

P. Runeson, M. C. Ohlsson and C. Wohlin, "A Classification Scheme for Studies on
Fault-Prone Components", Proceedings 3rd International Conference on Product

Focused Software Process Improvement (PROFES01), LNCS2188 Springer Verlag, pp.
341-355, Kaiserslautern, Germany, 2001.

A Classification Scheme for Studies on
Fault-Prone Components

Abstract. Various approaches are presented in the literature to identify fault-
prone components. The approaches represent a wide range of characteristics and
capabilities, but they are not comparable, since different aspects are compared
and different data sets are used. In order to enable a consistent and fair compari-
son, we propose a classification scheme, with two parts, 1) a characterisation
scheme which captures information on input, output and model characteristics,
and 2) an evaluation scheme which is designed for comparing different models’
capabilities. The schemes and the rationale for the elements of the schemes are
presented in the paper. Important capabilities to evaluate when comparing differ-
ent models are rate of misclassification, classification efficiency and total classi-
fication cost. Further, the schemes are applied in an example study to illustrate
the use of the schemes. It is expected that applying these schemes would help
researchers to compare different approaches and thereby enable building of a
more consistent knowledge base in software engineering. In addition it is
expected to help practitioners to choose a suitable prediction approach for a spe-
cific environment by filling out the characterisation scheme and making an eval-
uation in their own environment.

1 Introduction

In the software engineering research community, various approaches for identification
of fault-prone components or modules are published, see for example [1, 2, 3, 4, 5, 6,
7, 8, 9, 10]. However, the studies are conducted in many different ways and hence the
results are not comparable. The studies compare different aspects using different data
sets, leading to inconsistent results and confusion. To enable building of knowledge
and experience in software engineering, it is necessary to have methods to support
comparison and replication of results. The objective here is to provide such support for
predicting fault-prone components.

Most studies are conducted using the same principles. First, metrics are collected to
be used as predictors. The data are divided into two sets, fit data and test data. Second,
the prediction model is built using the fit data set and some statistical technique. The
model is evaluated using the test data set, and possibly re-built and re-evaluated. Third,
the same metrics are collected in a new project and the prediction model is applied in a

Per Runeson1, Magnus C. Ohlsson1 and Claes Wohlin2

1 Dept. of Communication Systems, Lund University, Box 118, SE-221 00 Lund, Sweden
{Per.Runeson, Magnus_C.Ohlsson}@telecom.lth.se
2 Dept. of Software Engineering & Computer Science, Blekinge Institute of Technology,
SE-372 25 Ronneby, Sweden, Claes.Wohlin@bth.se

F. Bomarius and S. Komi-Sirviö (Eds.): PROFES 2001, LNCS 2188, pp. 341−355, 2001.
 Springer-Verlag Berlin Heidelberg 2001

development project. The output from this step is a prediction of fault-proneness that
can be used for quality management purposes.

Even though almost all the published studies are conducted according to the same
principles, there are numerous variants of the studies. Different metrics are collected,
different statistical techniques are used in building the models, different aspects of
fault-proneness are output from the models and they are evaluated in different ways.
This makes it hard to make cross-study and meta analyses about prediction of fault-
proneness. Furthermore, it is hard for a potential user of the prediction approaches to
judge which one to choose. E.g. what does it mean to compare a prediction model
which classifies a module as non fault-prone if they are fault-prone in 73% of the cases
[4], to another model which has a misclassification rate of 25% [8] on another data set?
Which is the better in general, and which is the better for a certain context?

In this paper we propose a classification scheme as a first attempt to overcome those
hurdles. The scheme has two constituents, 1) a characterisation scheme which summa-
rises general characteristics, characteristics of the input, the output and the prediction
approach, and 2) an evaluation scheme which involves quantitative criteria for evalua-
tion of the ability of predicting fault-proneness for the approach. The classification
scheme is an initial attempt to address two different purposes. The first purpose is to
characterise new approaches being published, thus bringing more consistent knowl-
edge to the software engineering community, e.g. by meta-analyses. The second pur-
pose is for intended users of the prediction approaches, for example software project
managers, to help selecting a suitable prediction approach and evaluate it in a specific
context.

In this paper, the techniques applied to build a prediction model are referred to as
method. The model itself is the mathematical formula defining the prediction calcula-
tions. The combination of a method used for model building and a selected set of met-
rics are referred to as a prediction approach. A specific instance of an approach is
referred to as a study.

The paper is organised as follows. In Section 2 the characterisation scheme is pre-
sented. The different characteristics and example criteria are given. The evaluation
scheme is presented in Section 3. In Section 4 the schemes are used in an example
evaluation of three different approaches to illustrate the use of the schemes. Finally, the
contributions are summarised in Section 5.

2 Characterisation Scheme

In the strive for managing software projects and in particular the quality of software
being developed, different approaches have been defined to estimate properties of soft-
ware, related to faults resided in the product. The approaches use different metrics, dif-
ferent methods and provide different outputs. In order enable comparison between
different approaches, we propose a characterisation scheme.

The scheme contains characteristics that are subject to choices when selecting an
approach to apply in a particular environment. The items in the scheme are not orthog-

342 P. Runeson, M.C. Ohlsson, and C. Wohlin

onal: a choice of a certain value of a characteristic may limit the choices for other char-
acteristics, i.e. the choices are nested. However, the characteristics included in the
scheme are those on which decisions are to be taken by the users of an approach. The
characteristics are:

• General – application domain and purpose of approach.

• Output – output type and output metrics.

• Input – artefacts and input metrics.

• Model – model class, optimization criterion and method.
The characteristics chosen are presented in the sections below and summarised in a
scheme in Table 1.

2.1 General

The general characteristics present which application domain the models is applied to
and the purpose of the study. The purpose is in most cases to identify fault-prone com-
ponents to enable quality improvement activities. The differences may be in the quality
requirements, whether all faults should be removed which is typical for an aeronautics
application, or if some level of fault density is acceptable, as the case in telecommuni-
cations.

2.2 Output Type

In this characterisation, we are primarily focused on the applicability of the
approaches; thus we begin with the output. There are three principal types of output:

Table 1. Characterisation scheme.

Item Value
Application
domain

Telecommunications, Aeronautics, Automotive, Information systems

Purpose of study Identify all/certain share of fault-prone components
Output type Estimation | Ranking | Classification

Output metric
Number of faults (per unit) | Order of fault-proneness | Fault-prone /
non fault-prone

Artefact
Requirements specification | Design specification | Code | Test specifi-
cation

Input metrics List of metrics (requirements, design, code, test)

Model class

1: Input (Product) –> Output (Product)
2: Input (Product, Resource) –> Output (Product, Resource)
3: Input (Product) –> Output (Process)
4: Input (Process) –> Output (Process)

Optimization
criterion

Misclassification | Cost of misclassification | Total classification cost

Method
Principal Component Analysis | Boolean Discriminant Analysis | Spear-
man Rank Correlation | Optimized Set Reduction | Neural Network |
Regression Analysis | …

343A Classification Scheme for Studies on Fault-Prone Components

1. Approaches for estimation of fault content. These approaches try to estimate the
number of faults resided in a software component or other artifact. An example of
an approach is presented by Ming et al. [9].

2. Approaches for ranking fault-prone components. These approaches rank the com-
ponents with respect to their predicted fault-proneness, and enable classifying com-
ponents as fault-prone according to a threshold. For example, they may pick out the
10% most fault-prone components. An example of an approach is presented by
Ohlsson and Alberg [6] and further refined by Ohlsson and Wohlin [7].

3. Approaches for classifying fault-prone components. These approaches classify
components into either fault-prone or non fault-prone based on some fixed threshold
criterion, for example pointing out all components which have more than five faults.
Examples are presented by Khoshgoftaar et. al. [4] and Schneidewind [8].

The output type is hence estimation, ranking or classification. The classification is the
weakest form of model. A ranking model can be transformed into a classification
model by cutting the ranking list into two, based on some criterion, e.g. percentage of
components. An estimation model can be turned into a ranking model by sorting the
components according to their estimated value, and turned into a classification model
by comparing a threshold on the estimated value.

2.3 Output Metrics

The metric, which is produced as an output of the estimation model, is mainly limited
by the output type, as defined above. However, minor variants exist:

• Estimation approaches may predict the number of faults per component, the number
of fault per line of code or faults per some other length or size metric.

• The output metric from classification approaches is a boolean; fault-prone or non
fault-prone or three-level [12]

• Ranking approaches provide an order number for each component with respect to
its fault-proneness.

The metrics are all product metrics, i.e. characteristics of the product itself [11].

2.4 Artefacts

The next characteristic concerns the artefacts to which the approach is applicable. A
typical use for a fault-proneness prediction approach is to predict, based on data from
one type of artefacts, which artefacts are likely to be fault-prone in a subsequent phase.
A quality improvement effort is then planned in the subsequent phase based on the pre-
diction result. For example, more testing time may be planned to fault-prone compo-
nents than to other components based on data from a design document.

The artefact characteristic tells to which artefacts the approach may be applied.
Here we have chosen to illustrate the artefacts through a standard setup of documents:
Requirements specification, Design specification, Code, Test specification. The pub-
lished approaches are primarily applied to the design and code artefacts.

344 P. Runeson, M.C. Ohlsson, and C. Wohlin

2.5 Input Metrics

The characteristics defined so far, define which prediction we want – the output – and
to which type of documents we want to apply the prediction – the artefact. Now we
have to study which type of information is available as input to the approach.

The input metrics are the list of metrics collected and used to build the prediction
model and to predict fault-proneness of components. The choice of metrics is primarily
restricted by the artefact to which the approach is applied. For example, lines of code
metrics are not available before the code is available and can hence not be used for pre-
diction purposes if the approach is to be used in the design phase. Most approaches are
based on product metrics, either from design or code documents.

2.6 Model Class

Given the input and output metrics, the resulting prediction model can be classified
according to the scheme proposed by Fenton and Pfleeger [11]. The classes do not
cover all possible combinations of inputs and outputs, but the feasible ones, according
to Fenton and Pfleeger.

• Class 1: Input (Product) –> Output (Product)

• Class 2: Input (Product, Resource) –> Output (Product, Resource)

• Class 3: Input (Product) –> Output (Process)

• Class 4: Input (Process) –> Output (Process)
As most models use product metrics from artefacts in earlier phases and predicts prod-
ucts metrics of artefacts in later phases, we generally have models of class 1.

2.7 Optimization Criterion

When fitting a model to the fit data, we may optimize the model according to a specific
criterion. This far, we have seen three different criteria published:

• Misclassification. This means that the model is Optimized to produce as few mis-
classifications as possible. A misclassification means that a fault-prone component
is classified as non fault-prone or vice versa.

• Cost of misclassification. It is generally accepted that some misclassifications cost
more than others do. It is more costly to classify a fault-prone component as non
fault-prone, which means that faults are slipping through into later phases implying
more expensive identification and repair. Classifying non fault-prone components as
fault-prone means wasting effort in the project.

• Total classification cost. This means that the model is Optimized to give as low cost
as possible. The cost included is the cost of the quality actions spent on the compo-
nents correctly classified as fault-prone, and the cost of misclassification.

The optimization criterion may be one of the three described above.

345A Classification Scheme for Studies on Fault-Prone Components

2.8 Method

Finally a statistical or another method is applied to build the prediction model. Meth-
ods utilised include, for example, Principal Component Analysis (PCA) [3], Boolean
Discriminant Analysis [8], Spearman Rank Correlation [5], Optimized Set Reduction
[1], Neural Network Techniques [2] and Regression Analysis [9]. There are possibly
other methods that can be used.

2.9 Use of the Classification Scheme

The classification scheme is intended to bring clarity to differences and similarities
between different approaches. To the practitioner, the input and output sections are of
primary interest, while for the researcher, the model section is of interest as well.

3 Evaluation Scheme

Among the approaches published in the literature for predicting fault-proneness, many
are evaluated with respect to their ability to predict properly. However, there are almost
as many evaluation criteria as there are prediction approaches. In order to enable
clearer comparisons and cross-study evaluation, we propose an evaluation scheme to
be used when evaluating the performance of prediction approaches. Furthermore,
detailed enough descriptions of the approaches should be published to enable true eval-
uation and replication.

The evaluation criteria are put together in a scheme, in Table 2. Part a) contains a
contingency table to show an overall picture of the estimation ability of the approach.
Part b) is applicable only to the ranking type of approaches, showing an Alberg dia-
gram [6]. The concept of the Alberg diagram is that if the components are placed in
decreasing order according to the number of faults, then the accumulated number of
faults for different percentages of the components would be the best any model could
achieve. By comparing the actual and the model curves the quality of the model is
quantifiable. In the evaluation scheme, we propose criteria with respect to overall mis-
classification, classification efficiency and total classification cost instead of focusing
only on one of them. Part c) is a definition of estimation accuracy for estimation type
models.

3.1 Misclassification

The evaluation criterion relates to the approaches’ ability to point out components as
fault-prone and non fault-prone. Here we define two types of errors that may be con-
ducted when trying to predict fault-prone components1:

1. Sometimes the opposite definitions are used, see for example [10], which depends on which
hypothesis is tested. We define the null hypothesis, H0: The component is fault-prone, and the
alternative hypothesis, H1: The component is not fault-prone.

346 P. Runeson, M.C. Ohlsson, and C. Wohlin

• Conducting a type I error means classifying actually fault-prone components as non
fault-prone.

• Conducting a type II error means classifying actually non fault-prone components
as fault-prone.

The rate of the two error types as such has been used as an evaluation criterion [3, 8].
The approach, which minimises the misclassifications, is then considered the best. The
overall misclassification is the total number of the misclassifications of type I and II,
normalised by the total number of components. The criteria are defined as follows:

Type I rate = C/(C+D)% (1)

Type II rate = B/(A+B)% (2)

Overall misclassification = (B+C)/(A+B+C+D)% (3)

3.2 Cost of Misclassification

The number of errors does not capture the cost aspects of the classification. Type I
errors are, for example, in general more expensive to commit than type II errors are. A
fault that remains in a product in the operational phase, costs more than the effort spent
on, for example, reviewing an additional component which is misclassified as fault-
prone but it is actually not. Therefore the misclassification cost (MCC) is introduced as
an evaluation criterion [10], here presented with our notations:

MCC = C * CType I + B * CType II (4)

It shall be noted that all costs used in this paper are relative costs. In [10] the ratio
between CType I and CType II is exemplified with a factor 10.

The problem with this evaluation criterion is that it, in many cases, has its optimum
driven by the type I error. This implies that too many components are pointed out as

Table 2. Evaluation scheme for a) classification models, b) ranking models and c) estimation
models.

a)
Model non
fault-prone

Model
fault-prone

Total
b)

Actual non
fault-prone

A
B
Type II

A+B

Actual
fault-prone

C
Type I

D C+D

Total A+C B+D
A+B+
C+D

Type I rate C/(C+D)%
Type II rate B/(A+B)%
Overall misclassification (B+C)/
(A+B+C+D)%
Classification efficiency (B+D)/(C+D)
Total classification cost:
C*CostType I+(B+D)*CostType II

c)

%Components

%Faults

Actual
Model

Accuracy

FaultsEstimated Faults Actual–

Faults Actual
--=

347A Classification Scheme for Studies on Fault-Prone Components

fault-prone to minimise the risk for type I errors. This provides low type I error rate but
a high type II error rate, since the cost of type II errors is lower that the cost of type I
errors.

The main purpose of classification approaches is to optimize the use of resources,
i.e. the primary concern is the overall cost spent on identifying and improving the
fault-prone components. In other words, we would like to minimise the effort spent in
development and in maintenance due to the faults in the software. We refer to this a the
Total Classification Cost (TCC), which is defined as:

TCC = C * CType I + (B+D) * CType II (5)

The difference between equations (4) and (5) is the last term which adds the cost of
effort spent on components which are correctly classified as fault-prone, thus enabling
comparison to the cost of spending effort on all components. The TCC shall be as low
as possible. In any case, it shall be less than spending additional effort on all compo-
nents, i.e. (A+B+C+D)*CType II.

For ranking approaches, the evaluation criteria presented above have to be calcu-
lated for each threshold value chosen. Instead of tabulating all these data, we propose
the Alberg diagram to be used [6]. The Alberg diagram is a graphical representation of
the approaches’ capability of pointing out fault-prone components, see Table 2b.

For estimation approaches, they can be turned into ranking approaches by sorting
the components according to their estimated value, and into classification approaches
by applying a threshold. Then the Alberg diagram and the contingency table can be
used. In addition, the estimation accuracy can be used as an evaluation criterion, spe-
cifically for estimation approaches, see Table 2c.

3.3 Classification Efficiency

The classification efficiency is an evaluation criterion related to cost and misclassifica-
tions. However, it provides a viewpoint that is of importance from a practical project
management perspective. We define the classification efficiency as the number of com-
ponents classified as fault-prone divided by the actual number of fault-prone compo-
nents.

Classification efficiency = (B+D)/(C+D) (6)

The optimum value of classification efficiency is hence 1 (B and C equal 0). A value
less than 1 means that too few components are classified as fault-prone while a value of
more than one means that too many components are classified as fault-prone.

3.4 Use of the Evaluation Scheme

The evaluation scheme is intended to compare capabilities of the different models. For
a practitioner, it can be used to compare different methods in a specific environment,
while the researcher may compare methods applied to data from different environ-
ments. Depending on which of the characteristics is considered most important, the

348 P. Runeson, M.C. Ohlsson, and C. Wohlin

misclassification, the cost of misclassification or the efficiency is given the highest pri-
ority in the comparison.

4 Example Study

In this section we apply the characterisation and evaluation schemes presented in
Section 2 and Section 3 to illustrate typical use of the schemes. The example context is
an organisation which intends to investigate methods for identification of fault-prone-
ness in their specific settings. They have selected three different candidate approaches:

• Schneidewind (S97) [8]

• Khoshgoftaar et. al. (K96) [4]

• Ohlsson and Wohlin (O98) [7]
In Table 3 the results from the characterisation can be found.

4.1 Characterisation

General. The approaches represent two different application domains, aeronautics and
telecommunications. The domains also reflect the purpose, where the aeronautics
approach aims at identifying all fault-prone components, while in the telecommunica-
tions domain, only components with more the a certain number of faults are consid-
ered fault-prone.

Output. The approaches represent two output types, classification and ranking. S97
and K96 both produce a binary result, i.e. fault-prone or non fault-prone, while O98

Table 3. Characterisation of three example approaches.

Item S97 K96 O98
Application
domain

Aeronautics Telecommunications Telecommunications

Purpose of
study

Identify all fault-prone
components

Identify a certain share
of fault-prone compo-
nents

Identify a certain share
of fault-prone compo-
nents

Output type Classification Classification Ranking

Output metric
Fault-prone / non fault-
prone

Fault-prone / non fault-
prone

Order of fault-prone-
ness

Artefact Code Code Design

Input metrics
List of code metrics,
see [8].

List of code metrics,
see [4].

List of code metrics,
see [7]

Model class
Class 1: Input(Product)
-> Output(Product)

Class 1: Input(Product)
-> Output(Product)

Class 1: Input(Product)
-> Output(Product)

Optimization
criterion

Misclassification Misclassification Total classification cost

Method
Kolmogorov-Smirnov
and Boolean Discrimi-
nant Analysis

PCA and non paramet-
ric Stepwise Discrimi-
nant Analysis

Spearman Rank Corre-
lation

349A Classification Scheme for Studies on Fault-Prone Components

ranks the components in decreasing order according to their fault-proneness. The pre-
ferred output type depends on the objective of the study. The objective for project man-
agement might, for example, be to priorities available resources like test time and
review time and then S97 and K96 could be considered.

Another case is where management, for example, can spend effort on additional
reviews on 20 percent of the components. Which components should be considered?
To answer this question, approaches like O98, which rank the components in fault-
proneness order, are more useful.

Another difficulty with the classification approaches is which threshold value to
choose. Depending on the domain the threshold may differ. For example, the S97
approach was developed to be applied to the aeronautics domain, thus quality require-
ments are very high and the threshold is set to zero faults in the components [8]. The
K96 approach sets the threshold based on heuristics [4], i.e. after a discussion with
project engineers they decided on a certain threshold.

Input. In order to enable early planning of actions to prevent fault-proneness, the
approaches shall be applicable as early as possible. The phase when the approach is
applied and the input metrics depend on each other. If the prediction model is based on
metrics from the design phase, it can be applied earlier than if it is based on code met-
rics from the implementation phase. In this case, the O98 approach is based on design
metrics while K96 and S97 are based on code metrics.

Depending on the purpose of the application of the approach, it is feasible to use the
prediction model with other metrics than described in the original approach. For exam-
ple, the S97 model could be used with design metrics. In the example study, we have a
set of design metrics available, which are to be used, see Table 4.

Model. All three approaches take product metrics as input and predict product metrics;
thus they belong to model class 1 according to Fenton and Pfleeger’s classification
[11]. The optimization criteria are different for the approaches. S97 and K96 use mis-
classification while O98 uses total classification cost.

Different statistical methods for model building are used. S97 uses Boolean Discri-
minant Analysis. To choose suitable metrics, S97 use Kolmogorov-Smirnov distances.
K96 uses Non-parametric Discriminant Analysis and Principal Components Analysis
to extract factor scores to be used in the Discriminant Analysis. Finally, O98 uses
Spearman Rank Correlations.

4.2 Evaluation

To be able to compare the different approaches in the example we use the same data set
for all candidates even though they were originally created for use in a different phase
or with some other input metrics. Hence, actually only the prediction method are used,
not the complete approach (see Section 1). This is the typical situation when using the
method in a new context where different sets of metrics are collected.

350 P. Runeson, M.C. Ohlsson, and C. Wohlin

Data Description. The example study is based on an investigation of 28 software
components for two releases of a large real time system in the telecommunication
domain. The actual releases investigated are considered typical for releases of this par-
ticular system, although the choice of system and releases was based on availability.
The data set has been used earlier in other studies, for example [12].

The size of the 28 components varies between 270 and 1900 lines of code. The pro-
gramming language used is a company internal language, targeted at their specific
hardware platform. For each of the components, the number of fault reports from test
and operation were counted and several design and code metrics were collected.

In total, ten metrics originating from the design documentation were collected. The
data collected were primarily a count of the number of symbols of different types. The
language used during design is a predecessor to SDL, (ITU-T Specification and
Description Language) [13], and it is basically a finite-state-machine with states and
signals. A modified version of McCabe’s Cyclomatic Complexity [14] was used as
well. The modification was simply due to being able to handle signal sending and
reception respectively. The design metrics are listed in Table 4. Please note that all
metrics are scaled due to confidentiality.

We defined the fault-prone group as those components with and the non
fault-prone ones as . We used the data from release n as the fit data set and
the data from release n+1 as the test data set. In the fit set there were six components
classified as fault-prone and in the test data set there were eleven.

In the cost model, we have used a cost ratio between type I and type II errors of 10
(see [10]) i.e. type I errors are ten times as expensive as type II errors. However, to
highlight the sensitivity of the results to the cost ratio, a cost ratio of 5 has also been
used. The total classification cost based on the lower cost ratio is denoted in parenthe-
ses in the tables below.

Table 4. Design metrics collected.

Metric Description
SDL-pages Number of design pages in terms of SDL diagrams.
Tasks Number of task symbols in the SDL descriptions.
Outputs Number of output symbols in the SDL descriptions.
Inputs Number of input symbols in the SDL descriptions.
If Number of if-boxes in the SDL descriptions.
States Number of state symbols in the SDL descriptions.

McCabe
This metric is an adaptation of the original proposal by McCabe. The met-
ric is adapted to enable measurement on design and in particular to include
the signalling concept used in SDL.

External inputs Number of unique external inputs to a component.
External outputs Number of unique external outputs to a component.
Internal signals Number of unique internal signals within a component.

Faults 10≥
Faults 10<

351A Classification Scheme for Studies on Fault-Prone Components

Results. The results from the application of the S97 model can be found in Table 5.
The classification is based on only one variable, External inputs, The results from the
Kolmogorov-Smirnov test provides a maximum difference of 0.818 and a significance
of 0.004 for External inputs. To add extra variables when creating the model from the
fit data set did not improve the results.

The results from the K96 model can be found in Table 6. The Principal Components
Analysis provides two factors that are reduced to one when the Stepwise Non-paramet-
ric Discriminant Analysis is applied with a significance level of 0.05. The prior proba-
bilities for the fault-prone and the non fault-prone components are 0.79 and 0.21
according to the size of the groups and the smoothing parameter for the normal kernel
is 0.05. Choosing the smoothing parameter is difficult and in this case we decided on
0.05, because a larger value would not have classified any components as fault-prone.

The results from the O98 model can be found in Table 7. The results from the
Spearman Rank Correlations provides correlation between External inputs and faults
of 0.645 with a significance of 0.001. Though, the combination of If and External
inputs had a correlation of 0.677 with a significance >0.001. Therefore, this combina-
tion was used.

Table 5. Results from S97. Table 6. Results from K96.

Model
non f-p

Model
f-p

Total
Model
non f-p

Model
f-p

Total

Actual non f-p 14 3 17 Actual non f-p 15 2 17
Actual f-p 4 7 11 Actual f-p 8 3 11
Total 18 10 28 Total 24 5 28
Type I rate: 36%
Type II rate: 18%
Overall misclassification: 25%
Classification efficiency: 0.9
Total classification cost: 50 (30)

Type I rate: 73%
Type II rate: 11%
Overall misclassification: 36%
Classification efficiency: 0.45
Total classification cost: 85 (45)

Table 7. Results from O98.

Model
non f-p

Model
f-p

Total

Actual non f-p 14 3 17
Actual f-p 3 8 11
Total 17 11 28

Type I rate: 27%
Type II rate: 18%
Overall misclassification: 21%
Classification efficiency: 1.0
Total classification cost: 41(26)

0%

20%

40%

60%

80%

100%

11% 21% 32% 43% 54% 64% 75% 86% 96%

Actual
Model

% Components

% TR

352 P. Runeson, M.C. Ohlsson, and C. Wohlin

The O98 model has to be evaluated for a given threshold, since it provides a ranking
of components in fault-proneness order. In this case we have chosen a threshold of 39
percent, which corresponds to the number of components considered fault-prone for
the S97 and K96 models (11/28), thus making the prerequisites the same for all three
models. This is shown in the Alberg diagram in Table 7. Noticeable is that the classifi-
cation efficiency is 1.0 per definition, since the ranking model points out 39 percent of
the components, if 39 percent are considered fault-prone. Therefore, the number of
type II errors are always equal to the number of type I errors in this model, while the
type I and type II rates differ.

Interpretation. The scheme contains evaluations with respect to three aspects. They
are the following:

• Overall misclassification

• Classification efficiency

• Total classification cost
As mentioned before, we have used a cost ratio between type I and type II errors to be
5 or 10. The different classification results from the previous section are summarised in
Table 8, where the reference costs for spending no effort and spending extra effort on
all components are provided in the last two rows. Figures from the original studies are
presented as a reference in Table 8.

In this example study, the S97 model classified 18 percent as fault-prone even though
they were not and the model missed 36 percent of the fault-prone components. The
overall misclassification was 25 percent and the classification efficiency was 0.9, i.e.
the model classified 0.9 components as fault-prone for every actual fault-prone compo-
nent. The total classification cost was 50 (30 if the ratio was set to 5). It should be
noted that these numbers should be compared to the cost of spending extra effort on all
components, which is 28.

The approach in K96 provides a type I rate of 73 percent and a type II rate of 11 per-

Table 8. Comparison of models in the example study and in the original studies.

Example study Original studies

S97 K96 O98 S97 K96 O98
Type I rate 36% 73% 27% 2.3% 35.7% 24%
Type II rate 18% 11% 18% 47% 10.5% 58%
Overall misclassification 25% 36% 21% 28% 17.2% 34%

Classification efficiency 0.9 0.45 1.0a

a. By definition

1.6 0.97 1.0a

Total classification cost 50 (30) 85 (45) 41 (26) 79 (74) 129 (79) 516 (321)
Cost with no effort 110 (55) 430 (215) 280 (140) 670 (335)
Cost with extra effort on all 28 (28) 100 (100) 133 (133) 232 (232)

353A Classification Scheme for Studies on Fault-Prone Components

cent. The type I rate is very high and the reason is that the model classifies too few
components as fault-prone. The model should have predicted at least twice as many
component as fault-prone to be able to perform better. Because of the high type I rate,
the total classification cost is as high as 85 (45 if the ratio is set to 5).

The O98 model is, as mentioned earlier, a little bit different since it ranks the com-
ponents instead of classifying them. By definition it classifies the correct number of
components and therefore the classification efficiency is 1.0. The type I rate is 27 per-
cent and the type II rate is 18 percent.

The approaches above show different abilities with respect to the evaluation criteria
to illustrate the use of the evaluation scheme. An approach should provide estimates
with low misclassification rates. If we are to accept errors, type II errors are preferred,
since they are less costly than type I errors. S97 and O98 are fairly equal but K96 have
a large type I rate. If we are interested in ranking models, O98 should be selected, oth-
erwise either O98 or S97 can be used.

5 Summary

Numerous approaches to prediction of fault-proneness have been presented in the liter-
ature. They are evaluated using various schemes and criteria. In this paper an initial
attempt to improve the comparison an use of classification schemes is presented. It has
two core constituents is presented: 1) a characterisation scheme which provides an
overview of the input to the approaches, the output and the prediction model itself;
2) an evaluation scheme which enables qualitative evaluation of the approaches’ pre-
diction capabilities. If these schemes are used in presenting new approaches and evalu-
ation of existing ones, the research progress can be easier to evaluate and apply.

The characterisation scheme can not only be used for presenting studies, but also
selecting prediction approaches based on needs by the users, for example software
managers. They can identify their needs based on the different characteristics of the
approaches and evaluate the capabilities of different approaches in their environment.

To illustrate the usage of the schemes an example study is presented which evalu-
ates three different approaches with different characteristics. For the evaluation
scheme we use data from two releases of a system to illustrate the models’ abilities to
classify components with respect to misclassification rates and costs. The results from
the example study are compared to the original studies.

It is concluded that it is not sufficient to compare the misclassification rate. The
classification efficiency and total classification cost provide other aspects of the models
abilities, which are related to the intended use of the models in a software development
context. Furthermore, the example study and the original studies show different results
as they are based on different data sets.

The proposed classification scheme would allow for a better comparison between
different prediction approaches. The scheme is expected to support comparison, repli-
cation of results and meta-analyses, leading to better and more consistent knowledge
and more collected experience in software engineering.

354 P. Runeson, M.C. Ohlsson, and C. Wohlin

Acknowledgment
We would like to thank Per-Erik Isberg, Department of Statistics, Lund University, for
his support on statistical methods. This work was partly funded by The Swedish
National Board for Industrial and Technical Development (NUTEK), grant 1K1P-97-
09690 and 1K1P-97-09673.

References
1. Briand, L.C., Basili, V.R. and Hetmanski, C.J., “Developing Interpretable Models with Opti-

mized Set Reduction for Identifying High-Risk Software Components”, IEEE Transactions
on Software Engineering, 19(11), 1993, 1028–1044.

2. Khoshgoftaar, T.M and Lanning, D.L, “A Neural Network Approach for Early Detection of
Program Modules Having High Risk in the Maintenance Phase”, Journal of Systems and
Software, 29(1), 1995, 85–91.

3. Khoshgoftaar, T.M., Allen, E.B., Kalaichelvan, K.S and Goel, N.,“Early Quality Prediction:
A Case Study in Telecommunications”, IEEE Software (January 1996), 65–71.

4. Khoshgoftaar, T.M, Allen,E.B., Halstead, R. and Trio, G.P., “Detection of Fault-prone Soft-
ware Modules During a Spiral Life Cycle”, Proceedings of the International Conference on
Software Maintenance, (Monterey, California, USA, November 96) 69-76.

5. Ohlsson, N., Helander, M. and Wohlin, C., “Quality Improvement by Identification of Fault-
Prone Modules using Software Design Metrics”, In Proceedings Sixth International Confer-
ence on Software Quality, (Ottawa, Ontario, Canada, 1996), 1–13.

6. Ohlsson, N. and Alberg, H., “Predicting Fault-Prone Software Modules in Telephone
Switches”, IEEE Transactions on Software Engineering, 22(12), 1996, 886–894.

7. Ohlsson, N. and Wohlin, C., “Experiences of Fault Data in a Large Software System”, Infor-
mation Technology Management: An International Journal, 2(4), 1998, 163–171.

8. Schneidewind, N. F., “Software Metrics Model for Integrating Quality Control and Predic-
tion”, in Proceedings Fourth International Software Metrics Symposium, (Albuquerque,
NM, USA, November 1997) 402–415.

9. Zhao, Ming, Wohlin, C., Ohlsson, N. and Xie, Min, “A Comparison between Software
Design and Code Metrics for the Prediction of Software Fault Content”, Information and
Software Technology, 40(14), 1998, 801–809.

10. Khoshgoftaar, T.M. and Allen, E.B., “The Impact of Cost of Misclassification on Software
Quality Modeling”, in Proceedings Fourth International Software Metrics Symposium,
(Albuquerque, NM, USA, November 1997), 54–62.

11. Fenton, N.E. and Pfleeger, S.L., Software Metrics: A Rigorous and Practical Approach,
Thomson Computer Press, 1996.

12. Ohlsson, M.C. and Wohlin, C., “Identification of Green, Yellow and Red Legacy Compo-
nents”, In Proceeding of International Conference on Software Maintenance, (Bethesda,
Washington D.C, USA, November 1998), 6–15.

13. ITU, “Recommendation Z.100: SDL – Specification and Description Language”, 1988.
14. McCabe, T. J., “A Complexity Measure”, IEEE Transactions on Software Engineering, 4(2),

1976, 308–320.

355A Classification Scheme for Studies on Fault-Prone Components

	Introduction
	Characterisation Scheme
	General
	Output Type
	Output Metrics
	Artefacts
	Input Metrics
	Model Class
	Optimization Criterion
	Method
	Use of the Classification Scheme

	Evaluation Scheme
	Misclassification
	Cost of Misclassification
	Classification Efficiency
	Use of the Evaluation Scheme

	Example Study
	Characterisation
	Evaluation

	Summary
	Acknowledgment
	References

