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Abstract
Studies in many different fields of research suffer from

the problem of missing data. With missing data, statistical
tests will lose power, results may be biased, or analysis
may not be feasible at all. There are several ways to handle
the problem, for example through imputation. With imputa-
tion, missing values are replaced with estimated values
according to an imputation method or model. In the k-
Nearest Neighbour (k-NN) method, a case is imputed using
values from the k most similar cases. In this paper, we
present an evaluation of the k-NN method using Likert data
in a software engineering context. We simulate the method
with different values of k and for different percentages of
missing data. Our findings indicate that it is feasible to use
the k-NN method with Likert data. We suggest that a suit-
able value of k is approximately the square root of the num-
ber of complete cases. We also show that by relaxing the
method rules with respect to selecting neighbours, the abil-
ity of the method remains high for large amounts of missing
data without affecting the quality of the imputation.

1. Introduction

Missing data is both common and problematic in many
fields of research [16], for example artificial intelligence
[7], machine learning [1] and psychology [4]. The situation
is, unsurprisingly, similar in software engineering
[2, 11, 18]. The absence of data may substantially affect
data analysis - statistical tests will lose power and results
may be biased because of underlying differences between
cases with and without missing data [9]. Simple ways to
deal with missing data are, for example, listwise deletion,
in which incomplete cases are discarded from the data set,
or variable deletion, in which variables with missing data
are discarded. However, the consequence is that potentially
valuable data is discarded, which is even worse than having
missing data in the first place. A better solution, that does
not require useful data to be removed, is to use imputation
methods. Imputation methods work by substituting the
missing data with replacement values, hence increasing the
amount of usable data.

A multitude of imputation methods exist (see, for exam-
ple, [8] for a categorisation). Here, the focus is set on hot
deck imputation. In hot deck imputation, a missing value is
replaced with a value calculated from one or more com-
plete cases (the donors) in the same data set. The choice of
donors should depend on the case being imputed, which
means that ordinary mean imputation, in which a missing
value is replaced with the mean of the non-missing values,
does not qualify as a hot deck method [15]. There are dif-
ferent ways of picking a replacement value, for example by
choosing a value from one of the donors by random [9] or
by calculating the mean of the corresponding values of the
donors [1, 2].

The k-Nearest Neighbour (k-NN) method is a common
hot deck method, in which k donors are selected from the
neighbours (i.e., the complete cases) such that they mini-
mise some similarity measure [15]. The method is briefly
described in section 3.1. An advantage over mean imputa-
tion is that the replacement values are influenced only by
the most similar cases rather than by all cases. Several
studies have found that the k-NN method performs well or
better than other methods, both in software engineering
contexts [2, 17, 18] and in non-software engineering con-
texts [1, 3, 19].

1.1. Objective and Research Questions

In this paper, we evaluate the performance of the k-NN
method with Likert data in a software engineering context.
Likert data is ordinal, and is commonly used when collect-
ing subjective opinions of individuals in surveys [14]. The
evaluation is performed through a simulation, in which the
method is applied to data sets with artificially removed
data. The evaluation data comes from a study about soft-
ware architecture documentation, described in [12].



The importance of the evaluation is justified by the fact
that we have not seen any studies on the use of the k-NN
method with Likert data within empirical software engi-
neering. Thus, the main objective and research question is
whether it is feasible to use the method in said context. If
so, additional research questions are of interest:
• How many donors should preferably be selected?
• At which amount of missing data is it no longer relevant

to use the method?
• Is it possible to decrease the sensitiveness to the amount

of missing data by allowing imputation from certain
incomplete cases as well? (This relaxation of method
rules is described in section 3.2.)
The remainder of the paper is structured as follows. In

sections 2 and 3, we outline related work and give a presen-
tation of the k-NN method. Then, we introduce the process
we have used for evaluating the method in section 4, which
is followed by a short description of the simulation of that
process in section 5. Finally, we present the simulation
results and draw conclusions in sections 6 and 7 respec-
tively.

2. Related Work

As Cartwright et al. point out, publications about impu-
tation in empirical software engineering are few [2]. To our
knowledge, those that exist have focused on comparing the
performance of different imputation methods. For example,
Myrtveit et al. compare four methods for dealing with
missing data: listwise deletion, mean imputation, full infor-
mation maximum likelihood and similar response pattern
imputation (which is related to k-NN with k = 1) [11]. They
conclude, among other things, that similar response pattern
imputation should only be used if the need for more data is
urgent. Strike et al. describe a simulation of listwise dele-
tion, mean imputation and hot deck imputation (in fact, k-
NN with k = 1) [18], and conclude that hot deck imputation
has the best performance in terms of bias and precision.
Furthermore, they recommend the use of Euclidean dis-
tance as a similarity measure. In these two studies, the con-
text is software cost estimation. Cartwright et al.
themselves compare sample mean imputation and k-NN
[2], and reach the conclusion that k-NN may be useful in
software engineering research. In [17], Song and Shepperd
evaluate the difference between MCAR and MAR using k-
NN and class mean imputation. Their findings indicate that
the type of missingness does not have a significant effect
on either of the imputation methods, and furthermore that
class mean imputation performs slightly better than k-NN.
In these two studies, the context is software project effort
prediction.

In other research areas, the comparison of imputation
methods is common as well. Batista and Monard compare
k-NN with the machine learning algorithms C4.5 and C2,
and conclude that k-NN outperforms the other two, and that
it is suitable also when the amount of missing data is large
[1]. Engels and Diehr compare 14 imputation methods,
among them one hot deck method (not k-NN, though), on
longitudinal health care data [6]. They report, however, that
the hot deck method did not perform as well as other meth-
ods. In [9], Huisman presents a comparison of imputation
methods, including k-NN with k = 1. He concludes that the
k-NN method performs well when the number of response
options is large, but that corrected item mean imputation
generally is the best imputation method. In the context of
DNA research, Troyanskaya et al. report on a comparison
of three imputation methods: one based on single value
decomposition, one k-NN variant and row average [19].
They conclude that the k-NN method is far better than the
other methods, and also that it is robust with respect to
amount of missing data and type of data. Moreover, they
recommend the use of Euclidean distance as a similarity
measure.

Imputation in surveys is common, due to the fact that
surveys often are faced with the problem of missing data.
De Leeuw describes the problem of missing data in surveys
and gives suggestions for how to deal with it [10]. In [4],
Downey and King evaluate two methods for imputing Lik-
ert data, which is often used in surveys. Their results show
that both methods, item mean and person mean substitu-
tion, perform well if the amount of missing data is less than
20%. Raaijmakers presents an imputation method, relative
mean substitution, for imputing Likert data in large-scale
surveys [13]. In comparing the method to others, he con-
cludes that it seems to be beneficial in this setting. He also
suggests that it is of greater importance to study the effect
of imputation on different types of data and research strate-
gies than to study the effectiveness of different statistics.
Nevertheless, Chen and Shao evaluate k-NN imputation
with k = 1 for survey data, and show that the method has
good performance with respect to bias and variance of the
mean of estimated values [3].

Gediga and Düntsch present in [7] an imputation
method based on non-numeric rule data analysis. Their
method does not make assumptions about the distribution
of data, and works with consistency between cases rather
than distance. Two cases are said to be consistent when
their non-missing values are the same whenever they occur
in both cases, i.e. donorship is allowed both for complete
and incomplete cases. This resembles our relaxation of the
k-NN method rules when it comes to selecting neighbours
(see section 3.2), in that both approaches allow values that
will not contribute to the similarity measure to be missing
in the donor cases.



3. k-Nearest Neighbour

In this section, we describe how the k-NN method
works and how its properties affect the imputation. We also
discuss two different strategies for selecting neighbours.
While one adheres to the method rules in that only com-
plete cases can be neighbours, the other relaxes this restric-
tion slightly.

3.1. Method

In the k-NN method, missing values in a case are
imputed using values calculated from the k nearest neigh-
bours, hence the name. The nearest, most similar, neigh-
bours are found by minimising a distance function, usually
the Euclidean distance, defined as (see, for example, [20]):

where
• E(a, b) is the distance between the two cases a and b,
• xai and xbi are the values of attribute i in cases a and b,

respectively, and
• D is the set of attributes with non-missing values in both

cases.
The use of Euclidean distance as similarity measure is

recommended by Strike et al. [18] and Troyanskaya et al.
[19]. The k-NN method does not suffer from the problem
with reduced variance to the same extent as mean imputa-
tion, because when mean imputation imputes the same
value (the mean) for all cases, k-NN imputes different val-
ues depending on the case being imputed.

Consider the data set shown in table 1; when calculating
the distance between cases Bridget and Eric, the attributes
for which both have values are Q1, Q3, Q4 and Q5. Thus,
D = {Q1, Q3, Q4, Q5}. We see that Bridget’s answer to Q2
does not contribute to the calculation of the distance,
because it is not in D. This implies that whether a neigh-
bour has values for attributes outside D or not does not
affect its similarity to the case being imputed. For example,
Bridget and Eric are equally similar to Susan, because

despite the fact that Bridget is more complete than Eric.
Another consequence of how the Euclidean distance is

calculated, is that it is easier to find near neighbours when
D is small. This occurs because the number of terms under
the radical sign has fairly large impact on the distance.
Again, consider the data set in table 1; based on the Euclid-
ean distance, Bridget and Eric are equally similar to Quen-
tin (in fact, their distances are zero). Still, they differ
considerably on Q5, and Eric has not answered Q2 at all.

E a b,( ) xai xbi–( )2

i D∈
∑=

E Bridget Su.,( ) E Eric Su.,( ) 2 4 2–( )2⋅ 2,8≈= =
This suggests that the distance function does not necessar-
ily reflect the true similarity between cases when D is
small.

Once the k nearest neighbours (donors) have been
found, a replacement value to substitute for the missing
attribute value must be estimated. How the replacement
value is calculated depends on the type of data; the mode
can be used for discrete data and the mean for continuous
data [1]. Because the mode may be tied (several values
may have the same frequency), and because we use Likert
data where the magnitude of a value matters, we will
instead use the median for estimating a replacement value.

An important parameter for the k-NN method is the
value of k. Duda and Hart suggest, albeit in the context of
probability density estimation within pattern classification,
the use of , where N in our case corresponds to the
number of neighbours [5]. Cartwright et al., on the other
hand, suggest a low k, typically 1 or 2, but point out that
k = 1 is sensitive to outliers and consequently use k = 2 [2].
Several others use k = 1, for example Myrtveit et al. [11],
Strike et al. [18], Huisman [9] and Chen and Shao [3].
Batista and Monard, on the other hand, report on k = 10 for
large data sets [1], while Troyanskaya et al. argue that the
method is fairly insensitive to the choice of k. As k
increases, the mean distance to the donors gets larger,
which implies that the replacement values could be less
precise. Eventually, as k approaches N, the method con-
verges to ordinary mean imputation (median, in our case)
where also the most distant cases contribute.

3.2. Neighbour Strategy

In hot deck imputation, and consequently in k-NN
imputation, only complete cases can be used for imputing
missing values [1, 2, 15]. In other words, only complete
cases can be neighbours. Based on the discussion in the
previous section about how the Euclidean distance between
cases is unaffected by values of attributes not in D, we sug-
gest that it is possible to relax this restriction slightly. Thus,
we see two distinct strategies for selecting neighbours.

Table 1. Example Incomplete Data Set

Q1 Q2 Q3 Q4 Q5

Bridget 2 3 4 2 1

Eric 2 - 2 4 5

Susan - - 2 4 -

Quentin 2 - - - -

k N≈



The first strategy is in line with how the method nor-
mally is used, and allows only the complete cases to be
neighbours. This means that no incomplete cases can con-
tribute to the substitution of a replacement value in an
incomplete case. We will refer to this strategy as the CC
strategy, where CC means “complete case”.

The second strategy allows all complete cases and cer-
tain incomplete cases to be neighbours. More specifically, a
case can act as a neighbour if and only if it contains values
for all attributes that the case being imputed has values for,
and for the attribute being imputed. We will refer to this
strategy as the IC strategy, where IC means “incomplete
case”.

It is important to note that we do not permit already
imputed cases to be donors in any of the strategies. Thus,
imputed data will never be used to impute new data. 

For an example of the two strategies, consult again table
1. Assuming we are about to impute attribute Q1 for Susan,
the CC strategy would only allow Bridget to be a neigh-
bour. The IC strategy, however, would allow both Bridget
and Eric to be neighbours, because Eric contains values for
at least the necessary attributes: Q1, Q3 and Q4. Because
the IC strategy potentially has more neighbours to select
donors from, it can be expected to be able to “survive”
larger amounts of missing data than the CC strategy.

4. Evaluation Process

The process for evaluating the k-NN method consists of
three main steps: data removal, imputation and evaluation,
as is shown in the process chart in figure 1 below. In this
section, we describe how the three steps work and what
they produce. The simulation of this process is shortly
described in section 5.

Figure 1. Process Outline

1. Data
removal

2. Imputation

3. Evaluation

Original
data set

Metrics

R, Q,
MSE

1-1: Discard cases with too much missing data.
1-2: Discard data sets with too few remaining cases.

2-1: Discard cases that cannot  be fully imputed.

Incomplete data
sets

Cases: C=A+A’

Imputed data
sets

Cases: C’=A+A’’
4.1. Data Removal (step 1)

The first step, numbered 1 in the process chart, requires
a complete data set to work with. This original data set con-
tains only cases without missing data. Data is removed
from the original data set in order to produce artificially
incomplete data sets for the imputation step. There are
three main ways in which data can be missing from a data
set [1, 2, 16]:
• MCAR (missing completely at random), means that the

missing data is independent on any variable observed in
the data set.

• MAR (missing at random), means that the missing data
may depend on variables observed in the data set, but
not on the missing values themselves.

• NMAR (not missing at random, or NI, non-ignorable),
means that the missing data depends on the missing val-
ues themselves, and not on any other observed variable.
Any actions for dealing with missing data are dependent

on why the data is missing. For example, to discard cases
with missing data is dangerous unless the missing data is
MCAR [16]. Otherwise, there is a risk that the remaining
data is severely biased. Missing data that is NMAR is hard-
est to deal with, because it, obviously, is difficult to con-
struct an imputation model based on unobserved data.

Data missing from the responses to a questionnaire is
unlikely to be MCAR [13]. For example, a respondent
could leave out an answer because of lack of interest, time,
knowledge or because he or she did not consider a question
relevant. If it is possible to distinguish between these dif-
ferent sources of missing data, an answer left out because
of lack of question relevance could be regarded as useful
information rather than a missing data point. If so, the
degree of missingness would be different than if the source
of missing data could not be distinguished. In any case, the
missing data in a questionnaire is more likely MAR than
MCAR. In order to remove data so that it is MAR, a model
for the non-responsiveness is required. When analysing the
results from a longitudinal study of health data, Engels and
Diehr created such a model based on probabilities of miss-
ing data values [6]. In the absence of a good model for our
data, however, we remove data in a completely random
fashion, which means that the missing data is MCAR. We
do not try to simulate different sources of missing data, so
we consider all removed data points as being truly missing.

There are two parameters that guide the data removal
step, the case reduction limit and the data set reduction
limit. We call these reduction limits because they prevent
the data from being reduced to a level where it is unusable.
The effects of the parameters can be seen in the process
chart. If it is decided in step 1-1 that a case contains too
many missing values after data removal, as dictated by the
case reduction limit, it is discarded from the data set. The



reason for having this limit is to avoid single cases with so
little data that it becomes meaningless to calculate the
Euclidean distance to other cases. If it is decided in step 1-
2 that too few cases remain in the data set, as dictated by
the data set reduction limit, the entire data set is discarded.
The idea with this limit is to avoid a data set with so few
cases that it no longer can be said to represent the original
data set.

We acknowledge that by having these limits, we com-
bine the k-NN imputation method with simple listwise
deletion. As discussed earlier, this is dangerous unless the
missing data truly is MCAR. However, we argue that keep-
ing cases with very little data left would also be dangerous,
because the imputed data would contain loosely grounded
estimates. In other words, it is a trade-off that has to be
made.

The removal step is executed for a number of different
percentages. Furthermore, it is repeated several times for
each percentage. Thus, the output from the removal step is
a large number of incomplete data sets to be fed to the
imputation step. For each incomplete data set coming from
the removal step, we define:
• A as the number of complete cases remaining,
•  as the number of incomplete cases remaining, and

thus
•  as the total number of cases remaining.

Since entire cases may be discarded in the removal step,
the actual percentage of missing data may be different from
the intended percentage. For the incomplete data sets gen-
erated in the simulation, both the intended percentage and
the actual percentage of missing data are presented. When
analysing the results, it is the actual percentage that is used,
though.

4.2. Imputation (step 2)

In the imputation step, numbered 2 in the process chart,
the k-NN method is applied to each incomplete data set
generated in the data removal step. For each incomplete
data set, several imputations using different k-values and
different neighbour strategies are performed. As mentioned
earlier, we use the median value of the k nearest neighbours
as replacement for a missing value, and because the data in
the data set is of Likert type, it is not possible to insert non-
integer values. Thus, only odd k-values are used, which
results in that the median always becomes an integer value.

The k cases with least distances are chosen as donors,
regardless of ties among the distances, i.e. two cases with
equal distances are treated as two unique neighbours. This
means that it is not always possible to pick k cases such
that the remaining K - k cases (where K is the total number
of neighbours) have distances greater to that of the kth

A′

C A A′+=
case. Should such a situation occur, it is treated as follows.
If l,  cases have been picked, and there are m,

 cases with distance d, then the k - l
first cases of the m, in the order they appear in the original
data set, are picked.

If there are not enough neighbours available, cases may
get lost in the imputation process. For the CC strategy, this
will always happen when k is greater than the number of
complete cases in the incomplete data set. The IC strategy
has greater imputation ability, though, but will inevitably
lose cases when k is large enough. This second situation
where cases can be discarded is numbered 2-1 in the pro-
cess chart.

The output from the imputation step is a number of
imputed data sets, several for each incomplete data set gen-
erated in the data removal step. For each imputed data set,
we define
•  as the number of cases that were

imputed, i.e. that were not lost in step 2-1, and conse-
quently

•  as the total number of cases, and also
• B as the number of imputed attribute values.

4.3. Evaluation (step 3)

In the evaluation step, each imputed data set from the
imputation step is compared to the original data set in order
to measure the performance of the imputation. Three sepa-
rate metrics are used: one ability metric and two quality
metrics. The two quality metrics differ both in what they
measure and how they measure it. The first quality metric
is a measure of how many of the imputed attribute values
that were imputed correctly. In other words, it is a precision
metric. The second quality metric is a measure of how
much those that were not imputed correctly differ from
their correct values, which makes it a distance metric.

We define the ability metric as

which equals 0 if all incomplete cases were lost during the
imputation (in step 2-1), and 1 if all incomplete cases were
imputed.

To define the precision metric, let B’ be the number of
matching imputed attribute values. Then, the metric can be
expressed as

which equals 0 if all the imputed attribute values are incor-
rect, and 1 if all are correct.

0 l k<≤
k l–( ) m< K l–( )≤

A″ 0 A″ A′≤ ≤,

C′ A A″+=

R A″
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------=

Q
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B
-----  if B 0>

undefined  if B 0=⎩
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⎨
⎪
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Finally, we calculate the mean square error of the incor-
rectly imputed attribute values as

where xi is the correct value and  is the imputed value of
the ith incorrectly imputed attribute value.

Since B = 0 when R = 0, it is apparent that both the pre-
cision measure and the mean square error are invalid when
the ability measure is zero. Moreover, the mean square
error becomes invalid when Q = 1. Consequently, the three
metrics need to have different priorities: R is the primary
performance metric, Q is the secondary, and MSE is the ter-
tiary. Recognising that it would be difficult to create one
single metric for measuring the performance, no attempts
to accomplish this have been made.

Average values of R, Q and MSE are presented in the
results, because several imputations are performed with
identical parameters (percentage, value of k and neighbour
strategy). For R, the mean includes all measured instances,
while for Q and MSE, only those instances where the met-
rics are not undefined are included.

5. Simulation

In this section, we describe the design of the simulation,
which includes the original data used as input to the
removal step, the parameters used when “instantiating” the
process and some details about the simulation software
used.

5.1. Original Data Set

The data used in the simulation comes from a case study
on architecture documentation in a large Swedish organisa-
tion. The case study is described in detail in [12]. In the
case study, a questionnaire containing questions about
knowledge of architecture documentation was distributed
to employees in the organisation. The data set on which we
base the simulation consists of the answers to six of the
questions in the questionnaire. 54 respondents gave
answers to all of the six questions, which means that the
data set used as input to the data removal step contains 54
cases.

Each of the six questions used a Likert scale for collect-
ing answers, where the numbers 1 to 5 were used to repre-
sent different levels of agreement to some statement or
query. Each of the numbers 1 to 5 was associated with a
statement explaining its meaning, and we tried to make

MSE
xi x̂i–( )2

i
∑

B B′–
----------------------------  if B 0 B′ B<,>

undefined  if B 0 or B′ B==⎩
⎪
⎪
⎨
⎪
⎪
⎧

=

x̂i
sure that the distance between two adjacent numbers was
similar everywhere.

5.2. Parameters

Each of the three steps in the process described in sec-
tion 4 is guided by a number of parameters. This section
describes the values used for those parameters in the simu-
lation.

As discussed, two reduction limits, the case reduction
limit and the data set reduction limit, constrain the data
removal step. In the simulation, we used the following val-
ues:
• Case reduction limit = 3 (inclusively)
• Data set reduction limit = 27 (inclusively)

With six attributes in each case, the case reduction limit
means that cases with less than 50% of the attribute values
left were discarded in step 2-1. The reason for this limit is
that we wanted each imputed case to have at least equally
much real data as imputed data.

With 54 cases in the original data set, the data set reduc-
tion limit means that data sets with less than 50% of the
cases left were discarded in step 2-2. Since each case is a
respondent, we wanted to make sure that each data set
being imputed contained at least half of the respondents in
the original data set.

The removal step generated data sets where 5, 10, 15,
20, 25, 30, 35, 40, 45, 50, 55 and 60 percent data had been
removed (however, as discussed in section 4.1, the actual
percentages became different). For each percentage, 1 000
data sets were generated, which means that a total of
12 000 data sets were generated. The simulation was con-
trolled so that the removal step would generate the
requested number of data sets even if some data sets were
discarded because of the data set reduction limit.

In the imputation step, the only controlling parameter is
the choice of which k-values to use when imputing data
sets. We decided to use odd values in an interval from 1 to
C, inclusively. Even though we knew that the CC strategy
would fail at k = A + 1, we expected the IC strategy to be
able to handle larger k-values.

5.3. Software

In order to execute the simulation, an application for
carrying out the data removal, imputation and evaluation
steps was written. In addition, Microsoft Excel was used
for analysing some of the results from the evaluation step.

In order to validate that the application worked cor-
rectly, a special data set was designed. The data set con-
tained a low number of cases, in order to make it feasible to
impute data manually, and was crafted so that the imputa-



tion should give different results both for different k-val-
ues, and for the two neighbour strategies.

By comparing the outcome of the imputations per-
formed by the application to the outcome of imputations
made manually, it was decided that the application was cor-
rect. To further assess this fact, a number of application
features were inspected in more detail: the calculation of
Euclidean distance, the calculation of median, and the
selection of k donors for both strategies. Finally, a number
of entries in the simulation results summary were randomly
picked and checked for feasibility and correctness.

6. Results

In this section, we present the results of the simulation
in two ways. First, we compare the ability and quality of
the k-NN method for different k-values. In order to better
understand how k is affected by the amount of missing
data, we perform two additional simulations with increased
numbers of attributes. Then, we compare the ability of the
method for different amounts of missing data. We begin,
however, with showing some descriptive statistics for the
incomplete data sets generated in the removal step.

6.1. Incomplete Data Sets

As discussed in section 4.1, there is a difference
between the amount of data removed from the original data
set and the amount of data actually missing from the result-
ing, incomplete, data sets. The main reason for this is that
entire cases may be discarded because of the case reduction
limit. Another, less significant, reason is rounding effects.
For example, removing 5% of the data in the original data
set means removing 16 attribute values out of 324, which
equals 4.9%.

Table 2 shows descriptive statistics for the incomplete
data sets generated in the removal step. Each row repre-
sents the 1 000 data sets generated for the percentage stated
in the left-most column. The second and third columns
contain the mean and standard deviation (expressed with
the same magnitude as the mean) of the percentage of
missing data, respectively. The fourth and fifth columns
contain the average number of cases and the average num-
ber of complete cases in each data set, respectively. Finally,
the sixth column contains the average number of imputa-
tions made on each data set. This corresponds roughly to
the average number of cases (C), which is our upper limit
of k.

6.2. Comparison of k-Values

For each percentage of missing data, we plotted the abil-
ity metric and the quality metrics for different values of k
and for both neighbour selection strategies. Because of
space constraints, we cannot show all 24 diagrams. This is
not necessary, however, because there is a common pattern
for all percentages. To illustrate this pattern, we show the
diagrams for the data sets with 14.5% and 19.0% missing
data, respectively, in figure 2.

The diagrams in the figure show the ability and quality
for both neighbour strategies. In the upper diagram, the
ability (R) is 1.0 up until k is around 15 for both strategies,
after which it falls and reaches 0.5 when k is around 21 for
the CC strategy and slightly more for the IC strategy. The
latter limit coincides with the average number of complete
cases (A) in the data sets for this percentage. Similarly, in
the lower diagram we see that the ability is 1.0 up until k is
around 9, and falls to 0.5 when k is around 15. Such limits,
albeit different, exist for other percentages as well.

Both diagrams further show that the precision (Q) of the
method starts at around 0.4 when k is 1, and increases up to
around 0.5 when k reaches 5. Thereafter, the precision is
fairly unaffected by the value of k and varies only slightly
on a “ledge” of k-values, an observation similar to that
made by Troyanskaya et al. [19]. This is true for both strat-
egies. Because of the priorities of the performance metrics,
discussed in section 4.3, the ledge has a natural upper limit
as the ability of the method drops. The initial increase in
precision and the ledge of k-values exist for other percent-
ages as well, up to a percentage where the drop in ability
occurs already for a low k. In our data, this happens when

Table 2. Overview of Incomplete Data Sets

Pct. Mean miss-
ing data (%)

s Avg.
#imp.

5 4.9 0.1 54.0 39.8 54.0

10 9.8 0.3 53.9 28.8 54.0

15 14.5 0.5 53.7 20.4 53.9

20 19.0 0.8 53.2 14.2 53.6

25 23.4 1.0 52.1 9.6 52.6

30 27.2 1.2 50.5 6.3 51.0

35 30.8 1.3 48.4 4.0 48.9

40 34.4 1.3 46.0 2.4 46.5

45 38.0 1.3 43.1 1.5 43.6

50 42.1 1.3 40.1 0.8 40.6

55 46.5 1.3 37.4 0.4 37.9

60 51.5 1.3 34.9 0.2 35.4

C A



around 30% data is missing, in which case the ability drops
to 0.8 for the CC strategy and 0.9 for the IC strategy
already when k is 3.

The mean square error (MSE), which is the tertiary per-
formance metric, starts off high but shows a noticeable
decrease as k increases to 7. Then, it slowly increases for
higher k-values on the aforementioned ledge. Although the
increase is minimal, it seems to concur with the observa-
tion made in section 3.1, that the estimated replacement
values get worse as the mean distance to the donors
increase. The described pattern in mean square error occurs
for both strategies and for other percentages as well.

The differences between the neighbour strategies can be
seen by comparing the black curves, representing the CC
strategy, to the grey curves, representing the IC strategy. As
can be seen, the curves for R, Q and MSE are nearly identi-
cal between the strategies. The main difference is that the
ability of the method, as expected, does not drop as fast for
the IC strategy as it does for the CC strategy. Two impor-
tant observations regarding the IC strategy are that the pre-
cision is generally not lower than for the CC strategy, and
the mean square error is not larger.

We see, based on the discussion about the performance
metrics above, that k should be selected so that it is large
enough to be on the ledge, but low enough to minimise the

Figure 2. Performance at 14.5% and 19.0% Miss-
ing Data, CC and IC
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mean square error. Since the ledge gradually diminishes for
higher percentages of missing data, k would preferably
depend on the amount of missing data. In fact, the depen-
dency should be on the number of available neighbours for
at least two reasons. First, the drop in ability occurs
because the number of available neighbours decreases. For
the CC strategy, the number of available neighbours is the
number of complete cases. For the IC strategy, it is slightly
more, but not so much more that the number of complete
cases is an unfit approximation. Second, removing a cer-
tain percentage of data from two data sets with different
numbers of attributes but the same number of cases would
result in different numbers of complete cases.

Table 3 shows the observed optimal k-values for both
neighbour selection strategies given the average number of
complete cases for the simulated percentages. In the table,
the rightmost column represents the data sets with four
complete cases or less. It can be seen that the optimal value
of k for a certain number of neighbours is the same for both
strategies.

Looking for an appropriate model for k, we compared
each optimal k-value to the square root of the average num-
ber of complete cases, as suggested by Duda and Hart. The
reason they suggest this model is that k should be large
enough to give a reliable result, but small enough to keep
the donors as close as possible [5]. This concurs with our
own requirements on k. Thus, we have chosen to examine

k = round_odd( ), i.e. the square root of the average
number of complete cases after data removal, rounded to
the nearest odd integer. This function is compared to the
optimal k-values in table 4. As can be seen, the function
underestimates k somewhat in the mid-range of missing
data. This does not mean that the calculated k-values are
inappropriate, though. The mean relative errors in R, Q and
MSE between the calculated and the optimal k-values are
for the CC strategy 0.07%, 0.67% and 0.73%, respectively,
and for the IC strategy 0.04%, 0.78% and 0.80%, respec-
tively.

As mentioned, the number of complete cases for a data
set with a certain percentage missing data depends on,
among other things, the number of attributes in the data set.
Thus, in order to further test our findings, we performed
two additional simulations. In the first, the number of

Table 3. Optimal k-Values for CC and IC

= 39.8 28.8 20.4 14.2 9.6 6.3 4.0-

CC 7 7 7 7 5 3 1

IC 7 7 7 7 5 3 1

A

A



attributes was increased to 12 by simply appending a copy
of each case to itself. In the second simulation, the number
of attributes was increased to 18 in a similar way. The case
reduction limits were increased accordingly. The diagrams
in figure 3 show the results of imputing data sets with on
average 9.9% missing data using the IC strategy. With 12
attributes, the average number of complete cases at this
percentage is 15.3, and with 18 attributes it is 8.0. The pre-
cision (Q) is highest at k = 3 in both diagrams, but declines
as k increases, instead of showing a ledge as was the case
with six attributes. Another difference is that the precision
generally is higher with more attributes. Also, the mean
square error starts low in both diagrams, and the increase as
k grows larger is articulated compared to the results with
six attributes. These observations further support our
requirements on k, as stated earlier. In total, the results
from the two additional simulations indicate that it is suit-

able to use k = round_odd( ) with higher numbers of
attributes as well.

Table 4. Optimal k vs. Calculated k

= 39.8 28.8 20.4 14.2 9.6 6.3 4.0-

Opt. 7 7 7 7 5 3 1

Calc. 7 5 5 3 3 3 1

Figure 3. 9.9% Missing Data, 12/18 Attributes, IC
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6.3. Comparison of Percentages

In addition to comparing the ability and quality for dif-
ferent k-values, we compared the ability of the method for
different amounts of missing data, using for each percent-
age the optimal k-value found earlier. The diagram (for six
attributes) can be seen in figure 4. Both neighbour strate-
gies provide nearly maximum ability (R) up to around 30%
missing data (when, on average, 88% of the cases are
incomplete). After that, the ability when using the CC strat-
egy drops rapidly down to 0.2 at around 50% missing data
(when, on average, 98% of the cases are incomplete),
meaning that only 20% of the incomplete cases were
recovered. The IC strategy, on the other hand, drops less
drastically and can recover nearly 60% of the incomplete
cases at around 50% missing data.

The figure clearly shows that the IC strategy is more
advantageous when more data is missing. Because the
comparison of k-values showed that the IC strategy does
not give lower precision or larger mean square error than
the CC strategy, we consider it more favourable regardless
of the amount of missing data.

6.4. Interpretation of the Results

Our results indicate that the k-NN method performs well
on the type of data we have used, provided that a suitable
value of k is selected. We base our judgement on the fol-
lowing indicators (see figures 2, 3 and 4):
• The ability of the method, in particular when using the

IC strategy, is high even when the amount of missing
data (and thus the proportion of incomplete cases) is
high.

• The precision is on average between 0.5 and 0.6, which
means that at least half of the missing data points are
imputed correctly.

• The mean square error is at worst 1.6 (for six attributes,
and even lower for more attributes), which means that
the incorrectly imputed data points are at most off by
slightly more than one.

Figure 4. Ability vs. Amount of Missing Data
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In the absence of something to compare with, it is obvi-
ously hard to assess the goodness of the values obtained on
the quality metrics. However, we consider correct imputa-
tion for at least half of the data points and a deviation of
slightly more than one for the other half of the data points
to be good from a practical point of view. Put differently,
we would not regard the imputation of data a serious threat
to validity in a real-world study of this type.

It is of course desirable to achieve good values on all
three performance metrics. However, when the perfor-
mance decreases for whichever of the metrics, it is the pri-
orities between them that should determine whether the
imputation was successful or not. For example, if the qual-
ity drops but the ability stays high, the imputation may still
be considered successful, because resorting to listwise
deletion (or any other type of deletion procedure) may not
be an option.

6.5. Threats to Validity

In the method, we used Euclidean distance as the simi-
larity measure. However, the data was of Likert type,
which means that it was on an ordinal scale. This makes it
debatable to perform distance calculations, which normally
requires an interval scale. Still, we argue that the distance
calculations were relevant, and thus the validity threat min-
imal, because effort was put into making the distances
between Likert numbers similar. Furthermore, our results
show that the imputations were successful after all.

In step 1 of the evaluation, we removed data from the
original data set completely randomly, which means that
the missing data was MCAR. It is more likely, though, that
missing responses to a questionnaire are MAR, as pointed
out by Raaijmakers [13]. In other words, the missingness
mechanism used in the evaluation did not fully represent a
real-world situation.

It may be dangerous to use incomplete cases as donors
when the missing data is MAR, for example if incomplete
cases can be said to contain less valuable data. This could
be the case if missing answers were an indication that the
respondents did not take the questionnaire seriously. As a
precaution, we recommend using a limit to prevent cases
with far too much missing data both from being imputed
and from acting as donors.

A threat to the generalisability of the results is that we
used a fairly small data set with 54 cases as a basis for the
simulation. With a small data set with missing data, the
neighbours that can be used as donors are few, and thus the
outcome of the imputation is sensitive to disturbances, such
as outliers, in the data. We do, however, believe that it is
not uncommon to get a small data set when collecting data
from a survey, which means that our simulation should be
relevant from this point of view.
7. Conclusions

In this paper, we have presented an evaluation of the
performance of the k-Nearest Neighbour imputation
method when using Likert data. This type of ordinal data is
common in surveys that collect subjective opinions from
individuals. The evaluation process was simulated using
custom simulation software.

In the evaluation, we removed data randomly from a
complete data set, containing real data collected in a previ-
ous study. Since we simulated the evaluation process, we
were able to perform a number of imputations using differ-
ent imputation parameters on a large number of incomplete
data sets with different amounts of missing data. In the
imputation process, we used different values of k, and also
two different strategies for selecting neighbours, the CC
strategy and the IC strategy. The CC strategy, which con-
curs with the rules of the k-NN method, allows only com-
plete cases to act as neighbours. The IC strategy allows as
neighbours also incomplete cases where attribute values
that would not contribute to the distance calculation are
missing.

In order to measure the performance of the method, we
defined one ability metric and two quality metrics. Based
on the results of the simulation, we compared these metrics
for different values of k and for different amounts of miss-
ing data. We also compared the ability of the method for
different amounts of missing data using optimal values of
k.

Our findings lead us to conclude the following in
response to our research questions:
• Imputation of Likert data using the k-NN method is fea-

sible. Our results show that imputation was successful
(in terms of quality) provided that an appropriate value
of k was used.

• It is not best to use k = 1, as we have seen is common, in
all situations. Our results show that using the square
root of the number of complete cases, rounded to the
nearest odd integer, is a suitable model for k.

• The outcome of the imputation depends on the number
of complete cases more than the amount of missing
data. The method was successful even for high propor-
tions of incomplete cases.

• When using the IC strategy, the ability of the method
increased substantially compared to the CC strategy for
larger amounts of missing data, while there was no neg-
ative impact on the quality of the imputations for
smaller amounts of missing data. Consequently, the IC
strategy seems, from a quality perspective, safe to use in
all situations.
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Abstract
Studies in many different fields of research suffer from

the problem of missing data. With missing data, statistical
tests will lose power, results may be biased, or analysis
may not be feasible at all. There are several ways to handle
the problem, for example through imputation. With imputa-
tion, missing values are replaced with estimated values
according to an imputation method or model. In the k-
Nearest Neighbour (k-NN) method, a case is imputed using
values from the k most similar cases. In this paper, we
present an evaluation of the k-NN method using Likert data
in a software engineering context. We simulate the method
with different values of k and for different percentages of
missing data. Our findings indicate that it is feasible to use
the k-NN method with Likert data. We suggest that a suit-
able value of k is approximately the square root of the num-
ber of complete cases. We also show that by relaxing the
method rules with respect to selecting neighbours, the abil-
ity of the method remains high for large amounts of missing
data without affecting the quality of the imputation.

1. Introduction

Missing data is both common and problematic in many
fields of research [16], for example artificial intelligence
[7], machine learning [1] and psychology [4]. The situation
is, unsurprisingly, similar in software engineering
[2, 11, 18]. The absence of data may substantially affect
data analysis - statistical tests will lose power and results
may be biased because of underlying differences between
cases with and without missing data [9]. Simple ways to
deal with missing data are, for example, listwise deletion,
in which incomplete cases are discarded from the data set,
or variable deletion, in which variables with missing data
are discarded. However, the consequence is that potentially
valuable data is discarded, which is even worse than having
missing data in the first place. A better solution, that does
not require useful data to be removed, is to use imputation
methods. Imputation methods work by substituting the
missing data with replacement values, hence increasing the
amount of usable data.

A multitude of imputation methods exist (see, for exam-
ple, [8] for a categorisation). Here, the focus is set on hot
deck imputation. In hot deck imputation, a missing value is
replaced with a value calculated from one or more com-
plete cases (the donors) in the same data set. The choice of
donors should depend on the case being imputed, which
means that ordinary mean imputation, in which a missing
value is replaced with the mean of the non-missing values,
does not qualify as a hot deck method [15]. There are dif-
ferent ways of picking a replacement value, for example by
choosing a value from one of the donors by random [9] or
by calculating the mean of the corresponding values of the
donors [1, 2].

The k-Nearest Neighbour (k-NN) method is a common
hot deck method, in which k donors are selected from the
neighbours (i.e., the complete cases) such that they mini-
mise some similarity measure [15]. The method is briefly
described in section 3.1. An advantage over mean imputa-
tion is that the replacement values are influenced only by
the most similar cases rather than by all cases. Several
studies have found that the k-NN method performs well or
better than other methods, both in software engineering
contexts [2, 17, 18] and in non-software engineering con-
texts [1, 3, 19].

1.1. Objective and Research Questions

In this paper, we evaluate the performance of the k-NN
method with Likert data in a software engineering context.
Likert data is ordinal, and is commonly used when collect-
ing subjective opinions of individuals in surveys [14]. The
evaluation is performed through a simulation, in which the
method is applied to data sets with artificially removed
data. The evaluation data comes from a study about soft-
ware architecture documentation, described in [12].



The importance of the evaluation is justified by the fact
that we have not seen any studies on the use of the k-NN
method with Likert data within empirical software engi-
neering. Thus, the main objective and research question is
whether it is feasible to use the method in said context. If
so, additional research questions are of interest:
• How many donors should preferably be selected?
• At which amount of missing data is it no longer relevant

to use the method?
• Is it possible to decrease the sensitiveness to the amount

of missing data by allowing imputation from certain
incomplete cases as well? (This relaxation of method
rules is described in section 3.2.)
The remainder of the paper is structured as follows. In

sections 2 and 3, we outline related work and give a presen-
tation of the k-NN method. Then, we introduce the process
we have used for evaluating the method in section 4, which
is followed by a short description of the simulation of that
process in section 5. Finally, we present the simulation
results and draw conclusions in sections 6 and 7 respec-
tively.

2. Related Work

As Cartwright et al. point out, publications about impu-
tation in empirical software engineering are few [2]. To our
knowledge, those that exist have focused on comparing the
performance of different imputation methods. For example,
Myrtveit et al. compare four methods for dealing with
missing data: listwise deletion, mean imputation, full infor-
mation maximum likelihood and similar response pattern
imputation (which is related to k-NN with k = 1) [11]. They
conclude, among other things, that similar response pattern
imputation should only be used if the need for more data is
urgent. Strike et al. describe a simulation of listwise dele-
tion, mean imputation and hot deck imputation (in fact, k-
NN with k = 1) [18], and conclude that hot deck imputation
has the best performance in terms of bias and precision.
Furthermore, they recommend the use of Euclidean dis-
tance as a similarity measure. In these two studies, the con-
text is software cost estimation. Cartwright et al.
themselves compare sample mean imputation and k-NN
[2], and reach the conclusion that k-NN may be useful in
software engineering research. In [17], Song and Shepperd
evaluate the difference between MCAR and MAR using k-
NN and class mean imputation. Their findings indicate that
the type of missingness does not have a significant effect
on either of the imputation methods, and furthermore that
class mean imputation performs slightly better than k-NN.
In these two studies, the context is software project effort
prediction.

In other research areas, the comparison of imputation
methods is common as well. Batista and Monard compare
k-NN with the machine learning algorithms C4.5 and C2,
and conclude that k-NN outperforms the other two, and that
it is suitable also when the amount of missing data is large
[1]. Engels and Diehr compare 14 imputation methods,
among them one hot deck method (not k-NN, though), on
longitudinal health care data [6]. They report, however, that
the hot deck method did not perform as well as other meth-
ods. In [9], Huisman presents a comparison of imputation
methods, including k-NN with k = 1. He concludes that the
k-NN method performs well when the number of response
options is large, but that corrected item mean imputation
generally is the best imputation method. In the context of
DNA research, Troyanskaya et al. report on a comparison
of three imputation methods: one based on single value
decomposition, one k-NN variant and row average [19].
They conclude that the k-NN method is far better than the
other methods, and also that it is robust with respect to
amount of missing data and type of data. Moreover, they
recommend the use of Euclidean distance as a similarity
measure.

Imputation in surveys is common, due to the fact that
surveys often are faced with the problem of missing data.
De Leeuw describes the problem of missing data in surveys
and gives suggestions for how to deal with it [10]. In [4],
Downey and King evaluate two methods for imputing Lik-
ert data, which is often used in surveys. Their results show
that both methods, item mean and person mean substitu-
tion, perform well if the amount of missing data is less than
20%. Raaijmakers presents an imputation method, relative
mean substitution, for imputing Likert data in large-scale
surveys [13]. In comparing the method to others, he con-
cludes that it seems to be beneficial in this setting. He also
suggests that it is of greater importance to study the effect
of imputation on different types of data and research strate-
gies than to study the effectiveness of different statistics.
Nevertheless, Chen and Shao evaluate k-NN imputation
with k = 1 for survey data, and show that the method has
good performance with respect to bias and variance of the
mean of estimated values [3].

Gediga and Düntsch present in [7] an imputation
method based on non-numeric rule data analysis. Their
method does not make assumptions about the distribution
of data, and works with consistency between cases rather
than distance. Two cases are said to be consistent when
their non-missing values are the same whenever they occur
in both cases, i.e. donorship is allowed both for complete
and incomplete cases. This resembles our relaxation of the
k-NN method rules when it comes to selecting neighbours
(see section 3.2), in that both approaches allow values that
will not contribute to the similarity measure to be missing
in the donor cases.



3. k-Nearest Neighbour

In this section, we describe how the k-NN method
works and how its properties affect the imputation. We also
discuss two different strategies for selecting neighbours.
While one adheres to the method rules in that only com-
plete cases can be neighbours, the other relaxes this restric-
tion slightly.

3.1. Method

In the k-NN method, missing values in a case are
imputed using values calculated from the k nearest neigh-
bours, hence the name. The nearest, most similar, neigh-
bours are found by minimising a distance function, usually
the Euclidean distance, defined as (see, for example, [20]):

where
• E(a, b) is the distance between the two cases a and b,
• xai and xbi are the values of attribute i in cases a and b,

respectively, and
• D is the set of attributes with non-missing values in both

cases.
The use of Euclidean distance as similarity measure is

recommended by Strike et al. [18] and Troyanskaya et al.
[19]. The k-NN method does not suffer from the problem
with reduced variance to the same extent as mean imputa-
tion, because when mean imputation imputes the same
value (the mean) for all cases, k-NN imputes different val-
ues depending on the case being imputed.

Consider the data set shown in table 1; when calculating
the distance between cases Bridget and Eric, the attributes
for which both have values are Q1, Q3, Q4 and Q5. Thus,
D = {Q1, Q3, Q4, Q5}. We see that Bridget’s answer to Q2
does not contribute to the calculation of the distance,
because it is not in D. This implies that whether a neigh-
bour has values for attributes outside D or not does not
affect its similarity to the case being imputed. For example,
Bridget and Eric are equally similar to Susan, because

despite the fact that Bridget is more complete than Eric.
Another consequence of how the Euclidean distance is

calculated, is that it is easier to find near neighbours when
D is small. This occurs because the number of terms under
the radical sign has fairly large impact on the distance.
Again, consider the data set in table 1; based on the Euclid-
ean distance, Bridget and Eric are equally similar to Quen-
tin (in fact, their distances are zero). Still, they differ
considerably on Q5, and Eric has not answered Q2 at all.
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This suggests that the distance function does not necessar-
ily reflect the true similarity between cases when D is
small.

Once the k nearest neighbours (donors) have been
found, a replacement value to substitute for the missing
attribute value must be estimated. How the replacement
value is calculated depends on the type of data; the mode
can be used for discrete data and the mean for continuous
data [1]. Because the mode may be tied (several values
may have the same frequency), and because we use Likert
data where the magnitude of a value matters, we will
instead use the median for estimating a replacement value.

An important parameter for the k-NN method is the
value of k. Duda and Hart suggest, albeit in the context of
probability density estimation within pattern classification,
the use of , where N in our case corresponds to the
number of neighbours [5]. Cartwright et al., on the other
hand, suggest a low k, typically 1 or 2, but point out that
k = 1 is sensitive to outliers and consequently use k = 2 [2].
Several others use k = 1, for example Myrtveit et al. [11],
Strike et al. [18], Huisman [9] and Chen and Shao [3].
Batista and Monard, on the other hand, report on k = 10 for
large data sets [1], while Troyanskaya et al. argue that the
method is fairly insensitive to the choice of k. As k
increases, the mean distance to the donors gets larger,
which implies that the replacement values could be less
precise. Eventually, as k approaches N, the method con-
verges to ordinary mean imputation (median, in our case)
where also the most distant cases contribute.

3.2. Neighbour Strategy

In hot deck imputation, and consequently in k-NN
imputation, only complete cases can be used for imputing
missing values [1, 2, 15]. In other words, only complete
cases can be neighbours. Based on the discussion in the
previous section about how the Euclidean distance between
cases is unaffected by values of attributes not in D, we sug-
gest that it is possible to relax this restriction slightly. Thus,
we see two distinct strategies for selecting neighbours.

Table 1. Example Incomplete Data Set

Q1 Q2 Q3 Q4 Q5

Bridget 2 3 4 2 1

Eric 2 - 2 4 5

Susan - - 2 4 -

Quentin 2 - - - -

k N≈



The first strategy is in line with how the method nor-
mally is used, and allows only the complete cases to be
neighbours. This means that no incomplete cases can con-
tribute to the substitution of a replacement value in an
incomplete case. We will refer to this strategy as the CC
strategy, where CC means “complete case”.

The second strategy allows all complete cases and cer-
tain incomplete cases to be neighbours. More specifically, a
case can act as a neighbour if and only if it contains values
for all attributes that the case being imputed has values for,
and for the attribute being imputed. We will refer to this
strategy as the IC strategy, where IC means “incomplete
case”.

It is important to note that we do not permit already
imputed cases to be donors in any of the strategies. Thus,
imputed data will never be used to impute new data. 

For an example of the two strategies, consult again table
1. Assuming we are about to impute attribute Q1 for Susan,
the CC strategy would only allow Bridget to be a neigh-
bour. The IC strategy, however, would allow both Bridget
and Eric to be neighbours, because Eric contains values for
at least the necessary attributes: Q1, Q3 and Q4. Because
the IC strategy potentially has more neighbours to select
donors from, it can be expected to be able to “survive”
larger amounts of missing data than the CC strategy.

4. Evaluation Process

The process for evaluating the k-NN method consists of
three main steps: data removal, imputation and evaluation,
as is shown in the process chart in figure 1 below. In this
section, we describe how the three steps work and what
they produce. The simulation of this process is shortly
described in section 5.

Figure 1. Process Outline
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4.1. Data Removal (step 1)

The first step, numbered 1 in the process chart, requires
a complete data set to work with. This original data set con-
tains only cases without missing data. Data is removed
from the original data set in order to produce artificially
incomplete data sets for the imputation step. There are
three main ways in which data can be missing from a data
set [1, 2, 16]:
• MCAR (missing completely at random), means that the

missing data is independent on any variable observed in
the data set.

• MAR (missing at random), means that the missing data
may depend on variables observed in the data set, but
not on the missing values themselves.

• NMAR (not missing at random, or NI, non-ignorable),
means that the missing data depends on the missing val-
ues themselves, and not on any other observed variable.
Any actions for dealing with missing data are dependent

on why the data is missing. For example, to discard cases
with missing data is dangerous unless the missing data is
MCAR [16]. Otherwise, there is a risk that the remaining
data is severely biased. Missing data that is NMAR is hard-
est to deal with, because it, obviously, is difficult to con-
struct an imputation model based on unobserved data.

Data missing from the responses to a questionnaire is
unlikely to be MCAR [13]. For example, a respondent
could leave out an answer because of lack of interest, time,
knowledge or because he or she did not consider a question
relevant. If it is possible to distinguish between these dif-
ferent sources of missing data, an answer left out because
of lack of question relevance could be regarded as useful
information rather than a missing data point. If so, the
degree of missingness would be different than if the source
of missing data could not be distinguished. In any case, the
missing data in a questionnaire is more likely MAR than
MCAR. In order to remove data so that it is MAR, a model
for the non-responsiveness is required. When analysing the
results from a longitudinal study of health data, Engels and
Diehr created such a model based on probabilities of miss-
ing data values [6]. In the absence of a good model for our
data, however, we remove data in a completely random
fashion, which means that the missing data is MCAR. We
do not try to simulate different sources of missing data, so
we consider all removed data points as being truly missing.

There are two parameters that guide the data removal
step, the case reduction limit and the data set reduction
limit. We call these reduction limits because they prevent
the data from being reduced to a level where it is unusable.
The effects of the parameters can be seen in the process
chart. If it is decided in step 1-1 that a case contains too
many missing values after data removal, as dictated by the
case reduction limit, it is discarded from the data set. The



reason for having this limit is to avoid single cases with so
little data that it becomes meaningless to calculate the
Euclidean distance to other cases. If it is decided in step 1-
2 that too few cases remain in the data set, as dictated by
the data set reduction limit, the entire data set is discarded.
The idea with this limit is to avoid a data set with so few
cases that it no longer can be said to represent the original
data set.

We acknowledge that by having these limits, we com-
bine the k-NN imputation method with simple listwise
deletion. As discussed earlier, this is dangerous unless the
missing data truly is MCAR. However, we argue that keep-
ing cases with very little data left would also be dangerous,
because the imputed data would contain loosely grounded
estimates. In other words, it is a trade-off that has to be
made.

The removal step is executed for a number of different
percentages. Furthermore, it is repeated several times for
each percentage. Thus, the output from the removal step is
a large number of incomplete data sets to be fed to the
imputation step. For each incomplete data set coming from
the removal step, we define:
• A as the number of complete cases remaining,
•  as the number of incomplete cases remaining, and

thus
•  as the total number of cases remaining.

Since entire cases may be discarded in the removal step,
the actual percentage of missing data may be different from
the intended percentage. For the incomplete data sets gen-
erated in the simulation, both the intended percentage and
the actual percentage of missing data are presented. When
analysing the results, it is the actual percentage that is used,
though.

4.2. Imputation (step 2)

In the imputation step, numbered 2 in the process chart,
the k-NN method is applied to each incomplete data set
generated in the data removal step. For each incomplete
data set, several imputations using different k-values and
different neighbour strategies are performed. As mentioned
earlier, we use the median value of the k nearest neighbours
as replacement for a missing value, and because the data in
the data set is of Likert type, it is not possible to insert non-
integer values. Thus, only odd k-values are used, which
results in that the median always becomes an integer value.

The k cases with least distances are chosen as donors,
regardless of ties among the distances, i.e. two cases with
equal distances are treated as two unique neighbours. This
means that it is not always possible to pick k cases such
that the remaining K - k cases (where K is the total number
of neighbours) have distances greater to that of the kth

A′

C A A′+=
case. Should such a situation occur, it is treated as follows.
If l,  cases have been picked, and there are m,

 cases with distance d, then the k - l
first cases of the m, in the order they appear in the original
data set, are picked.

If there are not enough neighbours available, cases may
get lost in the imputation process. For the CC strategy, this
will always happen when k is greater than the number of
complete cases in the incomplete data set. The IC strategy
has greater imputation ability, though, but will inevitably
lose cases when k is large enough. This second situation
where cases can be discarded is numbered 2-1 in the pro-
cess chart.

The output from the imputation step is a number of
imputed data sets, several for each incomplete data set gen-
erated in the data removal step. For each imputed data set,
we define
•  as the number of cases that were

imputed, i.e. that were not lost in step 2-1, and conse-
quently

•  as the total number of cases, and also
• B as the number of imputed attribute values.

4.3. Evaluation (step 3)

In the evaluation step, each imputed data set from the
imputation step is compared to the original data set in order
to measure the performance of the imputation. Three sepa-
rate metrics are used: one ability metric and two quality
metrics. The two quality metrics differ both in what they
measure and how they measure it. The first quality metric
is a measure of how many of the imputed attribute values
that were imputed correctly. In other words, it is a precision
metric. The second quality metric is a measure of how
much those that were not imputed correctly differ from
their correct values, which makes it a distance metric.

We define the ability metric as

which equals 0 if all incomplete cases were lost during the
imputation (in step 2-1), and 1 if all incomplete cases were
imputed.

To define the precision metric, let B’ be the number of
matching imputed attribute values. Then, the metric can be
expressed as

which equals 0 if all the imputed attribute values are incor-
rect, and 1 if all are correct.
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Finally, we calculate the mean square error of the incor-
rectly imputed attribute values as

where xi is the correct value and  is the imputed value of
the ith incorrectly imputed attribute value.

Since B = 0 when R = 0, it is apparent that both the pre-
cision measure and the mean square error are invalid when
the ability measure is zero. Moreover, the mean square
error becomes invalid when Q = 1. Consequently, the three
metrics need to have different priorities: R is the primary
performance metric, Q is the secondary, and MSE is the ter-
tiary. Recognising that it would be difficult to create one
single metric for measuring the performance, no attempts
to accomplish this have been made.

Average values of R, Q and MSE are presented in the
results, because several imputations are performed with
identical parameters (percentage, value of k and neighbour
strategy). For R, the mean includes all measured instances,
while for Q and MSE, only those instances where the met-
rics are not undefined are included.

5. Simulation

In this section, we describe the design of the simulation,
which includes the original data used as input to the
removal step, the parameters used when “instantiating” the
process and some details about the simulation software
used.

5.1. Original Data Set

The data used in the simulation comes from a case study
on architecture documentation in a large Swedish organisa-
tion. The case study is described in detail in [12]. In the
case study, a questionnaire containing questions about
knowledge of architecture documentation was distributed
to employees in the organisation. The data set on which we
base the simulation consists of the answers to six of the
questions in the questionnaire. 54 respondents gave
answers to all of the six questions, which means that the
data set used as input to the data removal step contains 54
cases.

Each of the six questions used a Likert scale for collect-
ing answers, where the numbers 1 to 5 were used to repre-
sent different levels of agreement to some statement or
query. Each of the numbers 1 to 5 was associated with a
statement explaining its meaning, and we tried to make

MSE
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sure that the distance between two adjacent numbers was
similar everywhere.

5.2. Parameters

Each of the three steps in the process described in sec-
tion 4 is guided by a number of parameters. This section
describes the values used for those parameters in the simu-
lation.

As discussed, two reduction limits, the case reduction
limit and the data set reduction limit, constrain the data
removal step. In the simulation, we used the following val-
ues:
• Case reduction limit = 3 (inclusively)
• Data set reduction limit = 27 (inclusively)

With six attributes in each case, the case reduction limit
means that cases with less than 50% of the attribute values
left were discarded in step 2-1. The reason for this limit is
that we wanted each imputed case to have at least equally
much real data as imputed data.

With 54 cases in the original data set, the data set reduc-
tion limit means that data sets with less than 50% of the
cases left were discarded in step 2-2. Since each case is a
respondent, we wanted to make sure that each data set
being imputed contained at least half of the respondents in
the original data set.

The removal step generated data sets where 5, 10, 15,
20, 25, 30, 35, 40, 45, 50, 55 and 60 percent data had been
removed (however, as discussed in section 4.1, the actual
percentages became different). For each percentage, 1 000
data sets were generated, which means that a total of
12 000 data sets were generated. The simulation was con-
trolled so that the removal step would generate the
requested number of data sets even if some data sets were
discarded because of the data set reduction limit.

In the imputation step, the only controlling parameter is
the choice of which k-values to use when imputing data
sets. We decided to use odd values in an interval from 1 to
C, inclusively. Even though we knew that the CC strategy
would fail at k = A + 1, we expected the IC strategy to be
able to handle larger k-values.

5.3. Software

In order to execute the simulation, an application for
carrying out the data removal, imputation and evaluation
steps was written. In addition, Microsoft Excel was used
for analysing some of the results from the evaluation step.

In order to validate that the application worked cor-
rectly, a special data set was designed. The data set con-
tained a low number of cases, in order to make it feasible to
impute data manually, and was crafted so that the imputa-



tion should give different results both for different k-val-
ues, and for the two neighbour strategies.

By comparing the outcome of the imputations per-
formed by the application to the outcome of imputations
made manually, it was decided that the application was cor-
rect. To further assess this fact, a number of application
features were inspected in more detail: the calculation of
Euclidean distance, the calculation of median, and the
selection of k donors for both strategies. Finally, a number
of entries in the simulation results summary were randomly
picked and checked for feasibility and correctness.

6. Results

In this section, we present the results of the simulation
in two ways. First, we compare the ability and quality of
the k-NN method for different k-values. In order to better
understand how k is affected by the amount of missing
data, we perform two additional simulations with increased
numbers of attributes. Then, we compare the ability of the
method for different amounts of missing data. We begin,
however, with showing some descriptive statistics for the
incomplete data sets generated in the removal step.

6.1. Incomplete Data Sets

As discussed in section 4.1, there is a difference
between the amount of data removed from the original data
set and the amount of data actually missing from the result-
ing, incomplete, data sets. The main reason for this is that
entire cases may be discarded because of the case reduction
limit. Another, less significant, reason is rounding effects.
For example, removing 5% of the data in the original data
set means removing 16 attribute values out of 324, which
equals 4.9%.

Table 2 shows descriptive statistics for the incomplete
data sets generated in the removal step. Each row repre-
sents the 1 000 data sets generated for the percentage stated
in the left-most column. The second and third columns
contain the mean and standard deviation (expressed with
the same magnitude as the mean) of the percentage of
missing data, respectively. The fourth and fifth columns
contain the average number of cases and the average num-
ber of complete cases in each data set, respectively. Finally,
the sixth column contains the average number of imputa-
tions made on each data set. This corresponds roughly to
the average number of cases (C), which is our upper limit
of k.

6.2. Comparison of k-Values

For each percentage of missing data, we plotted the abil-
ity metric and the quality metrics for different values of k
and for both neighbour selection strategies. Because of
space constraints, we cannot show all 24 diagrams. This is
not necessary, however, because there is a common pattern
for all percentages. To illustrate this pattern, we show the
diagrams for the data sets with 14.5% and 19.0% missing
data, respectively, in figure 2.

The diagrams in the figure show the ability and quality
for both neighbour strategies. In the upper diagram, the
ability (R) is 1.0 up until k is around 15 for both strategies,
after which it falls and reaches 0.5 when k is around 21 for
the CC strategy and slightly more for the IC strategy. The
latter limit coincides with the average number of complete
cases (A) in the data sets for this percentage. Similarly, in
the lower diagram we see that the ability is 1.0 up until k is
around 9, and falls to 0.5 when k is around 15. Such limits,
albeit different, exist for other percentages as well.

Both diagrams further show that the precision (Q) of the
method starts at around 0.4 when k is 1, and increases up to
around 0.5 when k reaches 5. Thereafter, the precision is
fairly unaffected by the value of k and varies only slightly
on a “ledge” of k-values, an observation similar to that
made by Troyanskaya et al. [19]. This is true for both strat-
egies. Because of the priorities of the performance metrics,
discussed in section 4.3, the ledge has a natural upper limit
as the ability of the method drops. The initial increase in
precision and the ledge of k-values exist for other percent-
ages as well, up to a percentage where the drop in ability
occurs already for a low k. In our data, this happens when

Table 2. Overview of Incomplete Data Sets

Pct. Mean miss-
ing data (%)

s Avg.
#imp.

5 4.9 0.1 54.0 39.8 54.0

10 9.8 0.3 53.9 28.8 54.0

15 14.5 0.5 53.7 20.4 53.9

20 19.0 0.8 53.2 14.2 53.6

25 23.4 1.0 52.1 9.6 52.6

30 27.2 1.2 50.5 6.3 51.0

35 30.8 1.3 48.4 4.0 48.9

40 34.4 1.3 46.0 2.4 46.5

45 38.0 1.3 43.1 1.5 43.6

50 42.1 1.3 40.1 0.8 40.6

55 46.5 1.3 37.4 0.4 37.9

60 51.5 1.3 34.9 0.2 35.4
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around 30% data is missing, in which case the ability drops
to 0.8 for the CC strategy and 0.9 for the IC strategy
already when k is 3.

The mean square error (MSE), which is the tertiary per-
formance metric, starts off high but shows a noticeable
decrease as k increases to 7. Then, it slowly increases for
higher k-values on the aforementioned ledge. Although the
increase is minimal, it seems to concur with the observa-
tion made in section 3.1, that the estimated replacement
values get worse as the mean distance to the donors
increase. The described pattern in mean square error occurs
for both strategies and for other percentages as well.

The differences between the neighbour strategies can be
seen by comparing the black curves, representing the CC
strategy, to the grey curves, representing the IC strategy. As
can be seen, the curves for R, Q and MSE are nearly identi-
cal between the strategies. The main difference is that the
ability of the method, as expected, does not drop as fast for
the IC strategy as it does for the CC strategy. Two impor-
tant observations regarding the IC strategy are that the pre-
cision is generally not lower than for the CC strategy, and
the mean square error is not larger.

We see, based on the discussion about the performance
metrics above, that k should be selected so that it is large
enough to be on the ledge, but low enough to minimise the

Figure 2. Performance at 14.5% and 19.0% Miss-
ing Data, CC and IC
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mean square error. Since the ledge gradually diminishes for
higher percentages of missing data, k would preferably
depend on the amount of missing data. In fact, the depen-
dency should be on the number of available neighbours for
at least two reasons. First, the drop in ability occurs
because the number of available neighbours decreases. For
the CC strategy, the number of available neighbours is the
number of complete cases. For the IC strategy, it is slightly
more, but not so much more that the number of complete
cases is an unfit approximation. Second, removing a cer-
tain percentage of data from two data sets with different
numbers of attributes but the same number of cases would
result in different numbers of complete cases.

Table 3 shows the observed optimal k-values for both
neighbour selection strategies given the average number of
complete cases for the simulated percentages. In the table,
the rightmost column represents the data sets with four
complete cases or less. It can be seen that the optimal value
of k for a certain number of neighbours is the same for both
strategies.

Looking for an appropriate model for k, we compared
each optimal k-value to the square root of the average num-
ber of complete cases, as suggested by Duda and Hart. The
reason they suggest this model is that k should be large
enough to give a reliable result, but small enough to keep
the donors as close as possible [5]. This concurs with our
own requirements on k. Thus, we have chosen to examine

k = round_odd( ), i.e. the square root of the average
number of complete cases after data removal, rounded to
the nearest odd integer. This function is compared to the
optimal k-values in table 4. As can be seen, the function
underestimates k somewhat in the mid-range of missing
data. This does not mean that the calculated k-values are
inappropriate, though. The mean relative errors in R, Q and
MSE between the calculated and the optimal k-values are
for the CC strategy 0.07%, 0.67% and 0.73%, respectively,
and for the IC strategy 0.04%, 0.78% and 0.80%, respec-
tively.

As mentioned, the number of complete cases for a data
set with a certain percentage missing data depends on,
among other things, the number of attributes in the data set.
Thus, in order to further test our findings, we performed
two additional simulations. In the first, the number of

Table 3. Optimal k-Values for CC and IC

= 39.8 28.8 20.4 14.2 9.6 6.3 4.0-

CC 7 7 7 7 5 3 1

IC 7 7 7 7 5 3 1
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attributes was increased to 12 by simply appending a copy
of each case to itself. In the second simulation, the number
of attributes was increased to 18 in a similar way. The case
reduction limits were increased accordingly. The diagrams
in figure 3 show the results of imputing data sets with on
average 9.9% missing data using the IC strategy. With 12
attributes, the average number of complete cases at this
percentage is 15.3, and with 18 attributes it is 8.0. The pre-
cision (Q) is highest at k = 3 in both diagrams, but declines
as k increases, instead of showing a ledge as was the case
with six attributes. Another difference is that the precision
generally is higher with more attributes. Also, the mean
square error starts low in both diagrams, and the increase as
k grows larger is articulated compared to the results with
six attributes. These observations further support our
requirements on k, as stated earlier. In total, the results
from the two additional simulations indicate that it is suit-

able to use k = round_odd( ) with higher numbers of
attributes as well.

Table 4. Optimal k vs. Calculated k

= 39.8 28.8 20.4 14.2 9.6 6.3 4.0-

Opt. 7 7 7 7 5 3 1

Calc. 7 5 5 3 3 3 1

Figure 3. 9.9% Missing Data, 12/18 Attributes, IC
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6.3. Comparison of Percentages

In addition to comparing the ability and quality for dif-
ferent k-values, we compared the ability of the method for
different amounts of missing data, using for each percent-
age the optimal k-value found earlier. The diagram (for six
attributes) can be seen in figure 4. Both neighbour strate-
gies provide nearly maximum ability (R) up to around 30%
missing data (when, on average, 88% of the cases are
incomplete). After that, the ability when using the CC strat-
egy drops rapidly down to 0.2 at around 50% missing data
(when, on average, 98% of the cases are incomplete),
meaning that only 20% of the incomplete cases were
recovered. The IC strategy, on the other hand, drops less
drastically and can recover nearly 60% of the incomplete
cases at around 50% missing data.

The figure clearly shows that the IC strategy is more
advantageous when more data is missing. Because the
comparison of k-values showed that the IC strategy does
not give lower precision or larger mean square error than
the CC strategy, we consider it more favourable regardless
of the amount of missing data.

6.4. Interpretation of the Results

Our results indicate that the k-NN method performs well
on the type of data we have used, provided that a suitable
value of k is selected. We base our judgement on the fol-
lowing indicators (see figures 2, 3 and 4):
• The ability of the method, in particular when using the

IC strategy, is high even when the amount of missing
data (and thus the proportion of incomplete cases) is
high.

• The precision is on average between 0.5 and 0.6, which
means that at least half of the missing data points are
imputed correctly.

• The mean square error is at worst 1.6 (for six attributes,
and even lower for more attributes), which means that
the incorrectly imputed data points are at most off by
slightly more than one.

Figure 4. Ability vs. Amount of Missing Data
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In the absence of something to compare with, it is obvi-
ously hard to assess the goodness of the values obtained on
the quality metrics. However, we consider correct imputa-
tion for at least half of the data points and a deviation of
slightly more than one for the other half of the data points
to be good from a practical point of view. Put differently,
we would not regard the imputation of data a serious threat
to validity in a real-world study of this type.

It is of course desirable to achieve good values on all
three performance metrics. However, when the perfor-
mance decreases for whichever of the metrics, it is the pri-
orities between them that should determine whether the
imputation was successful or not. For example, if the qual-
ity drops but the ability stays high, the imputation may still
be considered successful, because resorting to listwise
deletion (or any other type of deletion procedure) may not
be an option.

6.5. Threats to Validity

In the method, we used Euclidean distance as the simi-
larity measure. However, the data was of Likert type,
which means that it was on an ordinal scale. This makes it
debatable to perform distance calculations, which normally
requires an interval scale. Still, we argue that the distance
calculations were relevant, and thus the validity threat min-
imal, because effort was put into making the distances
between Likert numbers similar. Furthermore, our results
show that the imputations were successful after all.

In step 1 of the evaluation, we removed data from the
original data set completely randomly, which means that
the missing data was MCAR. It is more likely, though, that
missing responses to a questionnaire are MAR, as pointed
out by Raaijmakers [13]. In other words, the missingness
mechanism used in the evaluation did not fully represent a
real-world situation.

It may be dangerous to use incomplete cases as donors
when the missing data is MAR, for example if incomplete
cases can be said to contain less valuable data. This could
be the case if missing answers were an indication that the
respondents did not take the questionnaire seriously. As a
precaution, we recommend using a limit to prevent cases
with far too much missing data both from being imputed
and from acting as donors.

A threat to the generalisability of the results is that we
used a fairly small data set with 54 cases as a basis for the
simulation. With a small data set with missing data, the
neighbours that can be used as donors are few, and thus the
outcome of the imputation is sensitive to disturbances, such
as outliers, in the data. We do, however, believe that it is
not uncommon to get a small data set when collecting data
from a survey, which means that our simulation should be
relevant from this point of view.
7. Conclusions

In this paper, we have presented an evaluation of the
performance of the k-Nearest Neighbour imputation
method when using Likert data. This type of ordinal data is
common in surveys that collect subjective opinions from
individuals. The evaluation process was simulated using
custom simulation software.

In the evaluation, we removed data randomly from a
complete data set, containing real data collected in a previ-
ous study. Since we simulated the evaluation process, we
were able to perform a number of imputations using differ-
ent imputation parameters on a large number of incomplete
data sets with different amounts of missing data. In the
imputation process, we used different values of k, and also
two different strategies for selecting neighbours, the CC
strategy and the IC strategy. The CC strategy, which con-
curs with the rules of the k-NN method, allows only com-
plete cases to act as neighbours. The IC strategy allows as
neighbours also incomplete cases where attribute values
that would not contribute to the distance calculation are
missing.

In order to measure the performance of the method, we
defined one ability metric and two quality metrics. Based
on the results of the simulation, we compared these metrics
for different values of k and for different amounts of miss-
ing data. We also compared the ability of the method for
different amounts of missing data using optimal values of
k.

Our findings lead us to conclude the following in
response to our research questions:
• Imputation of Likert data using the k-NN method is fea-

sible. Our results show that imputation was successful
(in terms of quality) provided that an appropriate value
of k was used.

• It is not best to use k = 1, as we have seen is common, in
all situations. Our results show that using the square
root of the number of complete cases, rounded to the
nearest odd integer, is a suitable model for k.

• The outcome of the imputation depends on the number
of complete cases more than the amount of missing
data. The method was successful even for high propor-
tions of incomplete cases.

• When using the IC strategy, the ability of the method
increased substantially compared to the CC strategy for
larger amounts of missing data, while there was no neg-
ative impact on the quality of the imputations for
smaller amounts of missing data. Consequently, the IC
strategy seems, from a quality perspective, safe to use in
all situations.
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