
 

 

 

 

 

 

 

 

 

 

 

 

C. Wohlin , B. Regnell, A. Wesslén and H. Cosmo, "User-Centred Software 
Engineering - A Comprehensive View of Software Development", Proceedings 

Nordic Seminar on Dependable Computing Systems, pp. 229-240, Lyngby, 
Denmark, August 1994. 

 

 

 

 

 



User-Centred Software Engineering –
A Comprehensive View of Software

Development1

Claes Wohlin, Björn Regnell, Anders Wesslén and Henrik Cosmo
Department of Communication Systems, Lund Institute of Technology

Lund University, Box 118, S-221 00 LUND, Sweden
Phone: +46-46-103329, Fax: +46-46-145823, E-mail: claesw@tts.lth.se

1.  This work is supported by National Board for Industrial and Technical Development (NUTEK), Sweden, refer-
ence Dnr: 93-2850.
Abstract
Dependability is foremost a user-centred quality
attribute. It is in the interest of the user that the soft-
ware system is dependable. Therefore, a user-centred
approach to software development is argued as it
allows for continuous visibility and traceability of
requirements for the user. The objective is to work
with a framework for user-centred software engineer-
ing with the aim to increase software dependability by
having the user in focus throughout the life cycle. The
concepts used in software development are not nor-
mally understandable by the user. Two user-centred
concepts are focused upon, i.e Object-Oriented Soft-
ware Engineering with a use case driven approach and
Usage Testing. These techniques give the user con-
cepts to relate to during development. Therefore, the
user may influence the software product and its
dependability during development, instead of being
disappointed as the software is delivered. The frame-
work forms the basis but more research is needed and
the objective is to cover this need in the future work.

1.  Introduction
User-Centred System Design has been proposed as a
method to design user interfaces. The method is
briefly described in [Sommerville92]. The objective of
the method is to focus on the user needs to ensure that
the interface is accepted by the user when the software
product is delivered. This view can be enlarged to
incorporate other types of software as well. A more
user-centred approach to software development will
increase user and customer satisfaction. In particular

the software will be perceived as more dependable as
the procurer, whether company internal or external,
will not face any surprises at delivery. A User-Centred
Software Engineering approach means that the pro-
curer of the software has a better visibility of the soft-
ware throughout the development than today. 

The objective of this paper is to outline a more user-
centred development approach and to present two
methods that allow for this approach, namely Object-
Oriented Software Engineering (OOSE) with a use
case driven approach [Jacobson92] and usage testing
[Mills88, Runeson93]. The latter approach provides an
opportunity to evaluate for example reliability prior to
release of the software. The two methods are presented
briefly and then a vision of how a User-Centred Soft-
ware Engineering approach can be achieved is intro-
duced. This vision is the basis for the current research
project, entitled “Engineering Reliable Software for
Complex Systems”. Some improvements needed in
use case driven development and usage testing are cur-
rent areas of research to support the overall vision.
These improvement areas are depicted and briefly
described below.

The dependability of a software system is a composite
quality attribute and it is a critical one for the procurer
and of course for the end user of the software. There-
fore, it is necessary to assure that dependability and its
constituents are in accordance with the expectations of
the users throughout the development. It is not possi-
ble to develop complex systems where the procurer
signs a requirements specification and then does not
see the software until the acceptance test. No silver
bullet will be found to cope with dependability prob-
lems. Specific methods or techniques may improve



dependability, but (at least) equally important is to
provide a suitable framework to support development
of dependable software systems. This conviction is the
basis for the work discussed in this paper.

A continuous visibility and evaluation of the software
is needed throughout the software life cycle, i.e. a
comprehensive view with the procurer and end user in
focus must be enforced. Process assessment is a grow-
ing area of interest, but it is not enough. The software
development methods, for example design and test,
must be changed to include concepts that are visible
and of interest for the procurer. The concepts must
reflect the software system to be delivered to give the
procurer a valuable insight in the software to be deliv-
ered. This will increase the reliance the procurer has
for the software as it is delivered to acceptance test,
since the procurer has had the opportunity to influence
the implementation as it is developed. Procurer (or
user) centred concepts are valuable in the communica-
tion with the customer. This type of concepts mean
much more to the procurer than abstract data types and
object classes. These are valuable concepts, but prima-
rily for the implementor and not the procurer or the
end user of the software.

A somewhat pessimistic view on how software devel-
opment is performed today is discussed in section 2
and in section 3 two different external views of the
software system are discussed, first the view of the
procurer of the system and then the view of the mar-
keting and sales persons at the software supplier. The
external views are first discussed from the view in sec-
tion 2 before outlining some needs that are not ful-
filled in this particular view. In section 4 object-

oriented development is discussed, with particular
emphasis on a use case driven approach, while section
5 discusses testing with focus on usage testing. Use
case driven development and usage testing are com-
bined in section 6 where a vision of User-Centred
Software Engineering is presented. In section 7 some
research and improvement suggestions are introduced,
which aim at achieving the overall objective of having
a more user-centred development. Finally in section 8
some conclusions are presented.

2.  Current situation
The situation in software development of today is
well-known with frequent schedule and cost overruns
and poor dependability, which of course is unaccepta-
ble. The customer expects a specific software as it is
ordered, but too often gets disappointed as the soft-
ware is delivered, due to poor visibility and traceabil-
ity of the requirements throughout the development
and testing of the software. The procurer of the soft-
ware formulate requirements, but normally also has
some expectation which has not been put into the
requirement specification. The objective of the sup-
plier must be to fulfil both the written requirements
and the expectations of the procurer. Therefore it is not
only positive for the procurer if visibility and tracea-
bility of the requirements are improved, but also for
the software supplier who will be in better control and
hence can be more confident that the procurer will
accept the software as it is delivered.
FIGURE 1. A view of the current situation with different roles in the software life cycle.

Customer

Market &
Sales

Development Testing

Operation

Sales material
Strategies
Policies
“Flower-talk”

APPLICATION SOFTWARE

User

Expectation Disappointment

Reality:
Maintenance

Costs

Development
methods

Testing
methods

Illustration of
the barriers
between different

activities.



In figure 1 the current situation in software develop-
ment is illustrated from a slightly pessimistic view, but
unfortunately not uncommon. 

The customer wants some application software and is
in contact with the market and sales department at the
supplier. The market and sales department presents
sales material and nice talk about the company and too
often has a poor understanding of the technical prob-
lems with a software product. Therefore, the depart-
ment may make promises which will be hard to fulfil.
This is a result of the barriers between different
departments and activities. The barriers may be a
result of either poor communication or poor under-
standing between market and sales and the develop-
ment department.

The department responsible for the development
applies their methods for specification, design and
implementation. These methods primarily supports the
needs of the developers and they are not adjusted to
the needs of the customer or not even the test depart-
ment within the same company. The test department is
often seen as an unwanted necessity and they are
responsible for removing faults introduced during the
development. The time too perform adequate testing is
often very limited due too delays and time constraints.
As a result, the software delivered to the operational
phase is not dependable and it will be costly to main-
tain. The problem of the quality of the software is left
to the maintenance department, which is obvious as
the relative cost of maintenance is studied, see for
example [Sommerville92].

The quality of the delivered software often leads to a
disappointed procurer or user, which of course is
unsatisfactory for all parts involved. The depicted situ-
ation must be improved, which is discussed further
below.

3.  External view

3.1  Procurer view
The procurer of a software system is mostly not an
expert in software engineering hence the procurer
tends to be incapable of understanding the develop-
ment and testing of the software as the concepts used
are unfamiliar. Many software procurers have
observed this problem and assessments of suppliers
are increasing as well as requiring that software is
bought from certified suppliers. This is a step in the

right direction, but the procurers of software systems
must be supported throughout the software life cycle.
Some work is performed to launch metrics pro-
grammes to support procurers, but this is not enough
because it means an acceptance that the procurer can
not understand the actual development process. New
concepts must be introduced to support the communi-
cation between suppliers and procurers to obtain
dependable computer systems in operation.

The concepts used in the software life cycle must
mean something to the procurer. Therefore, it is neces-
sary to introduce user-centred concepts throughout the
life cycle. The concepts are available, but they have
not been put together to form a comprehensive way of
developing software and the formalization of the con-
cepts must be improved as well to be useful. The intro-
duction of user-centred concepts are beneficial both
for suppliers and procurers because it removes some
of the uncertainty as the software shall be delivered
and it produces probably more dependable software.
Thus a win-win situation with a satisfied procurer and
supplier occurs.

3.2  Market and sales view
The software product is marketed and sold by persons
mainly responsible for contacts with the customers in
the initial stage of the product life cycle, even if they
have contact with the customer until full payment has
been obtained. The persons responsible for market and
sales are mostly not experts in the system actually
being developed. This situation often means that soft-
ware systems are sold with unrealistic expectations set
on them.

The type of concepts proposed here would improve
not only the communication with procurers, but also
between different departments within a company. This
is particular the case when technical experts commu-
nicate with non-technical experts, for example devel-
opment department with market and sales department.
An improved internal communication is essential
since it supports a better understanding of technical
problems hence allowing for realistic promises to pro-
curers. The latter will of course lead to satisfied cus-
tomers.



4.  Development view

4.1  General
The central problem in software development is how
to transform an informal idea about the system to be
built, represented by some requirements specification,
to a formal description of the system that can be exe-
cuted with the desired result. A development process
model is a description of how this work is done. (The
term development is used for denoting the entire fabri-
cation of a software system, and construction is used
for denoting the (sub)activities design and implemen-
tation.)

There exists a number of different approaches to
development process modelling, e.g. Waterfall Model,
Explorative Development, Spiral Model [Boehm88,
Sommerville92]. In all such process models the fol-
lowing activities are represented in one way or
another:

• Specification

• Analysis

• Construction (Design & Implementation)

• Verification & Validation

These activities may be carried out in sequence or in
parallel. They are often controlled by some underlying
principle or philosophy, e.g. structured programming,
top-down or bottom up development, functional
decomposition, or object orientation. These so called
paradigms are not all exclusive and can in principle be
used together in different activities during the devel-
opment process. However, the following two sections
concentrate on the object-oriented approach, as it is
very well suited for the design of large and complex
systems, giving understandable and changeable mod-
els of the system.

4.2  Object-Oriented Development
The main idea of object orientation, which is well-
known and presented in for example [Jacobson92], is
to group data and operations into objects in a way
motivated by the problem domain. The system is
viewed as a model of the problem domain, and object
orientation provides a number of powerful concepts
for modelling purposes.

An object is composed of operations and information
saved in a state. The operations can change the state of
the object. An operation is issued by sending stimuli to

an object, and the sender of a stimulus may receive a
response as a result of the operation. The behaviour
and information are encapsulated in the object, thus
supporting the concept of information hiding. Aggre-
gation or composition is used to model parts-whole
relations.

A class is a template that defines a set of objects in
terms of their internal structure. An instance is an
object created from a class. An instance is an object
that belongs to a certain class, hence object and
instance are used as synonyms. Classes can form a
classification hierarchy for modelling generalisation
and specialisation by the use of inheritance.

By the use of virtual operations an inheritance struc-
ture can offer polymorphism. This is used for dynamic
binding of types to objects by specifying the speciali-
zation of the object at runtime. The operation actually
performed when a stimulus is sent depends on the
dynamic type of the object.

Object-oriented development has a number of neces-
sary activities:

• Object Identification - The different objects in
the system must be identified. This activity
involves analysis of the requirements and the prob-
lem domain.

• Object Organization - The organization of the
objects, with respect to for example inheritance
and aggregation, must be determined.

• Object Interaction - How objects communicate
must be defined in terms of how stimuli are sent
between objects.

• Object Operations - The way objects respond to a
stimulus is defined by specifying the operations.

• Object Implementation - The object is imple-
mented using results from other activities.

• Object Verification & Validation - Finally, the
objects must be verified and validated, to be sure
that they are correct and correspond to the require-
ments.

4.3  Use-Case Driven Approach
In OOSE [Jacobson92] the concept of use cases is
central in the development of software systems. A use
case is a flow of events in the system connected to a
demarcated operation issued by a user type, an actor.
The Use Case Model created early in the analysis
process serves as a basis for all subsequently devel-



oped models of the system. The use case driven
approach provides traceability and seamless transi-
tions between the different models. 

OOSE consists of a number of processes which results
in different system models, each capturing a specific
aspect of the system. The processes and models are
shown in figure 2. The different processes in OOSE
are supposed to be carried out in parallel. The different
models may consist of several (sub)models with their
special syntax and semantics. For instance, the design
model make use of so called interaction diagrams.

There is an important distinction between the analysis
process and the construction process: During analysis
the system is viewed from an ideal point of view, with
no regard to a specific implementation environment,
not taking into account the restrictions imposed by a
non-ideal environment. The effect of the specific non-
ideal implementation environment is not considered
until construction. 

The Use Case Model is part of the Requirements
Model and is the basis of every other model of the sys-

FIGURE 2. OOSE Processes and models.

tem. The Use Case Model is used in different ways to
aid the construction of the other models, as shown in
figure 3.

The use cases are initially described in natural lan-
guage. The use cases can be interrelated by the rela-
tions uses and extends. The uses-relation is used to
describe common parts of many use cases. The
extend-relation is used to describe exceptional events
and error-handling.

OOSE and the use case driven approach is a good plat-
form for object oriented development of large and
complex software systems. Some areas in OOSE,
however, needs improvement and further refinement.
Examples of such areas are formalization of the use
case concept and models, and combining OOSE with
recent development in verification and validation. The
research and improvement areas are discussed in more
detail in section 7.
Analysis Process

Requirements
Specification Requirements

Model

Analysis
Model

Construction 
Process

Design
Model

Implementation
Model

Testing 
Process

Test
Model
FIGURE 3. Use case driven development.

Implementation
Model

Implemented by

Analysis Object 
Model

Structured by

Domain Object 
Model

Design Object 
Model

Realized by

Test 
Model

Tested by

class A …
class B …
…

Expressed 

Use Case Model

Requirements
Analysis

Robustness
Analysis

Construction

Design

Testing

Implementation

in terms of



5.  Testing view

5.1  General
Before a software system is delivered to the procurer,
the software must be tested. The testing includes both
verification and validation. Testing of the software can
be made at different times in the development of the
system. In conventional software development many
different types of tests are made. The different types of
testing can be module, integration, system, and accept-
ance testing. Module testing is a process of testing the
individual subprograms, subroutines or procedures in
a program. Integration testing concerns the coopera-
tion between functions, modules and subsystems. Sys-
tem testing is a test of how the system fulfils its
intended objectives and acceptance testing is the test
when the procurer tests the system to evaluate if it
meets the initial requirements.

The objective of the testing of today is often to find as
many faults in the design and implementation as possi-
ble and this is reflected in the methods that is used to
derive test cases. To find faults, the test cases can
cover all paths in the software, this method is called
exhaustive path testing, or the test cases can cover the
most used paths in the software. The most used paths
are derived from how the software is used and by
experience.

Another way of dividing the testing methods is to
divide them in functional, or structural testing. Func-
tional testing is when the specification of the compo-
nent is used to derive test cases. How the system is
designed or implemented are of no interest for the
tester. The component is seen as a black box and the
only thing that is of any interest is how the component
communicates with its environment. Functional test-

ing is to test the component against its specification.
Structural testing is when the tester uses the detailed
knowledge of the design and implementation to derive
the test cases. Structural testing tests the component’s
code against its design.

Finally, random testing is another way of testing the
system. One type of random testing is to try to gener-
ate test cases according to the anticipated usage of the
system. This type of testing is often referred to as Sta-
tistical Usage Testing and it is described subsequently.

5.2  Statistical Usage Testing

5.2.1  Objective

Statistical Usage Testing, SUT, is the certification part
of Cleanroom Software Engineering, [Mills87,
Mills88]. The basis for the testing is the specification
of the software and not its implementation and hence it
is a black box technique. The objectives of SUT are to
find the faults that influence the reliability the most
and that the testing produces data which makes it pos-
sible to certify and predict the software’s reliability. If
the work is concentrated on the faults that influence
the reliability the most it becomes more cost effective-
ness than conventional testing, [Musa93]. The test
cases are statistically generated from the expected
usage and therefore the test results can be used to cer-
tify the reliability of the software with statistical confi-
dence, whereas the conventional testing provides no
such confidence, [Currit86].

5.2.2  Overview

The procedure of Statistical Usage Testing is described
in figure 4. From the requirements specification a
usage specification is produced, which consists of two
FIGURE 4. The procedure of Statistical Usage Testing.

Usage Specification
Test Case
Generation

Requirements
Specification

System

System
testing

Test results

Statistical Usage Testing

Usage
Model

Usage
Profile

Certification
of reliability



parts, a usage model and a usage profile. From the
usage specification test cases are generated. The test-
ing produces test results and those results are used to
certify the reliability of the software. The construction
of the system is made in parallel of the generation of
the test cases.

5.2.3  Usage specification

In SUT the basis for the testing is the expected usage
by the future users of the system. The expected usage
must be analysed and form a part in the requirements
specification. The usage is described in the usage
specification, which is made from the analysis of the
usage. The usage specification consists of two parts,
the usage profile and the usage model. Markov chains
have been proposed as a suitable technique to model
the usage, [Whittaker92, Runeson92].

A usage model is the structural part of the usage spec-
ification and consists of states and arcs between the
states. A usage profile is the statistical part of the
usage specification and is the transition probabilities
to the usage model. A stimulus is the event that the
user produces to stimulate the system. A stimulus is
connected to a transition in the usage specification.

A test case is a flow of user stimuli, together with the
expected answers from the system. The user stimuli
are used to stimulate the system and the expected
answers are used to evaluate if the system responds
correctly to the stimuli.

Test cases are generated from the usage specification.
A test case is generated by starting in a predefined
state in the usage model and then by making a transi-
tion by random from the usage profile. The stimulus
connected to that transition is recorded and analysed
and the expected answer from the system is also
recorded. The procedure is repeated from the new
state. The test case ends when it has a correct length or
when a specified state is reached.

5.2.4  Certifying the reliability

In Statistical Usage Testing one objective is that it
must be possible to certify the software’s reliability. A
software reliability model is needed to fulfil this
objective. The reliability model can then estimate or
predict the reliability of the software. One reliability
model, which is based on the time between failures, is
described in [Currit86]. Failure data, which is part of
the test results, is the normal type of input data to a
software reliability model.

5.2.5  Advantages

The following advantages are obtained when using
Statistical Usage Testing:

• The software is tested against the expected use of
the system.

• The work is concentrated on those faults that influ-
ence the reliability the most, i.e. the testing is more
cost effective.

• No knowledge of design or implementation is
required.

• Reliability models can be applied on test results
from Statistical Usage Testing.

• Evaluation of software reliability requirements.

• The test cases can be developed in parallel with
software development.

• The software can be tested with a usage that is dif-
ferent from the expected, i.e. the usage profile can
be changed.

• The procurer can easily follow how the testing is
performed.

6.  Vision: User-Centred 
Software Engineering
The objective of the research project and the vision is
to provide formalized concepts and solutions which
support the user-centred approach hence providing
techniques to develop dependable software systems.
The basis for the research is:

• Object-Oriented Software Engineering,
[Jacobson92]

• Statistical Usage Testing, [Mills88, Runeson93]

• Cleanroom Software Engineering, [Mills87,
Cosmo93]

• Service Creation and Interaction with particular
emphasis on complex systems, for example tele-
communication systems, [Morgan91, Kimbler93]

In figure 5 the framework of the vision is illustrated.

The introduction of Object-Oriented Software Engi-
neering with a use case driven approach means that a
concept which relates to the user is introduced in the
development phase. Usage testing is recommended for
the testing phase since the objective of usage testing is
to resemble the anticipated usage in operation hence
certifying the reliability of the software prior to
release. The use case driven approach and the usage



testing approach are to be based on the same major
principle as in Cleanroom Software Engineering, i.e.
“zero defect software can be developed”. The user-
centred process is influenced by principles and meth-
ods packaged within Cleanroom.

The objective is to propose techniques and methods
for a use case driven development approach and usage
testing, hence increasing visibility and traceability of
the software requirements. This also indicates that the
User-Centred Software Engineering approach gives
customers and users a continuous view of the software
ordered from the development and testing depart-
ments, which is indicated in figure 5 by smoother tran-
sitions between different phases in the software life
cycle. The customer may be either external or internal.

7.  Research and improvement 
areas

7.1  Introduction
The objective is to propose techniques and methods to
support the overall vision presented in the previous
section. The aim is not to formulate a fully specified
process or a new development method. The objective
is that the proposed concepts can be implemented in
existing processes, hence making them more benefi-
cial for the industry. It is difficult to adopt completely
new processes, but if the proposed solutions can be
implemented in existing processes and improvements
can be achieved, then the technology transfer from
academia to industrial practice will be simplified con-
siderably. The latter is an important issue as the objec-
tive is to make the research relevant for industrial use.

The way to achieve the objective is further outlined in
figure 6 and some important areas for research and
hence improvements are briefly described subse-
quently.

The informal requirements from the procurer must be
formalized to provide an adequate basis for software
development and testing. By introducing a formal use
case specification this can be achieved. The objective
must be to make the formal use case specification
understandable to the procurer. The common basis, i.e.
the formal use case specification, is a prerequisite in
development and testing otherwise there is a substan-
tial risk that the software and the test cases are devel-
oped based on different understanding of the informal
requirements of the procurer. The formal use case
specification is input to both the use case driven devel-
opment process and the usage testing process. The
division into two processes must not be confused with
the representation of the test process and test model in
figure 2, where the test process refers to the testing in
the development process and the test model refers to
the test cases with test results. Testing is treated very
briefly in Object-Oriented Software Engineering as
described in [Jacobson92], which motivates combin-
ing it with usage testing as proposed here.

The common basis also means that a continuous com-
munication between the development process and the
testing process is supported. The procurer is capable of
understanding the processes and the results since the
user focus is maintained throughout development and
testing. Other concepts are of course not ruled out. It is
not possible to develop and test a system based on
only one concept, but the user-centred concept must be
one of the concepts used.
FIGURE 5. A vision of User-Centred Software Engineering

User-Centred Software
Engineering process

Development Testing

Object-Oriented
Development
with a Use Case
Driven Approach

Usage
Testing

Process with a Cleanroom
Software Engineering view

Market &
Sales

Operation/

Customer User
Continuous

evaluation by
visibility and

customer/user.
This is
supported by
the UCSE
process.

APPLICATION SOFTWARE

Maintenance



The development process and the testing process inter-
cept at the test phase, where the developed software
must be tested from a usage perspective to certify that
the quality (in particular reliability) fulfils the require-
ments stated.

The software must after delivery be maintained for
future releases, but it is also important to notice that
the objective is to maintain the usage model developed
for testing the software as well. The objective is to add
new parts to the usage model in a similar way as new
services must be addable to the software implementa-
tion.

This approach means that several areas must be
improved, hence the research is directed toward these.
The main areas of research identified so far are
described in the following sections.

7.2  Formalization of use cases
One very important research area is formalization of
the concept of use cases and the formalization of mod-
els of use cases. This regards both specifying use
cases, and applying a use case driven approach to
development.

The idea of a development process centred around a
model of the system’s functionality as viewed by the
user, is very appealing, as such a process is possible to
make visible to the user. However, if use cases are to

be a solid basis for the entire development, the concept
has to be formalized. Before an appropriate formaliza-
tion can take place, the demands on such a formaliza-
tion has to be defined.

In our vision, a formal use case specifications model
serves as a basis for all other models, implying that
there are many different requirements, possibly con-
tradictory, on what this model should be able to sup-
ply. The testing process and the development process
are likely to have different demands on the model. A
formalization of the use case specifications model has
to take these demands into account.

When concentrating on formalization of the use case
concept and modelling, it is fruitful to start by identi-
fying problem areas of use cases today. The use case
concept is both problematic and insufficient. The fol-
lowing areas are included in the research:

• Formalization of the definition of the use case con-
cept

• A more formal approach to the identification of
use cases

• Investigation of use case structures and their rela-
tions

• Investigations on granularity of use cases with
respect to size and complexity

• Extending use cases with an invocation context

• Visualization of use cases
FIGURE 6. A User-Centred approach.

Informal
requirements

Formal Use
Case Specification

Use Case Driven Development Process

Usage
Testing
ProcessProcurer

Spec.
Usage
Model

Design
Usage
Model

Genera-
tion of
test cases

Test

Mainte-
nance of
Usage
Model

Spec. Design Implem.
Maintenance
of software
system

Input to

Input to

Delivery of
software system



• Traceability from requirements to use case specifi-
cation and object implementation

7.3  Usage model development based 
on formal use case specifications
Object-Oriented Software Engineering and Usage
Testing have each of them a concept for the usage of
the system. Use cases are discussed in Object-Ori-
ented Software Engineering while a usage model is
depicted as important in Usage Testing. These two
concepts are similar but are used in different ways. If
the development of the system and the testing shall
have the same basis, only one concept is preferred to
make it easy for the procurer to understand the proc-
ess. 

If the use case concept is formalized, it can form the
basis for both object-oriented development and statis-
tical usage testing. To use the formal use case concept
in statistical usage testing there has to be methods for
building usage models from use cases.

7.4  Object-oriented development 
and usage testing of components
Formal development is one basis for the low defect
software produced with the Cleanroom approach.
Today OOSE, [Jacobson92], does not support formal
specification of components. This is not satisfying and
therefore the following research is needed:

• Identification of components from the Use Case
Specification

• Specification and development of software sys-
tem´s components

Object orientation is also depicted as a suitable devel-
opment strategy to develop reusable components, but
a system can not be composed of components from a
repository without having a certified reliability. There-
fore, it is important to develop methods to certify reli-
ability of components and also to formulate methods
to derive system reliability from the reliability of the
system components. The research includes:

• Usage testing and reliability certification of soft-
ware components

• Approaches to derive system reliability from the
components of the system

Some results have been presented within this problem
domain [Poore93, Wohlin94a], but many problems
remain to be solved.

7.5  Usage evaluation from a life 
cycle perspective
Above, usage testing has been described as a suitable
technique to allow for a better evaluation of the soft-
ware prior to the operational phase, but the concept
can be applied throughout the life cycle. A method
proposal for usage analysis of a software design has
been proposed in [Wohlin92] and the objective of the
research is to develop this approach further. The aim is
also to develop a simulation procedure based on the
usage testing concept. Some preliminary results are
presented in [Wohlin94b]. The usage testing process
illustrated in figure 6 must hence be enlarged to incor-
porate more interception points with the development
process.

The research must include:

• Formulation of a usage evaluation process, which
enlarges the approach presented in figure 6. Some
findings are presented in [Wesslén94].

• Further development of the method for usage anal-
ysis, which allows for a first reliability evaluation
during analysis of the software design.

• Formulation of a usage simulation method, which
can either be a functional simulation or it may
include real time aspects which means that capac-
ity issues can be evaluated as well.

These research areas must be combined with usage
testing results to obtain a comprehensive usage evalu-
ation method which covers most of the life cycle.

7.6  System re-certification without 
re-testing
A major problem in reliability certification is that the
certified value is only valid for the applied usage pro-
file. The reliability estimate may be considered trust-
worthy for minor deviations from the applied profile,
but there is no guarantee, and it is not relevant for
major changes in the profile. It is, however, not cost-
effective to re-test the software as the usage profile
changes or a new service is included in the system.
Instead it is favourable if it is possible to re-calculate
the system reliability based on a prior certification and
the known changes.

Some preliminary findings have been presented in
[Wohlin93], but more research is needed, as for exam-
ple:



• Development of a method for sensitivity analysis
of the reliability estimate as the usage profile
changes

• Formulation of a method to re-certify the system
reliability based on a calculation procedure instead
of re-testing the software

The development of a calculation procedure to re-cer-
tify a software system can probably be enlarged to
incorporate reliability certification from other test pro-
cedures than usage testing. The latter is still most cost-
effective, but an organisation may choose to use a cal-
culation procedure instead of applying usage testing,
hence making the procedure more generally applica-
ble. An outline of a method is presented in
[Wohlin94c]

7.7  Cleanroom and process 
improvements
In figure 5, it was depicted that the user-centred proc-
ess approach should be influenced by the principles in
Cleanroom Software Engineering. Therefore, an
important research area is to improve the proposals
and methods in Cleanroom as well as to investigate
the user-centred development process. Some sugges-
tions concerning improvements to Cleanroom have
been presented in [Wohlin93] and [Wohlin94d].

7.8  Incremental development
Incremental development is one of the basic concepts
proposed within Cleanroom to produce low defect
software. Incremental development as defined in
[Mills87] requires that a specification of the total sys-
tem and one specification for each increment is done.
When using this approach, the specification and verifi-
cation of the increments are very time consuming
since each increment has to be specified and verified
separately. In addition to this the specifications of each
increment must when being appended together be
equivalent to the specification of the total system. 

Incremental development is very appealing when
requirements change a lot, which is almost a rule in
software development. When implementing a changed
requirement, developers are supported by good tracea-
bility from requirement to specification down to
design and implementation. 

The following items have to be researched:

• A Use Case Specification that can act both as a
specification of the total system and as a specifica-
tion of each increment

• Identification of a closer relationship between
requirements and its specification

• Identification of a closer relationship between
specification and its components

• Service interaction and incremental development

8.  Conclusions
Software dependability is a life cycle commitment and
it can not be achieved with a single method or tech-
nique. Therefore, a comprehensive view of software
development is needed. Furthermore, it must be
focused upon customer requirements and expectation.
The notion of User-Centred Software Engineering is
introduced to cover this need, hence user-centred con-
cepts are requested throughout the life cycle. The key
issues are customer visibility of the software through-
out the life cycle and traceability of requirements.

Two techniques are available which provide user-cen-
tred concepts, i.e. Object-Oriented Software Engineer-
ing with a use case driven approach and Usage
Testing. The objective of the on-going research project
is to combine these concepts and improve them to sup-
port the vision of User-Centred Software Engineering.
The aim of the approach is to remove some of the bar-
riers and misunderstanding between suppliers and pro-
curers, both company internal and external, as well as
between different departments in the development
organisation.

The focus in the research is on improvements and sug-
gestions that can be combined with existing develop-
ment processes and not to formulate new processes
and complete development methodologies. Several
research areas where improvements are needed have
been presented and it is believed that these improve-
ments will enhance the dependability of software sys-
tems in the future.

9.  References
[Boehm88] Boehm, B. “A Spiral Model of Soft-

ware Development and Enhance-
ment”, IEEE Computer, pp. 61-72,
May 1988.

[Cosmo93] Cosmo, Henrik, Johansson, Erik,
Runeson, Per, Sixtensson, Anders
and Wohlin, Claes, “Cleanroom



Software Engineering in Telecom-
munication Applications”, Proc.
Software Engineering and its Appli-
cations, pp. 369-378, Paris, 1993.

[Currit86] Currit, P. Allen, Dyer, Michael and
Mills, Harlan D., “Certifying the
Reliability of Software”, IEEE
Trans. on Software Engineering,
Vol. SE-12, No 1, pp 3-11, 1986.

[Jacobson92] Jacobson, Ivar and et al., “Object-
Oriented Software Engineering – A
Use Case Driven Approach”, Addi-
son-Wesley Publishing Company
and ACM Press, ISBN 0-201-
54435-0, 1992.

[Kimbler93] Kimbler, Kristofer and Söbirk, Dan-
iel, “Use Case Driven Analysis of
Feature Interactions”, Feature Inter-
action Workshop, Amsterdam,
1994.

[Mills87] Mills, H. D., Dyer, M. and Linger,
R. C., “Cleanroom Software Engi-
neering”, IEEE Software, pp. 19-24,
September 1987.

[Mills88] Mills, H. D., and Poore, J. H.,
“Bringing Software Under Statisti-
cal Quality Control”, Quality
Progress, pp. 52-55, November
1988.

[Morgan91] Morgan, Michael J., Cosky, Michael
J., Gruenenfelder, Thomas M., Cur-
tis Holmes Jr., T., and Raack, Gerald
A., “Service Creation Technologies
for the Intelligent Network”, AT &
T Technical Journal, pp. 58-71,
Summer 1991.

[Musa93] Musa, J. D. “Operational Profiles in
Software Reliability Engineering”,
IEEE Software, pp. 14-32, March
1993.

[Poore93] Poore, J. H., Mills, Harlan D., and
Mutchler, David, “Planning and
Certifying Software System Relia-
bility”, IEEE Software, pp. 88-99,
January 1993.

[Runeson92] Runeson, Per and Wohlin, Claes,
“Usage Modelling: The Basis for
Statistical Quality Control”, Proc.
10th Annual Software Reliability
Symposium, pp. 77-84, Denver,
Colorado, USA, 1992.

[Runeson93] Runeson, Per and Wohlin, Claes,
“Statistical Usage Testing for Soft-

ware Reliability Certification and
Control”, Proc. 1st European In.
Conf. on Software Testing, Analysis
and Review (EuroSTAR), pp. 309-
232, London, UK, 1993.

[Sommerville92] Sommerville, Ian, “Software Engi-
neering”, Addison-Wesley Publish-
ing Company, ISBN 0-201-56529-3,
1992.

[Wesslén94] Wesslén, Anders and Wohlin, Claes,
“Usage Modelling and Generation
of Validation and Verification
Cases”, Technical report, Dept. of
Communication Systems, Lund,
Sweden, 1994.

[Whittaker93] Whittaker, James A., and Poore, J.
H., “Markov Analysis of Software
Specifications”, ACM Trans. on
Software Engineering Methodology,
Vol. 2, No. 1, pp. 93–106, 1993.

[Wohlin92] Wohlin, Claes, and Runeson, Per,
“A Method Proposal for Early Soft-
ware Reliability Estimations”, Proc.
3rd Int. Symposium on Software
Reliability Engineering, pp. 156-
163, Raleigh, North Carolina, USA,
1992. 

[Wohlin93] Wohlin, Claes, “Engineering Relia-
ble Software”, Proceedings 4th Int.
Symposium on Software Reliability
Engineering, pp. 36-44, Denver,
USA, 1993.

[Wohlin94a] Wohlin, Claes and Runeson, Per,
“Certification of Software Compo-
nents”, IEEE Trans. on Software
Engineering, Vol. 20, No. 6, 1994.

[Wohlin94b] Wohlin, Claes, “Evaluation of Soft-
ware Quality Attributes during Soft-
ware Design”, Informatica, Vol. 18,
No. 1, pp. 55-70, 1994.

[Wohlin94c] Wohlin, Claes, “Re-Certification of
Software Reliability without Re-
Testing”, Submitted to First IFIP/
SQI Int. Conf. on Software Quality
and Productivity, Hongkong, 1994.

[Wohlin94d] Wohlin, Claes, “Managing Soft-
ware Quality through Incremental
Development and Certification”,
Proc. Software Quality Manage-
ment, Edinburgh, Scotland, UK,
July 1994.


