This reduced set 
of project characteristics is then used to rank projects by success and failure. New 
projects are identified as potentially successful or not based on this classification. 

We selected these three approaches, because they represent three very different 
approaches to similarity identification. The first method is focused on identification of 
the most similar project using a distance measure [3], which is a simple measure used 
in case-based reasoning. The second method identifies a set of similar projects using 
all available information. Finally, the third method is based on identification of key 
success drivers. Based on these key success drivers, the most similar projects are 
identified. 

Other methods would have been possible to use as for example neural networks, 
clustering and so forth. However, the main objective is not to make an exhaustive 
comparison of methods. The objective is primarily to investigate whether is makes 
more sense to focus on a few key variables (in particular the key success drivers in the 
context of this paper) rather than all data available for different projects. 

All three methods are evaluated with respect to their ability to predict project 
outcome (success or not). Since the impact of project characteristics on project 
outcomes varies over time (for example, use of the software factory concept [4] will 



influence the effect of project characteristics over time), we need to take this into 
account. Our approach is to use a sliding window of projects for the base set. This 
means, that the oldest projects are removed from the base set as new ones are added to 
it. Given the high degree of innovation and change in software development, it is not 
likely that the base set will ever be very large. This makes it important that methods 
used for prediction are able to function with small amounts of data. 

The paper is organized as follows. Section 2 describes related work with respect to 
identifying similar projects, predicting various aspects of project success based on 
measurement of objective and subjective variables, and their use for various types of 
predictions like effort estimation, risk estimation, in addition to estimating various 
success factors. Section 3 describes the case study data used to illustrate the approach. 
Section 4 specifies the approach and illustrates the approach on the case study data. 
Section 5 draws conclusions and points out further work. 

2. Related Work 

Most prediction work has been directed towards using quantitative data, for example, 
measures of size, person-hours spent, number of defects and so forth. However, 
subjective measures have only recently been analyzed more extensively in empirical 
software engineering, specifically in software project assessment and evaluation. Part 
of the problem stems from issues related to collecting trustworthy data [5]. On the 
other hand, subjective measures have been used successfully for effort estimation [6, 
7], and risk management [8]. Expert judgment in estimation tasks has been discussed 
in [9]. 

More recently, subjective variables have been used to map project characteristics 
to project success. First in [1], subjective factors were evaluated alongside objective 
quantitative ones to evaluate both efficiency and success of software production for 
projects from the NASA-SEL database [10]. The paper identifies which successful 
projects were also efficient and determines primary (subjective) drivers of project 
success. In [11], the method for analyzing subjective project characteristics and 
success indicators is refined and discussed in-depth, and two case studies are 
presented. The primary success drivers amongst the project characteristics are 
identified and an agreement index is established that quantifies to which degree the 
project characteristics that were identified as primarily connected to project success 
are able to predict project success. The results identified that about one third of the 
successful projects could be predicted accurately. We believe that this is due to the 
limitations of the approach, specifically that projects are classified into two 
categories: upper half and lower half (both based on project characteristics). The 



halves are denoted “good” and “bad” respectively although it is really up to each 
individual organization to judge where the limit between “good” projects and “bad” 
projects is. It is reasonable to assume that projects around the border between “good” 
and “bad” exhibit more uncertainty with respect to project outcome (success or 
failure). This could account for some of the misclassification. To circumvent this 
problem, an extension was proposed in [12], where a third class was introduced to try 
to avoid classifying projects close to the border between “good” and “bad”. 

However, the work so far has been focused on development of a method for 
identification of key success drivers in software development. Thus, the research has 
been focused on developing one model and then extending and improving the model. 
Here, the main focus is on using the developed model for prediction and to evaluate 
the model in comparison with two other approaches using industrial data from 46 
development projects. 

Prediction models in software engineering have been directed towards several 
different areas. Researchers have also used a large variety of statistical methods and 
approaches. This includes regression analysis (linear, multiple linear regression, 
stepwise regression) [13,14], multivariate statistics [15], machine learning [16] 
including neural networks [14, 17], analogies [13,18] and so forth. Some of these 
methods, including for example neural networks, require a substantial amount of data 
for model building. To address this problem, researchers have looked at methods for 
prediction when having few data points. This includes, for example, the use of 
different decision making methods such as the analytic hierarchy process [19] which 
is applied to effort estimation in [20]. Case-based reasoning has also been used as a 
means for prediction, for example, in [14, 20]. 

3. Case Study Data 

The data comes from the NASA-SEL database [21]. Further information about 
NASA-SEL can be found in [10]. In total, the database available to us contains data 
from more than 150 projects spanning five years. Of these, we selected 46 for 
analysis, based on completeness of project data recorded. These 46 projects 
represented a variety of types of systems, languages, and approaches for software 
development. The actual data is not intended to play any major role. The main 
objective is to compare three methods for prediction purposes and in particular the 
importance of using key characteristics in the prediction rather than as much 
information as is available. 

The selection criterion of projects in the database was completeness of data for 27 
project characteristics. The characteristics are measured on an ordinal scale (1-5) 



using subjective judgment. A higher value denotes more of the quality ranked. The 
subjective evaluations rank the projects in terms of problem complexity, schedule 
constraints, nature of requirements, team ability, management performance, 
discipline, software quality, etc. Six success factors were measured per project. These 
six variables are aggregated to one variable in the evaluation here, since it does not 
affect the actual comparison. From an analysis point of view, it is unfortunate that the 
data is on an ordinal scale as seen below. However, this is the type of data that we as 
researchers many times face when collecting data from industrial environments. The 
actual variables are not crucial for the comparison of methods and hence the reader is 
referred to, for example, [11]. 

4. Analysis Method 

The analysis method consists of three phases: 
1. Identify a base set of projects to use in assessing new ones. This base set should 

describe the current spectrum of project capability of the organization. While one 
way is to simply take all projects finished by an organization to date, this might 
include old projects whose relationships between project characteristics and 
success indicators no longer reflects current project behavior. Reasons for 
changes include: changes in capability, environment, process, successful use of 
experience factory concepts, etc. Thus we propose to use a sliding window 
instead, since it is most likely that older projects no longer reflect new ones. 
For the case study, the first 20 projects were viewed as the initial base set, the 
initial experience base. This first base set was used to identify which projects in 
the base set were similar to which of the following 5 new projects (for the 
purpose of predicting project success). Then the base set was updated by 
removing the five oldest projects from the base set. Again, the new base set 
(projects 6-25) was used to identify similar projects for projects 26-30. Projects 
11-30 were used to identify similar projects for projects 31-35; projects 16-35 
were used to identify similar projects for projects 36-40, projects 21-40 were 
used to identify similar projects for projects 41-45 and finally projects 26-45 
were used to identify similar projects for project 46. 

2. Identification of similar projects. This paper investigates and compares three 
ways to identify similar projects. For each window and set of new projects 
identified in step one, Nearest Neighbor, Friends, and Key Success Driver are 
used to identify projects in the experience base that are similar to the new 
projects. The detailed analysis is described in the subsections below. 



3. Evaluate prediction quality. New projects identified as similar (based on 
characteristics) with projects in the base set are assumed to show similar 
outcomes to those projects with respect to level of success. Since we know the 
level of success through the data in the database, it is possible to evaluate 
prediction accuracy. We use a diffusion matrix to illustrate correct predictions 
versus false positives and false negatives. In addition, we also use the kappa 
statistic as an agreement index. The agreement index is described in more detail 
in a software engineering context in [22] and briefly outlined below. 

We selected to work with the average rather than the median, because it takes into 
consideration the effect of extreme or unusual values better and accentuates 
differences in data that the median would not show (if most project success indicators 
are quite similar, very little can be said about their differences). Projects are then 
ranked based on this average score. Similar to the original model [11], we consider a 
project to be successful, if it is in the top half of the projects ranked. It should be 
noted that all projects may be successful, but the upper half is more successful than 
the lower half. This is a somewhat simplistic view on success to illustrate the 
prediction methods. In a real case, it would be important to actually define success 
properly, for example the software was developed on time within budget with the 
correct functionality and the quality expected.  Anyhow, here it is primarily a matter 
of relative comparison between the projects rather than distinguishing between 
successful project and failed projects. Projects in the top half are ranked green, in the 
bottom half, red. We have chosen not to use the extended model with three classes 
[12], since the main objective here is to compare three competing methods for 
prediction and the extended method tries to circumvent the prediction problem. Here, 
we would like to address the prediction difficulties. 

New projects identified as being similar with green projects are predicted as green, 
while new projects identified as being similar with red projects are considered red. A 
diffusion matrix reports agreement between prediction using the experience base and 
the actual outcome (average score of success variable). 

The following subsections describe the three methods for identification of similar 
project(s) and evaluate the ability of the methods to predict success. 

4.1. Nearest Neighbor 

In this method a distance measure is calculated for each new project from the projects 
in the experience base (the case study has 20 projects in the experience base for each 
iteration). The measure is a measure of dissimilarity (DS), since the most similar 



project in the experience base is the project with the highest value of the measure 
below. The measure is for ordinal data computed as: 
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In the formulae, Cji is the value of variable i for project j, where only two projects are 
considered. One project is the new project and then it is compared with all other 20 
projects one at a time. This means that the nearest neighbor is the project with the 
largest value of DS. More information about the measure in a software engineering 
context can be obtained from [3]. 

The project in the experience base with the largest value for the distance measure 
is selected as the nearest neighbor. The nearest neighbors are listed in Table 1 for 
projects 21-46. The table shows that some projects end up as neighbors more often 
than others. Project 16 is one of those. 

 

TABLE 1.  Identification of Nearest Neighbour. 

Project 21 22 23 24 25 26 27 28 29 30 31 32 33 34 

Neighbor 2 16 16 16 16 16 12 25 23 15 16 27 26 27 

Project 35 36 37 38 39 40 41 42 43 44 45 46 

Neighbor 20 21 35 30 26 24 30 35 35 35 26 39 

 
The outcome of the new project is predicted as the outcome of the nearest neighbor. 
The prediction is only concerned with whether the new project will be a success 
(green) or not (red). One could look more closely into the prediction of the actual 
value for the different success variables. However, we believe that at the stage we are 
making this prediction, it is sufficient to provide an indication of where the project is 
heading. When two or more projects have the same value for the distance measure, 
the newest project is selected as the nearest neighbor. 

The results from using this method as a prediction method for all successive 
experience bases are shown in the Table 3. The method is not very accurate. Only 
eight projects out of 26 (about 31%) are actually predicted correctly (green-green or 
red-red). There are 5 false positives (19%) and 13 false negative (50%). An agreement 



index is also calculated, which often is referred to as kappa statistic [23]. In software 
engineering, the kappa statistic has been applied to inter-rater agreement of process 
assessments [22]. For an introduction to the kappa statistics, please refer to these 
references. An interpretation of the kappa statistics can be found in Table 2. 

 
TABLE 2.  The Altman kappa scale. 

Kappa statistics < 0.20 0.21-0.40 0.41-0.60 0.61-0.80 0.81-1.00 

Strength of agreement Poor Fair Moderate Good Very good 

 
The agreement index requires comparable scales for the two classifications, for 
example, as is the case when comparing the agreement between two raters using the 
same scale. The problem addressed here is different since we compare one prediction 
model with the actual outcome. This problem is inherently harder and hence the 
mapping in Table 2 is most likely too ambitious. Informally with respect to the scale, 
it is still reasonable that values below 0.20 are poor and values between 0.21-0.40 are 
fair. However, given that we compare predictions with outcome, we believe that 0.41-
0.60 is good, 0.61-0.80 is very good and above 0.80 is utopia. 

A random assignment of projects to the cells in Table 3 should on average result 
in an agreement index (kappa) of zero. Values below zero means that the prediction 
method performs worse than random assignment. This is the case for this particular 
method for our data set. In other words, this method fails quite dramatically in 
identifying an existing project to make a prediction of project success. 
 

TABLE 3.  Diffusion matrix for Nearest Neighbour prediction 

Outcome 
Kappa = -0.26 

Green Red 

 
Green 

27, 32, 34, 38 22, 23, 24, 25, 26, 30, 31, 35, 
36, 41, 42, 43, 44 

 
 
Prediction 

Red 21, 28, 29, 33, 
37 

39, 40, 45, 46 



4.2 Friends 

The second method is based on using Principal Component Analysis [2] to “package” 
similar projects (friends), i.e. projects whose characteristics seem to vary in the same 
way. The statistical package used for Principal Component Analysis (PCA) is 
StatView version 5.0.1. Basically, PCA tries to abstract variables (or in this case 
projects) that covariate into a higher level factor. The analysis method creates factors 
with loadings for each variable in each factor. A variable is here viewed to belong to 
the factor where the variable has the highest positive loading. 

In the case study, all 27 project characteristics are measured on an ordinal 5 point 
Likert scale. While this type of analysis usually requires at least interval data, it is 
fairly robust with regards to using ordinal data. In addition, we only use it to identify 
projects that behave in a similar fashion with respect to the project characteristics. No 
other conclusions are drawn from the analysis.  

The PCA is conducted for the 27 project characteristics to identify similar 
projects. Table 4 shows an example of the results of this analysis for the first 
experience base (projects 1-20) and one of the projects (project 21) in the first set of 
projects to be classified (projects 21-25). From Table 4, we see that project 21 has its 
highest loading in Factor 1. The other projects having this are projects 2, 3, 5, 7, 10, 
12, 13 and 20. Thus, these eight projects are regarded as being the Friends of project 
21. 

The Friends approach extends the Nearest Neighbor approach from a single 
project to a set of close projects (hence the name Friends). Given that a new project is 
now considered to have the same level of success as its Friends, the average success 
value of the new project is defined as the average of the success values of its Friends.  
When the Friends analysis is unable to identify any similar project, all 20 projects are 
used to compute the success value of the new project. Given this average success 
value, the projects are ranked and divided into an upper (green) and lower (red) half. 
This provides the prediction for the new projects in terms of either being a green or 
red project. 

The Friends for projects 21-46 are determined as illustrated in Table 4. Comparing 
Friends with Nearest Neighbors, in 18 of 26 cases the Nearest Neighbor is also a 
Friend. In three cases there is no Friend. This method is able to identify that there are 
no friends, while the previous method still selects the nearest neighbor although it 
may not be very close. 

The results for all experience bases are shown Table 5. Table 5 shows that now 11 
or 42% of the project outcomes are predicted correctly. There are 3 or 12% false 
positives and 12 or 46% false negatives. While the correct predictions have increased, 



they are still no better than random, as indicated by a kappa statistic that is close to 
zero. 

 
TABLE 4.  PCA with loadings for projects 1-20 and project 21 as a new project. 

 
 

TABLE 5. Diffusion matrix for Friends prediction 

Outcome 
Kappa = -0.03 

Green Red 

 
Green 

27, 32, 33, 34, 37, 38 22, 23, 25, 26, 30, 35, 36, 39, 
42, 43, 44, 45 

 
 
Prediction 

Red 21, 28, 29 24, 31, 40, 41, 46 

 



4.3 Key Success Drivers 

The third method is based on identifying key project characteristics. These are 
characteristics that covariate with the success variable the most. This analysis is done 
using PCA with the project characteristics and the success variable.  

In cases when the number of project variables exceeds the number of projects in 
the experience base, the original method developed in [11] has to be adapted. 
Otherwise the principal component analysis would lead to singularities. Our approach 
is to reduce the project variables to those having the highest correlations with the 
success variable. This can be done by setting either a threshold for the number of 
project variables to be included to a value n and taking the n project variables with the 
highest correlations, or by setting a threshold c for the correlation value.  

In the case study we had 27 project variables, but only 20 projects in each 
experience base. We decided to set the threshold at c=0.4. The threshold is not 
crucial, since the main aim was to reduce the number of variables so that an analysis 
could be conducted. Moreover, the variables with the lowest correlation do not vary 
together with the success variable anyway. This resulted in different sets of variables 
to be investigated for the different sets of 20 projects, i.e. the experience bases 
obtained through the sliding window approach. 

With this reduction of project variables, it was possible to perform a principal 
component analysis [2] and identify project characteristics grouped in the same factor 
as the success variable.  

Initially nine characteristics are identified as being important for projects 1-20 and 
6-25. This then changes to only two variables being identified as the key success 
drivers for the organization (projects 11-30, 16-35 and 21-40) The drivers identified 
are “requirements stability” and “application experience” of the development team. In 
the last experience base there is a change (projects 26-45). Four characteristics are 
included in the identified key success drivers. This shows that the success drivers may 
change over time, as the result of change or evolution in an organization. 

Given that the key success drivers have been identified, it is possible to also store 
the average of the identified project characteristics, and hence rank them based on the 
average. For new projects, the average of the key success drivers was calculated and 
the outcome (in terms of red or green) was predicted after comparison with the 
experience base. The outcome of the prediction is presented in the diffusion matrix in 
Table 6.  

The third method is best for this data set. With this method, 19 or 73% of the 
projects are predicted correctly. There are no more false positives, but 7 or 27% false 
negatives. The kappa statistics has increased to 0.51, which in Altman’s model would 
map to moderate agreement, see Table 2. However, we would like to regard it as 



fairly good given the difficulty in creating accurate prediction models in software 
engineering. 

 

TABLE 6.  Diffusion matrix for Key Success Driver prediction 

Outcome 
Kappa = 0.51 

Green Red 

Green 21, 27, 28, 29, 32, 33, 34, 37, 38 26, 30, 31, 36, 41, 42, 45  
 
Prediction Red  22, 23, 24, 25, 35, 39, 40, 43, 

44, 46 

4.4 Discussion 

Regardless of the method, this data set tends to have a relatively high number of 
projects classified as red, both in terms of correct classifications and terms of false 
negatives (red projects classified as green). This can be explained by the looking 
closer into the data [24], which unfortunately is impossible to fit into this paper. 
Anyhow, the high number of red projects among projects 21-46 can be explained 
when looking at the whole data set, both project characteristics and success variables. 
From the success variables, it is clear that in the beginning we have fairly low values 
and then comes a set of projects with very high scores (projects 10-20). The sliding 
window used in the analysis also means that the decreasing trend that we see from 
project 27 until project 46 results in that a majority of the new projects will turn out to 
be viewed as less successful (red), i.e. better projects were conducted in the past. A 
majority of projects is however predicted to be green since the new projects are 
viewed as being similar to older projects that are better and hence the level of success 
is overestimated. It is clear from looking closer into the data that the data behaves 
differently in terms of how it changes over time for project characteristics and success 
variables respectively. Ideally, the project characteristics and success variables should 
vary together as much as possible. The trends identified in the success variable are 
however not visible for the project characteristics, and hence we have a challenge. 
This challenge is partially addressed by the third method, where the project 
characteristics that vary together with the success variable are identified. A simple 
analysis of the data using descriptive statistics provides quite a lot of information that 
can be valuable to use in projects to come. 



Due to the idiosyncrasies of this data set, it is impossible to generalize from it, 
except that it seems to make sense to have a method that identifies the key success 
drivers in terms of project characteristics. This is clearly an advantage with the third 
method. It provides support to identify key success drivers for organizations and use it 
for prediction purposes.  

All three methods are independent of the actual measures defined by a specific 
organization. This makes them suitable for a wide variety of possible applications. 
Each organization can determine what they believe to be a suitable set of project 
characteristics to measure. 

The third method also has the advantage that identifying key success drivers can 
help managers to plan and control success. The first two methods are aimed at 
prediction only. They cannot really be used for other purposes. Thus, the third method 
has two main advantages: 
• It is the best predictor of project outcome.  
• It provides management support to plan and control for success. 
In addition, it should be noted that since we classify the data into two halves, some of 
the projects are viewed as being green although the actual average values of the 
success variables are decreasing. This may have been avoided if a threshold of 
success was set based on, for example, the first 20 projects. This is an area for future 
research, i.e. to look at absolute values for success rather than relative values as we 
have done here. 

In other words, this study evaluates projects relative to other projects. When 
considering the data in more detail, it clearly indicates that a major improvement in 
terms of success was achieved after project 9. However, there is a tendency that the 
level of success is declining after that again and the level of success is closing in on 
what was seen in projects 1-9. This may be explained either with an actual decline in 
success or as a changed view on what is successful, i.e. our yardstick has changed. 

5. Conclusions 

This paper evaluated three approaches to identify similar projects. Projects are 
similar, if they (a) have similar project characteristics, and (b) have similar project 
outcomes related to levels of project success. We showed that grouping projects by 
key success drivers is superior to nearest neighbor and friends evaluation. 

The approach also dealt with aging of projects for prediction purposes by using a 
sliding window of projects. An interesting question to investigate in the future is more 
sophisticated methods to determine the base set over time. For example, this paper 
assumed a sliding window of 20 projects. Is there a method to determine the “best” 



size for such a window of base projects? Are there ways to identify projects that 
should be removed from the base set (such as “atypical” projects)? How would one 
identify those? Essentially this is a question of the effect of both changing project 
environments as well as the effect of using the experience factory to determine the 
base set of projects that represents the key descriptors for projects (both good and 
bad) for a development organization. 

Although the identification of key success drivers was superior to the other two 
methods, it is still a challenge to identify similar projects to predict success of new 
projects. The scales (i.e. the perception of a certain score for a variable) may change 
over time and hence older projects may have to be re-evaluated to ensure that we use 
the same scale over time. Another challenge is to understand and have methods that 
are able to cope with trends and to help address decreasing trends in the data (as 
observed here). The trends in the data may be due to changes in the context of 
software development. In this case it is important to be able to use information like 
the one in this paper or similar information to manage software organizations. 
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