
 

 

 

 

 

 

 

 

 

 

 

 

M. Svahnberg and C. Wohlin, "Consensus Building when Comparing Software 
Architectures", Proceedings of the 4th International Conference on Product Focused 
Software Process Improvement (PROFES 2002), pp. 436-452, Springer LNCS Volume 

2559/2002, Rovaniemi, Finland, December 2002. 



Consensus Building
when Comparing Software Architectures

Mikael Svahnberg, Claes Wohlin
Department of Software Engineering and Computer Science

Blekinge Institute of Technology, PO Box 520, S-372 25 Ronneby SWEDEN
[Mikael.Svahnberg | Claes.Wohlin]@bth.se, http://www.ipd.bth.se/serl

Abstract. When designing a software system it is beneficial to study and use
architectural styles from literature, to ensure certain quality attributes. How-
ever, as the interpretation of literature may differ depending on the back-
ground and area of expertise of the person reading the literature, we suggest
that structured discussions about different architecture candidates provides
more valuable insight not only in the architectures themselves, but in peo-
ples’ opinions of the architectures’ benefits and liabilities. In this paper, we
propose a method to elicit the views of individuals concerning architecture
candidates for a software system and pinpoint where discussions are needed
to come to a consensus view of the architectures.

1 Introduction
When developing software, it is important to have an appropriate architecture for the
system, or sub-systems comprising the full system. The choice of, or evolution into, an
appropriate architecture is not only governed by functional requirements, but to a large
extent by quality attributes [2][4][6].

However, knowing this, it is still a non-trivial task to discern between architecture
candidates. There are usually more than one quality attribute involved in a system, and
the knowledge of the benefits and drawbacks of different architecture structures with
respect to different quality attributes is not yet an exact science. Decisions are often tak-
en on intuition, relying on the experience of senior software developers.

Because of this it is important, we believe, to be able to compare software architec-
ture structures based on quantified data. Likewise, it is important to be able to compare
the strengths and weaknesses of a single software architecture structure based on quan-
tified data. If this is not done, there will always be subjective judgements involved when
selecting between architecture structures.

What is even more important is that everyone involved in designing a software ar-
chitecture share the same view of what benefits and drawbacks different architecture
structures have. To do this, it is important that the views of different persons are extract-
ed in a quantified way that enables comparisons between the views, and a synthesis of
the different views into a unified consensus view.

We propose that the understanding of architectures starts with eliciting the knowl-
edge of individuals and that structured discussions should be held to reach a further un-
derstanding and learn from others during the process of building consensus around the
benefits and liabilities of different architecture candidates.

It should be noted that we use the term “software system” rather loosely in this pa-
per. We use it to mean any software entity, be it an entire product suite, a single product,
a subsystem within a product, a software module, or a software component.



1.1 Scope and Goal of Paper
In this paper, we describe a process for capturing knowledge from individuals into a
framework that enables analysis of and comparison between software architectures with
respect to quality attributes. In the process of synthesizing this framework, the views of
the individuals participating in the process are extracted and presented in a way that en-
ables and facilitates discussion where the participants are in disagreement. The purpose
of these discussions is to create a joint understanding of the benefits and liabilities of
the different software architectures.

Throughout this paper we illustrate each step with data and experiences from con-
ducting the step with the participation of colleagues, who have also participated in cre-
ating the initial data sets in a previously conducted experiment, described in further de-
tail in [17].

We would like to stress the fact that even if we in this experiment used generic ar-
chitecture structures and quality attributes one would, if using the method in a company,
develop architecture candidates and elicit quality requirements for a particular system
rather than using generic architectures and quality attributes. The method would thus
operate on architectures that can be used in the particular system. Likewise, the quality
attributes used would be elicited for the particular system, and would hence be ex-
pressed in terms pertinent to the system’s problem domain.

Moreover, the focus of this paper is mainly on the process described and the discus-
sion of this rather than on the example, which is mostly included to illustrate the differ-
ent steps.

The remainder of this paper is organized as follows. In Section 1.2 we present an
outline of the process proposed in this paper. In Section 2 we present how to create in-
dividual views, discuss these and combine them to a unified framework. In Section 3
we present how to evaluate this unified framework, and in Section 4 we present how to
analyse it. Finally, the paper is concluded in Section 5.

1.2 Outline of Process
The process we describe in this paper consists of the following five steps (also illustrat-
ed in Figure 1), each of which we go through in further detail in this paper:

1. Create individual frameworks, as outlined in Section 2.1. The individual frame-
works consists of two tables per participant, where one table describes the partic-
ipant’s ranking of the support for different quality attributes for each of the archi-
tecture structures, and the other ranks the architecture structures for each quality
attribute.

2. Discuss the individual frameworks and decide upon a strategy for combining
them into a unified consensus framework, which we go through in Section 2.2 in
this paper.

3. Create the unified framework as presented in Section 2.3.
4. Evaluate Framework, as presented in Section 3.
5. Analyse the framework. This step is described in Section 4.

As presented by Johansson et al. [9], it is expected that stakeholders have different
views of the importance of different quality attributes, and we also expect developers
with different backgrounds to have different views of different architecture structures.
The purpose of steps 1 and 2 of the process in this paper is hence to elicit the views of
different stakeholders and use these as a basis for further discussions where the causes
for the different views are investigated.



These discussions serve as one important input to the architecture design process
and the development process, but it is also important to analyse the framework to un-
derstand the benefits of different architecture structures. This is not only useful if the
architectures represent initial designs for a system, but is even more important if the
purpose of the evaluation is to see whether the current architecture of an evolving sys-
tem is still the most appropriate alternative given the (potentially also evolved) domain
and quality requirements of the software system. By regularly re-evaluating the choice
of software architecture phenomena such as software aging [13] may be, if not stopped,
so at least slowed down. This analysis consists of steps 4 and 5, where the framework
are first evaluated to measure the amount of unceirtanty it contains (step 4) and then
each architecture candidate analysed in further detail compared to the other architecture
candidates (step 5).

2 Creating the Framework

The framework we intend to create consists of two tables, which we refer to as the FQA
(Framework for Quality Attributes) and the FAS (Framework for Architecture Struc-
tures). These two tables consist of a set of vectors, normalized so that the values in each
vector sum up to 1, and the tables describe the architecture structures with respect to
quality attributes in two ways: the FQA describes a ranking of architecture structures
with respect to a certain quality attribute, and the FAS describe the ranking of different
quality attributes within a particular architecture structure.

We create these two tables by first acquiring the individual views of a number of
participants, as described in Section 2.1 and then discussing these views in a meeting,
which we describe in Section 2.2. The last step is to combine all individual views into
a unified framework, as described in Section 2.3.

Figure 1. Illustration of Process

Step 1: Create Indi-
vidual Frameworks

Step 2: Discuss
Individual Frame-
works

Step 3: Create Uni-
fied Framework

Step 4: Evaluate
Framework

Step 5: Analyse
Framework



However, before the framework can be created, it must be known which quality as-
pects are relevant to consider, and a set of architecture structures must be developed for
the system to design. We do not describe this further, as it is done using traditional re-
quirements engineering (e.g. [5][12]) and architecture design methods (e.g. [4][6][8]).
The input for the method is thus highly context dependent, as the architecture structures
and the quality attributes are designed and elicited for a particular software system, in
a particular domain and for a particular software company with a certain software de-
velopment culture.

The elicited relevant quality aspects and the architecture structure candidates are
used as input to the first step of the process, as described below.

2.1 Creation of Individual Frameworks
The first step after the architecture structures are created is to understand how different
individuals, potentially with different backgrounds, perceive the strengths and weak-
nesses of the architecture structures with respect to a set of quality attributes.

One can choose whether to elicit the views, in terms of the FAS and FQA, of each
individual or whether to obtain a collective framework in a group meeting. If the par-
ticipants create the framework collectively, there is a risk that opinions are suppressed,
wherefore we suggest that it is better if each participant create an individual framework
that becomes the basis for discussions, e.g. as presented in Section 2.2. Each of these
individual frameworks should then describe the strengths and weaknesses of the archi-
tecture structures in a comparable way, so that differences between participants can be
identified and discussed.

However, to explain in comparable terms what the strengths and weaknesses of a
particular architecture structure are, is not a trivial task. To facilitate this, we propose
the use of methods available from the management science literature, for example in
Anderson et al. [1]. The methods are often denoted multi-criteria decision processes.

One such method is the Analytic Hierarchy Process (AHP for short), which was
originally proposed by Saaty [14] (and also described in a later publication [15]). This
approach has been applied in software engineering by other researchers addressing, for
example, requirements engineering [10] and project estimation [16]. The Analytic Hi-
erarchy Process can be used to prioritize different items or aspects. The result is a pri-
ority vector with relative weights on the different items or aspects being prioritized.

In order to create the individual frameworks, what needs to be done is to complete
two AHP questionnaires, with questions pertaining to the following two issues:

• A comparison of different quality attributes for each software architecture struc-
ture.

• A comparison of different software architecture structures for each software qual-
ity attribute.

This will then result in two tables per participant, related to the FAS and the FQA as
earlier described.
Illustration of Creating Individual Frameworks. In a previous study [17], we
present an experiment where we conduct the type of AHP ranking as mentioned above,
i.e. we describe and apply a method for assessing the support different architectural
structures have for different quality attributes, and also which architectural structures
best fulfil certain quality attributes.

The outcome of this experiment is a series of vectors for each participant in the
study. In our study each of the eight participant produced six vectors ranking architec-
tural structures for each quality attribute and five vectors ranking the quality attribute



potential within each architecture structure. These vectors are grouped into two tables
per participant, corresponding to the FAS and the FQA as described above.

The quality attributes used were those from the ISO 9126 standard [7], namely: Ef-
ficiency, Functionality, Usability, Reliability, Maintainability and Portability, and the
architecture structures used were a selection from Buschmann et al. [3], namely: Micro-
kernel, Blackboard, Layered, Model-View-Controller and Pipes and Filters. It should
however be noted that the method is not bound to these attributes and structures in par-
ticular. Any other set would have worked just as well.

The individual frameworks can be studied separately, but the real use comes if they
can be combined into a single, comparable view of the architecture structures and qual-
ity attributes, e.g. as described in the next sections.

2.2 Discussing the Individual Frameworks
The purpose of discussing and comparing the individual frameworks is to create a fur-
ther understanding of where the software engineers disagree in their judgements of the
architecture candidates, and to elicit the reasons why this disagreement occurs. We ex-
pect to find disagreements, as it is rare that all software engineers have the exact same
background and experience, and these differences will be manifested in the individual
frameworks created in the previous step.

In order to identify the discrepancies that are most relevant to discuss, we propose
to use the sum of the squared distance to the mean value, described by the following

formulae: , where N is the number of participants. This formulae is ap-

plied over all participants for each vector in the FAS and FQA (in effect, for each qual-
ity attribute and each architecture structure), and hence produce a value for each vector
that describes the amount of disagreement between the participants. After this, a suita-
ble threshold value is selected to discern which of the vectors are worthy of further ex-
amination.

Although it is up to the user of our method to set a suitable threshold value and it is
depending on the number of discussion points one wish to identify, we suggest that the
threshold value is set to the 75th percentile, thus pinpointing the upper 25% of the data
set. However, this also needs to be augmented by visually inspecting graphs of the in-
dividual answers and identifying places where there are interesting outliers even though
the spread of the answers do not exceed the threshold value.

During a meeting, each of the identified data points are discussed, and participants
with a differing opinion from the rest get a chance to explain why their values differ.
Embracing Disagreement. That different persons have different backgrounds is not an
uncommon situation, neither in academia nor in industry. Thus, any formed group will
consist of persons with different backgrounds, which is partly what makes a group suc-
cessful. As all group members form their interpretations of the situation at hand based
on their background, one cannot expect all participants to have the same interpretation.
We believe that the key to success is to acknowledge this and to find ways to cope with
the differing interpretations.

If participants disagree on the meaning of a certain quality attribute, or of a certain
architecture structure, this is a disagreement that would manifest itself later during the
development process and, in a worst case, be the source of flaws in the delivered prod-
uct.

xi x–( )2
i=1
N

∑



The major contribution of the meeting presented in this section is that the partici-
pants get to present their rationale, and this creates a better joint understanding of how
to interpret the quality attributes and architecture structures.

Another goal of the discussions is that the individual vectors should be combined
into vectors that everyone can agree upon. There are several ways to combine the vec-
tors, e.g.:

• Use the mean value.
• Remove outliers and use the mean value.
• Use the median value.
• Let the participants, with the gained knowledge from the discussion, re-do the

AHP questionnaire for the vector in question and hold a second meeting to dis-
cuss the new vector.

• Let the participants jointly complete an AHP questionnaire for the vector in ques-
tion.

Which method to use can be decided during the meeting for every vector, but we sug-
gest that in most cases using the median value is sufficient. It is less time-consuming
than the other choices, while still giving a more accurate image than just using the mean
value. The mean value would be unduly influenced by extreme values, whereas the me-
dian value indicates where the bulk of the participants are located without biasing to-
wards outliers.
Illustration of a Consensus Discussion Meeting. With the goal of creating a unified
view of the eight different opinions (stemming from the eight different participants in
the previous study [17]), we conducted a follow-up meeting. During this meeting, the
11 calculated vectors (one vector for each architecture structure and quality attribute
used: 5 architecture structures + 6 quality attributes) per participant based on the AHP
study was presented and then discussed from the perspective of a smaller set of data
points which was deemed worthy of further examination. These data points include
those where there is a large spread among the answers of the participants, and those
where the participants’ opinions form two, or in some cases three distinct groups.

As a guideline for finding these data points, we used the sum over all participants
of the squared distance to the mean value, with a threshold value of 0.10, which roughly
corresponds to the 70th percentile. Hence, any data point where the sum over all partic-
ipants of the squared distance to the mean value was larger than 0.10 was deemed inter-
esting enough to warrant further discussion.

Using this simple technique, we identified 20 data points out of 60 (Five architec-
ture structure vectors with 6 values each, and six quality attribute vectors with 5 values
each equals 60 data points per participant, and we are looking across all of the partici-
pants) that warranted discussion. Of these, 6 data points were only marginally over the
threshold value and were not discussed in as great a detail. Even though the set thresh-
old value roughly corresponds to the 70th percentile, we thus only held detailed discus-
sions about the data points above the 75th percentile.

In addition to the data points identified by the threshold value described above we
also noticed, while studying graphs of the data sets, that in some cases one or two par-
ticipants disagreed largely with the rest of the group. We included these data points as
discussion points as well, as it is important that all arguments are heard, and the disa-
greeing person or persons may have very compelling reasons for disagreeing with the
rest of the participants.

As stated, the intention of the discussion meeting is to find out the specific reasons
for why the participants may have differing opinions in the identified data points. In our



case, it soon became apparent that all disagreements could be put down to the same fac-
tor, namely that the interpretation and application of architecture structures are depend-
ent on the background of the participants. This led people with different backgrounds
from different disciplines to interpret the architecture structures differently. As the ar-
chitecture structures in themselves are rather abstract, many of the participants envi-
sioned a typical system in which the architecture is used, to put a context to the question.
These envisioned systems differed depending on the background of the participants.

If the framework were created and the discussions were held in an industry case this
would, however, not be an issue, as the context in that case is given by the software sys-
tem in focus, and the architecture structures and quality attributes directly relatable to
this system. Moreover, this difference in the systems envisioned is of minor importance
to this paper, as the focus is on the presented process for eliciting and analysing peoples’
opinions of different architecture candidates, and to study the problems surrounding the
creation of a consensus view of the strengths and weaknesses of the different alterna-
tives.

2.3 A Unified Framework
After conducting the meeting described above, where the disagreements are discussed,
a unified Framework for Architecture Structures (FAS) and a unified Framework for
Quality Attributes (FQA) is constructed of the participants’ views using the method de-
cided upon to unite the individual views. Most often, the median value will be suffi-
cient, unless arguments are brought forward to use another method (e.g. the ones men-
tioned in the previous section) for uniting the individual frameworks.

By using the median value, these unified frameworks are no longer normalized as
the individual tables were, i.e. the columns in the FAS and the rows in the FQA no long-
er sum up to 1. Because of this, a step is added where the data is re-normalized so that
the columns in the FAS and the rows in the FQA sum up to 1.
Illustration of Unified Framework. The FAS and FQA constructed from our study
after the consensus discussion meeting are presented in Table 1 and Table 2.

The FAS (Table 1) presents the ranking of quality attributes for each architecture
structure. This table should be read column-wise. For example, it ranks microkernel as
being best at portability (0.309), followed by maintainability (0.183), efficiency
(0.161), reliability (0.122), functionality (0.119) and usability (0.106), in that order.
Moreover, the figures indicate that for example microkernel is almost twice as good at
portability as it is at efficiency (the value for microkernel is 0.309 compared to the value
for efficiency which is 0.161).

The FQA (Table 2) presents the ranking of architecture structures for each quality
attribute, and should be read row-wise. For example, the FQA ranks pipes and filters as
the best choice for efficiency (0.360), followed by microkernel (0.264), blackboard
(0.175), model-view-controller (0.113) and layered (0.0868), in that order. As with the
FAS, the figures indicate how much better a choice for example pipes and filters is com-
pared to the other architecture structures. It is, for example, twice as good a choice as
blackboard (with a value of 0.360 compared to the 0.175 that blackboard scores).

3 Evaluation of Unified Framework
Previously we discussed the importance of embracing disagreement. This is not only
done by venting peoples opinion in a meeting, as earlier described. For each value in
the FAS and FQA, a value can be added to indicate the amount of disagreement between



the participants. Such disagreement indicators can be used to judge the accuracy of de-
cisions or statements based on data from the framework.

Disagreement indicators can be constructed in a number of ways, but we suggest
that the same measure as earlier is used, i.e. the squared distance to the mean, and count
the number of participants with a larger value than a certain threshold.

As before, the idea is to set the threshold such that it identifies where the partici-
pants actually are in disagreement, which means that if the threshold is too high too
much disagreement is allowed, and if it is too low there is too little tolerance for varia-
tions in the answers.

However, it is not feasible to set the threshold value to identify a particular percen-
tile as we did to identify data points that warrants discussion. Instead, we need a value
that correctly depicts the amount of disagreement found and not a value that identifies
a particular group of data points. To this end, we recommend that points where the
squared distance to the mean is larger than two standard deviations (of all the squared
distances to the mean) are deemed to be in disagreement with the rest of the participants.
As before, what value to use as a threshold value is up to the user of the method, but we
find that two standard deviations give a fair picture of the amount of disagreement.

This measure of disagreement is only one in a series of uncertainty indicators. For
every step of the way, we have indicators of uncertainty, and these should be considered
so that, if the uncertainty becomes too large, it should be possible to backtrack and re-
do steps to get more certainty in the data sets and hence in the accuracy and usability of
the framework:
The uncertainty indicators available hitherto are:

Table 1. Framework for Architecture Structures (FAS)

Microkernel Blackboard Layered
Model-
View-

Controller

Pipes and 
Filters

Efficiency 0.161 0.145 0.0565 0.0557 0.218
Functionality 0.119 0.321 0.237 0.115 0.151
Usability 0.106 0.127 0.255 0.104 0.0818
Reliability 0.122 0.0732 0.0930 0.105 0.144
Maintainability 0.183 0.273 0.221 0.300 0.271
Portability 0.309 0.0597 0.138 0.320 0.135

Table 2. Framework for Quality Attributes (FQA)

Microkernel Blackboard Layered
Model-
View-

Controller

Pipes and 
Filters

Efficiency 0.264 0.175 0.0868 0.113 0.360
Functionality 0.205 0.252 0.199 0.206 0.139
Usability 0.0914 0.113 0.250 0.408 0.137
Reliability 0.126 0.142 0.318 0.190 0.224
Maintainability 0.191 0.0921 0.285 0.239 0.193
Portability 0.112 0.0689 0.426 0.139 0.255



1. Individual consistency ratio for each of the produced vectors. If a method such as
AHP [14][15] is used, this is obtained as part of the results from the method, oth-
erwise these may need to be calculated separately.

2. Differences between individuals, as discussed in Section 2.2 and using the meas-
ure introduced there.

3. Differences between the unified FAS and FQA. In [18] we describe a way to
measure and compensate for these differences. Briefly, we compensate for incon-
sistencies between the FAS and FQA using one of the frameworks to improve the
quality of the other, which is then used in the subsequent steps of the method.

In every step of the way, the goal has been to quantify the knowledge about architecture
structures, while still retaining a qualitative rationale. Every step of the way helps in re-
moving ambiguity and increasing the clarity and the understanding of the architecture
structures. This will, in a development process, ensure that architecture design decisions
can be taken with more certainty.

The uncertainty indicators on all levels and during all steps of the creating of the
framework can be used to ascertain that the uncertainty, and hence the risk involved, is
reasonably low, but also to identify factors upon which people have different opinions
and where further discussions are needed to avoid problems further on in the develop-
ment process.

Illustration of Disagreement Measure. In our example, the standard deviation of all
squared distances to the mean value is 0.0166, and hence the threshold value is set to
the double, i.e. 0.0332. By confirming against a plotting of all the participants, we are
able to determine that this threshold value gives a fair representation of where partici-
pants disagree with the majority.

Counting the occurrences where the participants in the study diverge more than this
threshold number, we find that there are 43 places where participants disagree, out of
the total 480 data points (6 vectors with 5 values plus 5 vectors with 6 values, and all
this times 8 participants). The persons in disagreement are distributed over the different
vectors as shown in Table 3 and Table 4.

In these tables, we see for example in Table 3 that for Microkernel one person had
a different opinion to that of the majority regarding its efficiency value, one person re-
garding its usability value and as many as four persons disagreed on Microkernel’s abil-
ities regarding portability. Studying a graph with all the participants’ individual frame-
works, it becomes clear that the participants form two distinct groups with respect to
this issue (although the points identified by the disagreement measure come from both
of these two groups).

Moreover, we see that in general the architecture structures Microkernel and Black-
board contribute with more than half of the disagreement issues, which indicates that
for these two architecture structures much discussion is needed in order to fully under-
stand them, and the consequences of using them in a software system.

In Table 3 and Table 4, we see that there are a total of eight places where two or
more participants disagree with the majority. While these places certainly need further
discussions to elicit the reasons for the disagreement, we can also conclude that the uni-
fied framework seems to be constructed by persons who are mostly in agreement, and
the framework can thus be used with reasonable accuracy.



4 Analysis of Framework
In this section, we describe the logical next step after the framework is evaluated for
consistency, which is to analyse the framework internally, i.e. to discern how the differ-
ent architecture structures relate to each other and how each of the architecture struc-
tures support different quality attributes.

This is important in order to really understand the relations between the architecture
structures and the quality attributes. Moreover, to analyse the framework instead of sim-
ply using it creates a learning effect, in that by understanding the qualities of one soft-
ware architecture, it may be easier to understand the qualities of the next architecture,
i.e. the next time software architectures are designed and when evolving the software
architectures, the designers will have an increased understanding from the start of the
strengths and weaknesses of different design alternatives.

Furthermore, if the purpose of creating the framework is to re-evaluate the architec-
ture of an existing software product, it becomes even more vital to analyse the architec-
ture alternatives in the created framework to understand for which quality attributes
there is an improvement potential in the current software architecture of the system.

The analysis is based on the two tables, i.e. the FAS and the FQA. We have attempt-
ed several ways to integrate these two tables into a single table, but have come to the
conclusion that it is better to keep the two tables separate.

There are two dimensions to the analysis: (a) a comparison between different archi-
tecture structures, for which the FQA is used, and (b) a comparison of the software qual-

Table 3. Disagreement in FAS

Microkernel Blackboard Layered
Model-
View-

Controller

Pipes and 
Filters

Efficiency 1 1 1
Functionality 1
Usability 1
Reliability 1
Maintainability 1 1 1
Portability 4 1 1

Table 4. Disagreement in FQA

Microkernel Blackboard Layered
Model-
View-

Controller

Pipes and 
Filters

Efficiency 2 2
Functionality 1 4 1
Usability 1 1 2
Reliability 1 2 1 1
Maintainability 1 4 1 1
Portability 2



ities within a particular architecture structure, for which the FAS is used. As before, the
FQA is read row-wise, and the FAS is read column-wise.

Rather than studying the mere numbers, which can be difficult to compare, we sug-
gest that the data is plotted into graphs. Examples of such graphs, based on the FAS in
Table 1 and the FQA in Table 2, can be found in Figure 2 and in Figure 3.

The graph in Figure 2 is read column-wise, i.e. one column in the FAS correspond
to one column, or rather a vertical line, of dots. Figure 3 corresponds to the FQA, which
is read row-wise, but as there is no meaningful interpretation of comparing the quality
attributes with each other in this table, we choose to plot this table so that its graph is
also read column-wise.

4.1 Analysis of Architecture Structures (FAS)

This part of the analysis is concerned with understanding the qualities of each architec-
ture structure. To this end, we use the FAS, and a plot of it, as the example in Figure 2.

0

0 ,0 5

0 ,1

0 ,1 5

0 ,2

0 ,2 5

0 ,3

0 ,3 5

0 1 2 3 4 5 6

E ffic ie n c y
F u n c t io n a li t y
U s a b ili t y
R e l ia b i lit y
M a in ta in a b il it y
P o rta b il it y

Figure 2. Plotting of FAS

Microkernel
Blackboard

Layered
Model-View-Controller

Pipes and Filters

0

0 , 0 5

0 , 1

0 , 1 5

0 , 2

0 , 2 5

0 , 3

0 , 3 5

0 , 4

0 , 4 5

0 2 4 6 8

M ic ro k e rn e l
B la c k b o a rd
L a y e re d
M o d e l-V ie w -C o n t ro l le r
P ip e s  a n d  F i l t e rs

Figure 3. Plotting of FQA

Efficiency
Functionality

Usability
Reliability

Maintainability
Portability



When studying the FAS, it becomes apparent that an architecture structure can be of two
different kinds, depending on how the quality attributes are spread. If the architecture
ranks a few quality attributes highly compared to the others, this implies that the archi-
tecture is specialized for these purposes. On the other hand, if all of the quality attributes
are ranked closely together, the architecture is generalized, and can better suit any mix-
ture of desired quality attributes.

Another thing to look for is whether some quality attributes are always, or in most
cases, ranked high or low. For example, if a quality attribute is ranked high for all ar-
chitecture structures, there is no further need to study this attribute as one can be certain
to fulfil it in any case. If it is ranked low, this indicates that new architecture structures
may be needed that focus on this quality attribute.

The purpose of this analysis is to understand the strengths and weaknesses of each
architecture structure, which may help the next time an architecture is to be designed.
As stated, it may also help in pointing out the need for new architecture structures that
either favours a particular quality attribute, or is equally good at a number of quality at-
tributes.
Illustration. In Table 1 (and in Figure 2) all of the architecture structures, except for
possibly the pipes and filters structure, are specialized for certain purposes. For exam-
ple, microkernel is specialized for portability. Portability scores a value of 0.309 com-
pared to the second largest, which is maintainability with 0.183. The relative distance
between portability and maintainability is thus 0.126, whereas the relative distance be-
tween maintainability and the quality attribute with the lowest score is 0.0770, which is
considerably smaller than between portability and maintainability. Another example of
a specialized architecture structure is model-view-controller which is specialized on
portability and maintainability, with values of 0.320 and 0.300, respectively. The dis-
tance to the third best quality attribute is more than 0.185, as compared to the distance
between the third best and the last quality attribute, which is 0.0593.

Another thing that the FAS from our experiment seems to indicate is that there are
some quality attributes that no architecture structure is really good at. For example, all
architecture structures except for pipes and filters have a fairly low value on efficiency.
What this implies is that there is room for specialized architecture structures with em-
phasis on this quality attribute.

Similar situations can be found with usability, where only the layered architecture
structure ranks it highly, and reliability, which no architecture structure in our study
seems to focus on, or is capable of.

Since no architecture structures in our study focus on reliability, one can ask the
question whether reliability is at all a quality attribute that affects the software architec-
ture or whether it is an attribute that mainly manifests itself in the software development
process. This, in turn, may be depending on the interpretation of reliability.

Maintainability, on the other hand, seems to be a quality attribute that most, if not
all, architecture structures seem to focus on. This manifests itself in the relatively high
values for maintainability compared to the other quality attributes for all architecture
structures.

4.2 Analysis of Ranking per Quality Attribute (FQA)
The other part of the analysis is to compare architecture structures with each other. To
this end we use the FQA, and a plot of this, as is exemplified in Figure 3.

Patterns one can discern here are whether a particular architecture structure always
gets better values than another, which of course would mean that this architecture struc-



ture is always to prefer over another. One can also see if there are certain quality at-
tributes that favours the selection of a particular architecture structure. This may, in
time, create an increased understanding of what traits of a software architecture it is that
benefits a particular quality attribute.
Illustration. In the FQA in Table 2 (and the corresponding plot in Figure 3), the layered
architecture is considerably better at most quality attributes than the other architecture
structures, except for efficiency and functionality (and usability, where model-view-
controller is extremely better than the rest of the architectures). Likewise, we see that
blackboard is in general a bad choice, except when functionality is a desired quality. If
a situation like this occurs when comparing architecture structure candidates for a sys-
tem, this would indicate that the evaluation can be aborted and the high-ranking archi-
tecture (in our example the layered architecture structure) can be chosen directly, unless
efficiency is a desired quality.

5 Conclusions
In this paper we present a way to build consensus around the benefits and liabilities of
software architecture structures through the process of creating a unified, quantified and
comparable view of architecture structures with respect to quality attributes.

Instead of just reading about the architecture structures in a book, we believe that
the process of expressing ones own knowledge and experience of different architecture
structures in a structured way creates a further understanding of how the architecture
structures will work in the specific situation. 

When this is compared to other peoples opinions as well, this creates a learning ef-
fect and allows differences of opinions to be identified and discussed to form a consen-
sus before the development process continues.

Without this consensus, it is our belief that the differences of opinion will appear
later during the development, and take the form of inconsistencies in the developed sys-
tem, and an increased development time.

Unlike related literature (e.g. [3][4]), which only present benefits and liabilities by
means of logical reasoning, a framework created using the process in this paper pro-
vides relative measures of the level of support for different quality attributes, thus ena-
bling measurement of the importance or severity of different traits. Furthermore, we
also provide a way to compare these traits over different architecture structures. This
complements the work of e.g. Buschmann et al. [3] and Bosch [4] by providing an op-
portunity to quantitatively analyse architecture structures, and thus create a further in-
sight into how these architecture structures work.

Moreover, the framework can be constructed for any set of architecture structures
and quality attributes, which means that companies can perform their own analysis for
architecture structures and quality attributes related to their business and the domain of
their systems, and is hence not bound to the selection of architecture structures and the
descriptions of these that can be found in mainstream literature.

The focus of the paper is on the different steps that assist in the process of building
consensus among the participants while ensuring that all, or at least many, relevant as-
pects are covered before more time and effort is spent on further developing the soft-
ware system at hand.

We illustrate these steps by reporting from a case study conducted according to the
steps in this paper. Hence, we would again like to stress that the framework we present
in the illustrations is only one example of using the proposed process. The created
framework and the steps to discuss, evaluate and analyse it can be used on any set of



architecture structures and quality attributes. Which sets to use is primarily determined
by the context and the domain in which the process is being applied.

Moreover, we would also like to stress that albeit the framework is constructed by
capturing the perception of architecture structures and quality attributes from profes-
sionals, it is our belief that the perception professionals have about architecture struc-
tures are also represented as actual qualities of the architecture structures themselves.
Nevertheless the framework is only indirectly based on the actual qualities of the archi-
tecture structures.

The process for consensus building in this paper has the following benefits:
• It can be used to create a better understanding of different architecture structures.
• It can be used to kindle a dialogue between software developers to iron out and

understand discrepancies in interpretations of architecture structures.
• It can be used to identify the need for architecture structures specialized on certain

quality attributes.
• It can be used as a sub-step in methods for comparing different architecture struc-

tures when selecting which architecture to use in a system to design, as in [18].
• It can be used to evaluate architectures against a “baseline” of common architec-

ture structures.
• It can be used as a learning tool to allow software developers to share their expe-

riences with each other in a structured way.
• It can be used to confirm or confute “myths” regarding software architectures. For

example if all architecture structures rank performance and maintainability high-
ly, this indicates that it is at least possible to create architecture structures where
these are not in conflict, thus refuting the myth that this, in general, is not possible. 

To summarize, the contribution of this paper is that we present a process for creating a
data set around which discussions can be held to find out if and why there are disagree-
ments in a group of software developers. Such a discussion is, we believe, vital to create
a joint understanding of the architecture candidates for a system to design. Our advice
is to acknowledge that there will be disagreement, and to use this disagreement to power
discussions to create a better understanding of the architecture structures and quality at-
tributes involved.

References
[1] D.R. Anderson, D.J. Sweeney, T.A. Williams, “An Introduction to Management Science: 

Quantitative Approaches to Decision Making”, South Western College Publishing, 
Cincinnati Ohio, 2000.

[2] L. Bass, P. Clements, R. Kazman, “Software Architecture in Practice”, Addison-Wesley 
Publishing Co., Reading MA, 1998.

[3] F. Buschmann, C. Jäkel, R. Meunier, H. Rohnert, M. Stahl, “Pattern-Oriented Software 
Architecture - A System of Patterns“, John Wiley & Sons, Chichester UK, 1996.

[4] J. Bosch, “Design & Use of Software Architectures - Adopting and Evolving a Product 
Line Approach“, Addison-Wesley, Harlow UK, 2000.

[5] L. Chung, B.A. Nixon, E. Yu, J. Mylopoluos, “Non-Functional Requirements in Software 
Engineering”, Kluwer Academic Publishers, Dordrecht, the Netherlands, 2000.

[6] C. Hofmeister, R. Nord, D. Soni, “Applied Software Architecture”, Addison-Wesley, 
Reading MA., 2000.

[7] Software Qualities”, ISO/IEC FDIS 9126-1:2000(E).
[8] I. Jacobson, G. Booch, J. Rumbaugh, “The Unified Software Development Process”, Ad-

dison-Wesley, Reading MA, 1999.



[9] E. Johansson, M. Höst, A. Wesslén, L. Bratthall, “The Importance of Quality Require-
ments in Software Platform Development - A Survey”, in Proceedings of HICSS-34, Maui 
Hawaii, January 2001.

[10] J. Karlsson and K. Ryan, “A Cost-Value Approach for Prioritizing Requirements”, in IEEE 
Software 14 (5):67–74, 1997.

[11] J. Karlsson, C. Wohlin and B. Regnell, “An Evaluation of Methods for Prioritizing Soft-
ware Requirements”, in Information and Software Technology, 39(14-15):938-947, 1998.

[12] G. Kotonya, I. Sommerville, “Requirements Engineering”, John Wiley & Sons, Chiches-
ter UK, 1998.

[13] D.L. Parnas, “Software Aging”, in Proceedings of the 16th International Conference on 
Software Engineering, IEEE Computer Society Press, Los Alamitos CA, pp. 279-287, 
1994.

[14] T. Saaty, “The Analytic Hierarchy Process”, McGraw-Hill, 1980.
[15] T.L. Saaty, L.G. Vargas, “Models, Methods, Concepts & Applications of the Analytic Hi-

erarchy Process”, Kluwer Academic Publishers, Dordrecht, the Netherlands, 2001.
[16] M. Shepperd, S. Barker, M. Aylett, “The Analytic Hierarchy Process and almost Dataless 

Prediction”, in Project Control for Software Quality - Proceedings of ESCOM-SCOPE 99, 
R.J. Kusters, A. Cowderoy, F.J. Heemstra, E.P.W.M. van Weenendaal (eds), Shaker Pub-
lishing BV, Maastricht the Netherlands, 1999.

[17] M. Svahnberg, C. Wohlin, “An Investigation of a Method for Evaluating Software Archi-
tectures with Respect to Quality Attributes”, Submitted, 2002.

[18] M. Svahnberg, C. Wohlin, L. Lundberg, M. Mattsson, “A Method for Understanding Qual-
ity Attributes in Software Architecture Structures”, in Proceedings of the 14th Internation-
al conference on Software Engineering and Knowledge Engineering (SEKE 2002), ACM 
Press, New York NY, pp. 819-826.


