
A Decision-making Process-line for Selection of Software 
Asset Origins and Components 

 
Deepika Badampudi1, Krzysztof Wnuk1, Claes Wohlin1, Ulrik Franke2, Darja Smite1, 

and Antonio Cicchetti3 

  
1Blekinge Institute of Technology 

371 79 Karlskrona, Sweden 
deepika.badampudi@bth.se; krzysztof.wnuk@bth.se; 

claes.wohlin@bth.se; and darja.smite@bth.se  
2 Swedish Institute of Computer Science (RISE SICS), Box 1263 

164 29 Kista, Sweden 
ulrik.franke@ri.se   

  3Mälardalen University, Box 883 
721 23 Västerås, Sweden 

antonio.cicchetti@mdh.se   

Abstract 

Selecting sourcing options for software assets and components is an important 
process that helps companies to gain and keep their competitive advantage. 
The sourcing options include: in-house, COTS, open source and outsourcing. 
The objective of this paper is to further refine, extend and validate a solution 
presented in our previous work. The refinement includes a set of decision-
making activities, which are described in the form of a process-line that can be 
used by decision-makers to build their specific decision-making process. We 
conducted five case studies in three companies to validate the coverage of the 
set of decision-making activities. The solution in our previous work was 
validated in two cases in the first two companies. In the validation, it was 
observed that no activity in the proposed set was perceived to be missing, 
although not all activities were conducted and the activities that were 
conducted were not executed in a specific order. Therefore, the refinement of 
the solution into a process-line approach increases the flexibility and hence it 
is better in capturing the differences in the decision-making processes 
observed in the case studies. The applicability of the process-line was then 
validated in three case studies in a third company. 

Keywords: Component-based software engineering; decision-making; case study. 



2 Badampudi et al.  
 
 
1 Introduction 

In the early days of software development, it was not uncommon to internally develop 
software product features, operating system or even programming languages and 
compilers (e.g. AXE10 developed by Ericsson used an operating system and 
programming language developed in-house). As the software business matured, two 
significant trends emerged: specialization and commoditization [12]. Specialization 
may be viewed as a result of commoditization, as many companies embraced 
specialization as a means to stay competitive. The commodity parts of their products 
were most often taken off the shelf. The increasing popularity of Open Source 
Software (OSS) helps accelerating the commoditization process and encouraged many 
software companies to look for alternative or multiple revenue streams and new 
sources of novelty and value. As a result, the primary focus is now on developing 
software that provides a competitive advantage, e.g. killer apps.  
  
Nowadays, companies need to decide what to develop themselves and what to get 
from elsewhere. On the strategic (executive) level, the strategy of mergers and 
acquisitions is a relevant option for obtaining software and the organizations that 
develop it [38]. However, acquisitions may not always be feasible or possible, 
including for example OSS assets. Decision-making efficiency in relation to software 
assets becomes important as they can be realized using internal development 
resources (in-house), buying Components off-the-shelf (COTS), subcontracting 
(outsourcing) or utilizing OSS software. The four asset sourcing alternatives provide 
different benefits and consequences (e.g. competitiveness), and hence affects or 
shapes the business models. For example, using OSS software is in many cases 
related to joining and participating in a software ecosystem [21]. Furthermore, the 
selection of one of the four alternatives directs the company towards one of the four 
business model archetypes: creator, distributor, lessor and broker [32]. However, for 
many software companies, the time for being only creators and solve technical 
challenges is history.  
 
We use the term “software asset” to denote any type of software, including 
components that can be used for achieving the business objective for a specific system 
or product being developed. Software assets may be divided into four main types 
based on the source or origin of the asset (henceforth denoted asset origin): in-house, 
COTS, OSS and outsourcing. Within each of these asset origins, different assets may 
fulfil the identified needs, e.g., several different COTS may provide the same 
functionality to the user. In-house refers to assets developed or reused internally 
within an organization. Thus, in-house includes software having been developed 
within the same organization, independent of location (e.g. sites in another country), 
subsidiaries or organizational structure (e.g. different business area). The other three 
types of asset origins are external, COTS and OSS components are provided from an 
external source and outsourcing is here used as a sourcing option outside the 
organization that needs a software asset [40]. Component-based software engineering 
has been an important area of research for almost three decades [42] and [43].  
 



A Decision-making Process-line for Selection of Software Asset Origins and 
Components – Refinement and Evaluation 3 

 
 
The asset sourcing strategy that is the most optimal for an asset is an important 
decision for companies. Should it be developed in-house or should it be 
sourced/looked for elsewhere? To date, research has focused on comparing just a few 
of these asset origins, e.g.  in-house versus COTS, and in-house versus outsourcing. 
To the best of our knowledge, no paper has addressed all four asset origins [3]. To 
address this gap, we proposed a set of different decision-making activities and 
packaged them in a decision-making process for selecting software asset origins [45]. 
Three types of descriptive models: decision model, property model and context 
model, as well as a knowledge repository were used as inputs for formulating the set 
of decision-making activities and the process. The input helped in identifying the 
different activities that support in answering several key questions required to make a 
decision. To build a decision-making process, the scope of the actual decision needs 
to be determined, i.e. what to decide. The decision-making process as such illustrates 
how a decision may be made. Furthermore, who makes the decision is determined by 
the identification of the stakeholders. The main reasons for the decision, i.e. why a 
decision is made, are captured through the criteria in the decision model. 
 
The solution presented in our previous work is presented as a process [45]. However, 
based on the validations conducted in the case studies presented here, we concluded 
that the concept of a common process might not be the best fit to reality. In addition, 
our view of the previous solution was closer to a checklist rather than a prescribed 
process. Therefore, from now on we refer to the previous solution as a checklist, 
which here more appropriately is described as a process-line, and not a process. The 
initial goal of the set of activities captured in our previous solution [45] was to 
support the selection between the four different types of asset origins (in-house, 
COTS, OSS and outsourcing), although the solution proposed in [45] was expected to 
be adaptable also to select between different components of the same type of asset 
origin. Therefore, in this paper the selection between different components of the 
same type of asset origin is considered as one of the cases for validating the checklist. 
We do not focus here on mergers or acquisitions as a sourcing strategy for software 
assets [38]. The evaluation is aimed at validating the coverage of the activities 
represented by the checklist. We also noticed during the validation that the decision-
makers neither executed the decision-making activities orderly nor did they follow the 
proposed order of execution in our previous work [45]. 
 
The main contribution of this paper is to provide a process-line from which decision-
makers can include or exclude activities depending on their case. Therefore, the 
process-line presented in this paper is a set of activities (without any prescribed order) 
that enables the decision-makers to build a tailored decision-making process to select 
between the four asset origins and between different components. Note that the goal is 
to provide a set of decision-making activities and not decision-making criteria for the 
selection of asset origins and components. 
 
The extension of our previous work [45] is focused on validating the coverage of the 
activities represented by the checklist, formulating a process-line and validating the 
applicability of the process-line in supporting the decision-makers to build their 



4 Badampudi et al.  
 
 
decision-making process, in particular the following additional aspects are covered: 1) 
an in-depth description of research methodology related to the design of the checklist 
and the process-line and the execution of the five case studies; 2) description of the 
case studies that validate the proposed checklist; 3) an extended discussion of the 
nature of the decision-making process-line; and 4) validating the applicability of the 
process-line from a coverage point of view and the implications that can be drawn 
from conducting the industrial case studies. 
 
The remainder of the paper is outlined as follows. Section 2 presents background 
information from general decision-making theory, and a specific taxonomy intended 
to help formulating three descriptive models for the decisions discussed in this paper. 
It also introduces the frame of reference in terms of the three descriptive models and a 
knowledge repository that were used as an input to identify the set of decision-making 
activities that form the checklist. The related work on decision-making related to 
different asset origins and decisions in software business is discussed in Section 3. In 
Section 4, we present the research methodology utilized to formulate the checklist, the 
process-line and its validation using five case studies.  The process-line is presented 
in Section 5. Section 6 presents the two case studies where the checklist was validated 
at two companies and three cases where the process-line was validated. A discussion 
of implications for research and practice is provided in Section 7. Finally, Section 8 
provides a summary and pointers to further work. 

2 Background  

2.1 Decision-making  

Decision theory largely deals with actors making decisions (e.g. bring an umbrella or 
not) in the face of uncertain events (e.g. rainfall or not), leading to different outcomes 
(e.g. wet or dry) and pay-offs (e.g. it rained and even though burdened by the 
umbrella, you are dry). There are many textbook introductions to the subject, e.g. 
[35], as well as extensive literature reviews on theories of decision-making under risk 
[41]. 
 
In the area of software engineering research, decision theory has been applied to 
diverse problems such as evaluating software components [26], testing [39], 
architecture [7] and requirements engineering [19]. Decision theory is also one of the 
cornerstones in the theory of value-based software engineering [5]. Empirical research 
includes studies on how people make decisions about service level agreements [18]. 
 
The objective here is not to make a theoretical contribution to decision theory in 
software engineering and software business, but rather to apply it to a particular 
problem class: how to select an appropriate asset origin for a particular piece of 
software component or to choose the software component itself. In so doing, we use 
decision theory terminology and concepts to reason about the problem and present a 
decision-making process-line that will make it possible to reuse previous experience 



A Decision-making Process-line for Selection of Software Asset Origins and 
Components – Refinement and Evaluation 5 

 
 
and published results alike to make the best possible decision, given the knowledge 
available. 

2.2 GRADE taxonomy 

The work presented in this paper is grounded in the GRADE taxonomy [29]. The 
taxonomy summarizes the relevant concepts and definitions for decision-making for 
selecting between asset origins. On the highest level, it combines five fundamental 
concepts of decision-making for software intensive systems: Goals, Roles, Assets, 
Decision and Environment (GRADE) as illustrated in Figure 1. These five 
fundamental concepts can be used as building blocks for creating models supporting 
decision-making. 
 

 
Figure 1: Mapping of GRADE to concepts in the decision model and the 

supporting models. 

 
Goals represent the starting point for a decision. They represent the internal business 
goals and customer goals, and have a broad impact on the entire product or even 
organization. The goals form an important input to the decision-making.  
Roles represent individuals involved in the decision-making. The roles are classified 
into types, functions, levels and perspectives.  
The assets describe the decision assets (often encapsulated in a software component) 
characterized by: origin, attributes, type, usage and realization options. 
The decision contains the decision methods that can be used for estimating outcomes 
for a specific option among those evaluated in the decision-making process.  
The environment describes the environment before the decision was analysed or 
made. It includes the characteristics of organizations, products, stakeholders, markets 
and business prior to making a decision.  
 
Our previous work [45] is based on three descriptive models that capture the concepts 
for decision-making as proposed by the GRADE taxonomy. We present these related 
concepts in the following section. It should be noted that the descriptive models and 
the evidence-based knowledge repository described below were used as inputs to 
formulate the checklist. The checklist provides an overview of the set of activities that 
could be considered in the decision. The working of each activity is case dependent, 
for example, the checklist recommends that the decision-makers should consider the 
selection of the appropriate property model/s as an activity to estimate or evaluate the 
criteria. However, the selection of the specific property model depends on the specific 



6 Badampudi et al.  
 
 
decision. A brief description of the descriptive models such as the property model is 
provided below. The detailed working of the different models is described in [8], [9] 
and [37], and it is considered out of the scope of this paper as it is only used as an 
input to identify the set of decision-making activities.  

2.3 Descriptive models  

Three descriptive models are built from the GRADE taxonomy to ensure that no 
decision-making aspect is missed. The three descriptive models correspond to the five 
fundamental concepts in GRADE, as described and mapped in Figure 1. In particular, 
the five concepts comprise: 1) the three decision model cornerstones: stakeholders 
(roles), origins (assets) and criteria (goals); and 2) two supporting models – property 
models (decision) and context models (environment). 
 
In addition to experience of the involved stakeholders, it is beneficial to support the 
decision-making with related historical evidence and experiences. This can be 
captured in an evidence-based knowledge repository, which is elaborated in more 
detail in Section 2.4.  

2.3.1 Decision model 

The decision model consists of three main cornerstones: 
Stakeholders – which stakeholders (and hence different perspectives) need to be 
involved? The stakeholders should be identified from the roles in GRADE that should 
be involved in the decision-making. The stakeholders involved into the decisions can 
be categorized into: initiators, influencers/contributors (preparation) and decision-
makers [31].   
The stakeholders have different perspectives (as described through the Roles concept 
in GRADE) that should be taken into account in the decision-making process. The 
perspectives include product requirements aspects that are more short-term (business, 
functionality and quality aspects) as well as life-cycle aspects that are usually more 
long-term (architecture, support and maintenance) [46].  
Origins – which type of asset origins should be considered (in-house, OSS, COTS 
and/or outsourcing)? In this case, the asset concept in GRADE is defined as 
potentially coming from four different asset origins. Thus, it is assumed that the main 
decision to be taken relates to where a software component needed in a product or 
system is developed, obtained or acquired. The actual choice maybe between all 
relevant asset origins or a subset of the asset origins. This may also mean that the 
suitability of only one asset origin is evaluated to select between competing 
alternative assets of the same origin. 
Criteria – which criteria should be evaluated to ensure an informed decision? The 
criteria are based on the Goal concept in GRADE. Since the goals may be quite 
general, some goals may not be relevant for a specific decision. It is important to 
acknowledge here that criteria can have at least three perspectives: customer 
perspective, internal-business perspective, and community (or ecosystem) 
perspective. The goals and criteria should be identified and tagged by the relevant 
perspective and potential conflicts between perspectives should be identified and 



A Decision-making Process-line for Selection of Software Asset Origins and 
Components – Refinement and Evaluation 7 

 
 
mitigated. The involved stakeholder roles should review the goals, mitigate potential 
conflicts and translate them into defined decision criteria to be used in the decision-
making. Criteria should be more detailed than the goals and need to be measurable, 
i.e. contain a threshold for a certain property attribute (e.g. 99.99 % service 
availability or gaining 1 000 000 users of a software service within two months after 
the service component is launched). Thus, criteria should be possible to evaluate, e.g., 
they could state that a certain property should be above a certain threshold, and each 
criterion should be evaluated for each viable asset origin. The chosen criteria should 
be evaluated, where business risk is most likely one of the criteria. Risk is a criterion 
by itself in relation to a specific asset origin, e.g. the risk of a COTS supplier going 
bankrupt. However, risk is also related to the uncertainty in specific decisions, their 
criteria, and the data they are based on, e.g. uncertainty in historical cost or reliability 
figures. 
  
The stakeholders contribute to the decision model as experts in their own area, e.g., 
business, architecture or requirements. They are involved in evaluating possible asset 
origins viable for the specific case and formulating the criteria for the decision based 
on the goals. Furthermore, the experts provide input to the property models (see 
Section 2.3.2), they should describe the context of the decision (see Section 2.3.3) and 
they should help in identifying similar historical evidence and experiences using the 
evidence-based knowledge repository (see Section 2.4). The latter includes 
prioritizing among important factors to compare with historical evidence. 

2.3.2 Property model 

The decision concept in GRADE includes both models to estimate specific properties 
and methods to, e.g., weigh different criteria. The property models come into play in 
estimating outcomes of the non-functional1 criteria [37] for different asset origins, i.e. 
there is a need to make the estimations with respect to different criteria for the 
relevant origins. Non-functional properties of the component candidates correspond to 
all properties beyond functionality and describe “how” a component performs or 
delivers its functionality. Properties are closely related to quality aspects and external 
aspects of a component, e.g. number of active users, source code quality or 
dependability. The origin of the component determines the scope of property 
attributes and often constrains estimation methods for these properties.  
 
The property model ontology [37] introduces the two main elements of a property 
model: 1) non-functional properties that have name, data format and documentation 
and 2) evaluation method(s) that have names, output, unit, applicability, parameters, 
driver, formula, description and implementation. A valid property model has to 
include at least one property and at least one evaluation method [37]. Recent research 
on property model ontology identified the following non-functional properties as 

                                                
1 Non-functional criteria/properties are sometimes also referred to as extra-functional or 
quality criteria/properties. 
 



8 Badampudi et al.  
 
 
being important in the automotive domain: cost (development effort), performance, 
configurability (variability), flexibility, maintainability, testability, power 
consumption, reliability, safety, evolvability and security.  
   
A property model may contain other property models. Examples of properties include 
coordination costs, IT service costs and maintenance costs for selecting cloud-
computing services [27]. The evaluation method may be quite simplistic, e.g., expert 
opinion or based on a sophisticated formal mathematical decision model [1]. Recent 
work identified that COCOMO or estimation by analogy or expert estimation are used 
in the automotive domain for estimating the development effort and worst-case 
execution time is used to estimate complexity [37]. The decision could either have 
positive (goals achieved) or negative (goals not achieved) outcome. Documenting the 
decisions irrespective of the method used to log the success and failure stories is 
beneficial. This is further discussed in Section 2.4. 
 
Property models can also be more advanced, e.g. for the reliability criterion using 
software reliability growth models (SRGM) based on historical data from similar 
situations. Furthermore, some evaluation methods use generic statistical methods such 
as regression analysis, while others are based on general methods but still are tailored 
for a specific purpose such as SRGMs. Properties can and should also be estimated 
for aspects relevant for communities, ecosystems and markets and not only for a 
company’s internal or a project’s internal aspects. A good example here could be the 
degree of influence on ecosystem members or the state of a company’s reputation in a 
given ecosystem [21].  
 
Property models provide estimates of values for the different criteria, and in most 
cases the property models only handle one or a few properties at the time. Thus, there 
is a need to decide the priorities of the different criteria and hence the weighing 
between them, e.g. is cost more or less important than security. The methods for 
managing the priorities between criteria, or for combining outcomes in different ways 
are referred to as decision methods. For this purpose, it would be possible to use, e.g., 
methods such as AHP [36] and HCV [4]. Some initial work on these prioritization and 
trade-off problems can be found in [17]. 
 
As part of the decision-making, it should be decided, e.g., whether the stakeholders 
should try to take different time perspectives into account “manually” or if the 
property models should instead be used more than once, e.g., to make estimations 
both for a short-term and a long-term perspective respectively. 

2.3.3 Context model 

The context model is a representation of the environment in which the decision is 
made. There are two main objectives of the context model. First, it helps in 
identifying relevant criteria, property models and solutions previously used by others. 
Second, it structures the decision at hand for future use in an evidence-based 
knowledge repository (see Section 2.4). An example of a context model 
representation is presented in [30]. It comprises six dimensions of the environment, 



A Decision-making Process-line for Selection of Software Asset Origins and 
Components – Refinement and Evaluation 9 

 
 
four that capture the organizational characteristics (including practices and tools) and 
two that are external to the organization (business environment characteristics). The 
context model also extends the environment concept in GRADE as it helps the 
decision-maker to understand the context in the future and is integrated with an 
evidence-based knowledge repository described in Section 2.4.  
 
In [8], the context model is structured into the following five dimensions: 1) 
organization characteristics including organizational structure (management model, 
business strategy, maturity, capacity, velocity, etc.), 2) product characteristics and all 
correct contextual information associated with the product before the decision 
(maturity, technical debt, complexity, openness, certification, etc.), 3) stakeholder 
characteristics (level of involvement in the decision, experience, competence etc.), 4) 
development method and technology (development process and methods, practices, 
environment and tools used etc.) and 5) market and business (type and structure of the 
market, market trends, ecosystem effects and agreements etc.). Carlson et al. [8] 
suggested an open hierarchical model for context representation that can be 
dynamically adjusted and provide various granularity levels. Moreover, 
understandability and readability are important quality attributes of the context model. 
We believe that for a comprehensive context description that includes business 
characteristics and can be effectively used for guiding business decisions, a possible 
future area of research is to expand the six dimensions described in [30] to better 
cover aspects such as the market, ecosystems and also business models. 

2.4 Evidence-based knowledge repository  

Historical information should be structured so that it is possible to find relevant or 
similar cases, e.g., similar context, similar prioritized criteria or an interest in the 
same asset origins. The stored information may facilitate decision-making, and also 
provide what is generically known as traceability of a decision: what a decision was 
about, who made the decision, and why the decision was made. This is often referred 
to as the rationale for a decision. In this respect, any repository should record all 
relevant aspects of a decision-making scenario. Furthermore, a repository ought to 
contain other available information such as research articles on the topic, and in 
particular systematic literature reviews, as well as publicly available data or data 
shared between trusted partners that can help support different activities of decision-
making. 
 
Information from previous decisions can represent an important support in the 
decision-making process, at least to avoid errors made in the past. However, if the 
repository was considered as a mere post-decision storage support, it is difficult to 
justify and motivate the effort of documenting decisions in detail. Furthermore, the 
repository would miss a lot of its potentials: 1) as mentioned before, recurring 
decisions might contain important lessons learned; and 2) multiple decisions could 
entail an agreement about a more general development vision (e.g., different 
properties derivable from the same goal by different stakeholders), thus requiring 
consistency. Hence, continuous and reliable data collection, as well as use of the data, 



10 Badampudi et al.  
 
 
should be performed to unlock the full potential that an evidence-based knowledge 
repository offers. 
 
In our context, the technical implementation of the knowledge repository is realized 
by taking into account the following observations. Storing decisions about selecting 
various software assets revolves around the Decision entity of the GRADE taxonomy 
[9]. The knowledge repository ontology decomposes the decision into the seven key 
entities on the first level: Environment, Aspect, Value Perspective, Asset Usage, Role 
Level, Decision Level, and Method Family. The repository should be able to 
smoothly manage large amounts of data and should offer meaningful mechanisms to 
retrieve decisions as filtered by their prominent characteristics (i.e., the cornerstones 
of the decision model), and pointers to relevant studies on the topic. Compatibility 
and interoperability are important quality attributes of a good decision knowledge 
repository and therefore we recommend using open data standards supported by 
reliable quality management measures, e.g. ISO/IEC 25012 SQuaRE [20], OGD eight 
principles [28] or Web Information Quality assessment [6].  
 
Concretely, the decision-making activities and the knowledge repository have been 
embedded in a prototype application2. The application allows to enter (a subset of) the 
decision items for documenting a certain decision case, and after they are stored in the 
repository. The repository is realized as a graph database through Neo4J technology3 . 
The choice of graph databases is motivated by their efficiency and scalability for large 
amounts of data, characterized by flexible structure and arbitrary relationships. 
Decision items are represented as nodes while relationships are used to trace links 
between items pertaining to the same decision case. Moreover, the storage and 
retrieval of information to/from the database is controlled by the application and is 
completely transparent to the user. In this way, it is possible to keep the required 
degree of consistency across different decisions and hence to perform queries seeking 
for similar scenarios. 

3 Related work  

3.1 Deciding on origin 

The research related to selecting between different software asset origins is quite 
limited. In a recent systematic literature review [3], which is summarized here, no 
papers addressing all four types of asset origins were identified. However, some 
papers addressing two or in a few cases three origins were found. 
 
The decision models for in-house vs. COTS are mainly based on optimization models. 
The optimization models proposed in [10], [11], [22], [23], [33] and [42] help to 
decide which components should be developed in-house and which should be bought. 
Cost, delivery time, and reliability are the common objectives and constraints 

                                                
2 https://github.com/orion-research/coach  
3 https://neo4j.com  



A Decision-making Process-line for Selection of Software Asset Origins and 
Components – Refinement and Evaluation 11 

 
 
considered in all the proposed optimization models. The optimization models consider 
single objective or multiple objectives in the decision model.  
 
The objective in the optimization models proposed in [10], [11], [33] and [42] is to 
minimize cost under reliability and delivery time constraints. The CODER framework 
proposed in [10] consists of a decision model based on optimization and accepts UML 
notations as an input. In [39] and [42], the authors propose an architecture 
optimization approach based on a swarm intelligence algorithm. The CODER 
framework [10] is extended in [32] and [33], allowing decision-making as early as 
requirements are available. Similarly, a general non-linear optimization model is 
proposed in [11] for the same objective and constraints, i.e. minimizing cost under 
reliability and time constraints.  
 
Multi-objective optimization models have been proposed in [22] and [23]. A decision 
model for fault-tolerant systems is proposed in [20] and [22] with two objectives – to 
maximize reliability and minimize cost under a time constraint. In addition, coupling 
and cohesion have been considered in the decision model proposed in [23]. The 
objectives in [23] are to maximize intra-modular coupling density and functionality 
under time, cost and reliability constraints.  
 
Two papers focus on deciding between in-house and outsourcing – [24] and [25] – 
were identified. The model in [24] provides tool support for requirements clustering 
to find a cohesive group of requirements using a graph-based model. In [25], Kramer 
(2011) et al. propose a decision model using decision tables. The input is the 
knowledge specificity (business, functional and technical), and interdependencies 
(priority between software components and communication intensity among 
developers). 

3.2 Decision-making in software business 

Running a software business requires making several decisions on multiple levels [1], 
ranging from strategic decisions about mergers, acquisition and takeovers [38], via 
tactical decisions on which ecosystem to join and support [21] to highly technical 
decisions on how to realize customer requirements in software. An increasing number 
of software companies are evolving from the pure creator business archetype, that 
implies code ownership but also development risk, high maintenance cost and full 
responsibility for delivering the required quality, towards mixed or hybrid business 
models that imply taking on several business archetype roles [32]. At the same time, 
small and large companies take on outsourcing initiatives to reduce development costs 
and obtain valuable knowledge and inspiration. This shifts the centre of gravity 
towards integration work and coordination of outsourced (often also offshored) sites 
into software products that deliver the value that customers expect. Finally, joining or 
creating an ecosystem entails a series of decisions regarding growing a healthy 
influence or disrupting markets by commoditization of ecosystem software. Each of 
the mentioned four asset origins thus has different implications both in the short term 
and in the long term. They come with different costs and prices and can bring 



12 Badampudi et al.  
 
 
different benefits. Decision-makers responsible for running their software ecosystems 
[21] and businesses are faced with increased decision complexity and frequency that 
they need to cope with to succeed with their business endeavours. An example here is 
decision-making in cloud computing environments for selecting appropriate services 
from different providers [27].  

3.3 Application of process-line in software engineering 

Software process-lines has gained more interest recently. However, it has been 
identified as an immature area and there are few papers reporting the use of process-
lines according to a systematic literature review conducted on software process-lines 
in 2014 [13]. The main use of process-lines is in areas such as software design and 
architecture with concepts similar to product lines such as variability management [2], 
product management and project management [14] and [15]. In our study, we use 
process-lines for the decision-making process, which is a rather new application. 
Since, process-lines have not been applied in relation to decision-making we do not 
discuss the above studies in detail. 

4 Research methodology 

In this section, we discuss the overall research approach used to construct and validate 
the decision-making checklist and process-line. The relations between the decision-
making process-line, checklist and the associated studies are presented in Figure 2.  

 

 
Figure 2: An illustration of how the GRADE taxonomy, knowledge repository 
and descriptive models provided the starting point for the decision-making 

checklist and process-line. 

 

Systematic 
literature review 

[2]

Context model 
[7]

Knowledge 
repository 

[8]

GRADE 
taxonomy 

[25]

Property model 
[33]

The checklist
[41]

Case study 1
Company A

+
Case study 2
Company B

+
External 

researchers

Process-line
Case study 
3, 4 and 5

Company C

Problem 
identification 

and motivation

Decision-making
activities

identification

Checklist
validation

Process-line
creation

Process-line 
validation



A Decision-making Process-line for Selection of Software Asset Origins and 
Components – Refinement and Evaluation 13 

 
 
The decision-making process-line is formulated based on our previous work [45], 
which was built upon the GRADE taxonomy [29] and the descriptive models (context 
model discussed in [8] and property model discussed in [37]) as illustrated in Figure 
2. A knowledge repository [9] then also supports the checklist. These studies and a 
recent literature review [3] on software asset origin selection have influenced and 
inspired the construction of the checklist. The research team (authors of this paper) 
reviewed findings from the checklist validated by the industrial experts and external 
researchers and prioritized goals and challenges to create the focus for the decision-
making process-line.  
 
The overall research approach followed in this study is a combination of design 
science [44] and case study [16]. The tasks in the design science approach and case 
study are presented in Figure 3 and elaborated in Sections 4.1, 4.2 and 4.3. The design 
science approach consists of three iterations, which begin with problem investigation, 
followed by design and finally validation. In addition, case studies in Companies A, B 
and C were conducted. Note that the checklist and the process-line were not 
implemented in a real context. In design science, the solution needs to be validated 
before it is implemented in a real context. Therefore, in this study we validate the 
process-line, which is an important step before implementing and evaluating the 
process-line in use. The limitation of the process-line evaluation is discussed in 
Section 4.4. The details of each of the iterations and tasks followed in each iteration 
are described in the following subsections.  
 

 
Figure 3: Tasks carried out in the design cycle and case study. 

Iteration 1 Associated studies
 [2], [7], [8], [25] and [33]

Checklist v1.0
[41]

Company A and B

Company A and B Checklist v2.0 External researchersIteration 2

Company A and B
+

External researchers

Process-line
(Checklist v3.0)

Company CIteration 3

Design
Problem

investigation ValidationIterations

Case study -Explore decision-making process in Company A and B

Case study -Explore decision-making process in Company C



14 Badampudi et al.  
 
 
4.1 Iteration 1 

Problem investigation: In this step, we identified and formulated the design problem.  
Based on the template designed by Wieringa [44], we formulate our design problem 
for iteration 1 as follows: Identify different decision-making activities to be 
considered, and hence to support decision-makers in selecting suitable software asset 
origins and components. 
 
Checklist v1.0 design – identification of the decision-making activities: The 
researchers involved in this study selected the relevant objectives from the associated 
studies. This helped in identifying the first set of the decision-making activities. The 
decision-making activities were iteratively discussed via several brainstorming 
sessions where the researchers discussed opinions, compared possible solutions and 
scrutinized them. This version of the checklist (v1.0) was published in [45].  
 
Explorative case studies at Companies A and B: We conducted two exploratory 
case studies in Companies A and B to explore the decision-making process followed 
in the companies. The case studies were based on semi-structured interviews with 
stakeholders involved in two decisions about two software components, one decision 
for each company. The interview questions were rather broad and did not impose any 
particular decision-making process.  
 
The questionnaire consisted of three parts: introductory, decision-making process 
details and concluding remarks. The introduction consisted of questions related to 
general questions about the interviewee, organization, project and product. In the next 
part, the interviewees were asked to describe their decision-process for each case. If 
the interviewees did not mention any particular activity in Checklist 1.0, they were 
specifically asked about it. In order to not influence the research outcome, such 
responses were differentiated as activities followed but not explicitly mentioned (See 
Section 6.3 and Figure 6). In the last part, questions related to outcome (positive or 
negative) of the decision were asked. Three interviews in Company A and four 
interviews in Company B were conducted. Two researchers were involved in 
conducting the interviews that were recorded and transcribed. No information of the 
checklist was discussed in the interview nor any specific questions regarding the 
checklist activities were asked. Coding rules were established so that the coding was 
done consistently, the text related to the decision-making activities in [45] should be 
highlighted and tagged in the transcript with the corresponding activity name. The 
details of the exploratory case studies in Company A and B are provided in Section 6. 
 
Checklist v1.0 validation: As the solution is not prescriptive, the validation here is 
not in terms of “effectiveness” but to validate the Checklist v1.0 coverage. The 
coverage is validated by ensuring that none of the decision-making activities followed 
by Companies A and B are missing in the checklist. The decision-making processes 
followed by the companies were mapped to Checklist v1.0 and were sent to the 
industrial experts, i.e. to the interviewees in Companies A and B after the interview 
for validation. It is to be noted that the researchers did not intervene and the 
validation was done independently by the practitioners. The outcome of the 
validation indicated that the industrial experts perceived that none of the activities 



A Decision-making Process-line for Selection of Software Asset Origins and 
Components – Refinement and Evaluation 15 

 
 
they performed were missing from Checklist v1.0 however, the authors of this study 
identified the need to refine the Checklist v1.0 activity descriptions so that they are 
aligned with the activities carried out in Companies A and B. The refinement was 
carried out in iteration 2.  

4.2 Iteration 2 

 
Problem investigation: The validation conducted in the previous iteration indicated a 
need to add details to the activity descriptions based on the execution of the decision-
making activities by Companies A and B. Particularly, the activities needed to be 
adapted to the process of replacing the component in use and selecting between 
different components within the same asset origin, which were the two cases in 
Companies A and B.  
 
Checklist v2.0 design – reformulating Checklist v1.0 into Checklist v2.0: The 
refinement was done by adding descriptions to include details on how the decision-
making activities could be executed. In order to refine the Checklist v1.0, the 
decision-making processes followed by Companies A and B were considered as an 
input. The refinement outcome is discussed in Section 7.1. 
 
Checklist v2.0 validation: Checklist v2.0 and the descriptions of the decision-
making process followed in the companies were validated by external researchers. 
The validation was done to ensure that the Checklist v2.0 is capturing the decision-
making processes followed in the companies. The aim of the validation was to correct 
any potential inconsistencies. The validation pointed out some inconsistencies in the 
representation of the Checklist v2.0 in particular, regarding the order of execution of 
the activities. Therefore, indicating that the representation of the solution needs to be 
refined. The refinement of Checklist v2.0 is carried out in iteration 3.  

4.3 Iteration 3 

Problem investigation: The validation conducted in the previous iteration indicated 
that the representation of the Checklist v2.0 suggests a prescriptive order of 
execution, which is misleading, as the goal of this study is not to propose a 
prescriptive solution. Therefore, the Checklist v2.0 needs to be packaged differently 
than into a process. The proposal is to formulate the Checklist v2.0 as a process-line 
which serves as a checklist that supports the decision-makers in building their own 
decision-making process without any prescribed order of execution.  
 
Process-line design – reformulating Checklist v2.0 into a process-line: The 
refinement was done to change the sequential representation of the Checklist v2.0 to a 
process-line which acts as a checklist consisting of a list of possible activities divided 
into preparation, investigation and decision-making phases. The descriptions of the 
decision-making activities followed by Companies A and B and the outcomes of the 



16 Badampudi et al.  
 
 
validation done by external researchers were considered in the formulation of the 
process-line. The details of the process-line are described in Section 5.  
 
Case studies at Company C: We conducted three exploratory case studies at 
Company C to explore the decision-making process followed in three different 
decisions for different products. Semi-structured interviews were used to explore the 
decision-making processes followed by Company C. Three interviews were 
conducted, two researchers were involved in conducting the interviews that were 
recorded and transcribed. No information of the process-line was discussed in the 
interview nor any specific questions regarding the process-line activities were asked. 
The same coding rules as mentioned in iteration 1 were followed. The details are 
provided in Section 6. 
 
Process-line validation: After the interview, the process-line designed in iteration 3 
was presented to the industrial experts in Company C for validation. The objective 
was to validate the applicability of the process-line in building the decision-making 
process as perceived by the industrial experts.  

4.4 Validity discussion  

Researcher bias: There is a threat of introducing researcher bias in the design, and 
validation tasks of the design cycle and in the exploratory case studies.  
• Decision-making process-line and checklist design: Data triangulation helped 

to minimize the researcher bias in the design phase. The checklist was 
constructed by considering inputs from various associated studies [3], [8], [9], 
[29] and [37]. In addition, the inputs from the decision-making activities 
followed in the industrial context and external researchers were considered in the 
formulation of the process-line. The validation using expert opinions of external 
researchers was done to ensure that all aspects of the associated studies and the 
facts from the interviews were considered in the process-line. Thereby, individual 
researcher bias was minimized during the design process. 

• Validation: The validations were conducted without any intervention, i.e. 
Checklists v1.0 and v2.0 as well as the process-line were not discussed in the 
interviews. We believe that this approach minimizes the risk that our 
interviewees consider some decision-making activities as performed because they 
are confronted with the checklists and process-line. Since the aim of the process-
line is not to suggest one way of making decisions the limitation of not evaluating 
the effectiveness is not applicable in our study. 

• Exploratory case studies: The open-ended interview questions minimized the 
research bias in the data collection. The interviews were recorded, transcribed 
and coded to capture all the information. Coding rules were established and the 
coding process was reviewed to avoid inconsistencies and avoid misinterpretation 
in the coding process. The most relevant stakeholders responsible for the decision 
in Companies A, B and C were interviewed. Therefore, the threat of not 
identifying all activities followed in the decision-making process by Companies 
A, B and C is minimized.  



A Decision-making Process-line for Selection of Software Asset Origins and 
Components – Refinement and Evaluation 17 

 
 
 
Generalizability: The inability to generalize from the five cases can be perceived as a 
threat. Flyvberg [16] addresses five case study misunderstandings, one of which is 
generalizability. He suggests that if knowledge cannot be formally generalized, it does 
not mean that it cannot be used to accumulate knowledge in a given field or in a 
society. This indicates that the knowledge can be used to contribute towards 
generalizing the findings. To contribute towards generalizability, the cases have been 
described in as much detail as possible without compromising the confidentiality. In 
addition, the selection of case studies also provides support towards generalizability 
[16]. The selected cases are diversified in terms of the size of the company, decision 
goals and the decisions. This is further elaborated in Sections 6.1 and 6.2. We selected 
decisions (cases) after recommendations from the practitioners to ensure their 
relevance and representativeness for the study. 

5 Process-line for decision-making using a checklist 

The main objective of the checklist designed in iterations 1 and 2 as discussed in 
Sections 4.1 and 4.2 was to provide a set of decision-making activities to select 
between different software asset origins and components. 
  
The solution proposed in our previous work consists of a set of decision-making 
activities that are not prescriptive and should be regarded as a checklist rather than a 
process. This may be captured in a process-line which serves as a checklist, i.e. 
activities that may be selected (or not) to create different decision-making processes. 
Process-line has been defined as “a set of software processes with a managed set of 
characteristics that satisfy the specific needs of a particular organization and that are 
developed from a common set of core processes (referred as activities in this study) in 
a prescribed way” [2]. Note that the set of core processes/activities are not 
prescriptive rather, the development of the process from a common set of core 
processes is prescriptive.  
 
Each user of the process-line may decide to include or exclude specific activities and 
hence make informed decisions of which activities to include and exclude. The 
process-line was designed in iteration 3 as discussed in Section 4.3. Figure 4 depicts 
the process-line consisting of three phases (preparation, investigation and decision-
making) and a repository. Note that the activity numbers mentioned in Figure 4 are 
identifiers and do not represent the order of execution. The arrows between the three 
phases represent the dependencies between the phases, and the arrows between the 
phases and the repository represent the information flow (one- or two-way 
communication). The input to the repository from the preparation phase is the context 
information for the specific decision. Based on the context information, similar cases 
from the repository are retrieved that could be used to execute the other activities in 
the preparation phase (elaborated further in Section 5.1) as well as in the investigation 
phase. In the decision-making phase, similar cases and decisions could be retrieved 
from the repository and after the decision is made, the final decision could be 



18 Badampudi et al.  
 
 
documented in the repository. The activities within each block are selective activities 
that could be used. The description of each activity is provided in Section 5.1. 
 

 
Figure 4: A process-line for decision-making supported by a  knowledge 

repository. 

Using the process-line, decision-makers can build their own decision-making process. 
One possible decision-making process with one possible order, including all 
activities, is depicted in Figure 5 using the numbering of the recommended activities 
below. The arrows between the activities indicate the information flow (input and 
output). However, it should be stressed that the activities do not necessarily have to be 
followed in the order depicted in Figure 5. Some activities may be perceived as more 
important than others. However, it has been chosen to present all activities as 
recommended activities, since the actual usefulness and effectiveness of the different 
activities and preferred order of the activities may vary from case to case. Thus, the 
order of the activities should be seen as one possible suitable order. Furthermore, not 
all activities may be perceived as needed for all decisions. However, it is better to 
make conscious decisions to not conduct all activities. Thus, the process-line should 
not be seen as prescriptive; it is intended to make decisions more transparent and to 
provide support to decision-makers so that important aspects are not overlooked. 
Furthermore, an evidence-based knowledge repository may not be available in all 
cases, and hence those activities may not be applicable in all cases. It should also be 
noted that iterations are expected. They may appear between any activities depending 
on the specific decision, or the specific circumstances in relation to a decision.  
 



A Decision-making Process-line for Selection of Software Asset Origins and 
Components – Refinement and Evaluation 19 

 
 

 
Figure 5: A possible decision-making process including having a knowledge 

repository. 

5.1 The recommended activities in the decision-making process-line are as 
follows: 

Activity 1: Identify stakeholders to be involved in the decision – It is 
important to ensure coverage of roles and persons to make sure that the decision 
made is possible to implement efficiently. Each stakeholder that is relevant for 
the decision and its consequences for the business should be identified here.  

Activity 2: Screen and evaluate the suitability of the asset origins – The 
possible origins for a software asset should be identified. The selection of an 
asset origin could be for a new component or to replace a component in use with 
another component by considering two or more asset origins or even from the 
same origin. For example, there might be a need to replace a component in use 
developed in-house with an OSS or COTS component. This includes 
investigating the technical and business compatibilities and the short- and long-
term costs of selecting each asset option. In certain cases, not all asset origins are 
allowed or suitable. In some cases, the main decision is whether to do 
development in-house or going externally. Sometimes, OSS solutions are not an 
option. Thus, the possible asset origins need to be identified carefully. 

Activity 3: Decide criteria from goals – Both business and technical criteria 
are decided based on the goals and targets. The targets should be set so that 
different asset origins can be evaluated and compared with each other. The goal 
could be either to choose an asset origin to replace a component in use or choose 
an asset origin for a new component. In case of replacing a component, the 
process most likely begins with generic criteria to overcome the existing 
challenges or shortcomings. For example, a company might want to reduce the 
time for correcting defects of a component in use, then “reduced time for 
correcting defects” becomes the generic criterion. Apart from generic criteria 
there might be additional specific criteria such as “better performance” based on 
which the selection of an alternative asset origin is made. In most cases, risk 
needs to be considered as one criterion, since it may differ substantially for 
different asset origins (in-house, COTS, OSS and outsourcing). 

Activity 4: Decide on priorities of criteria – It is also important to decide how 
the criteria should be prioritized, e.g. using AHP [36] or HCV [4]. It may also be 



20 Badampudi et al.  
 
 

the case that certain stakeholders have more power in a decision, i.e. different 
stakeholder roles may need to be weighed differently in the prioritization process. 

Activity 5: Decide on how to handle the time aspect – Certain solutions may 
be perceived better or worse in the short-term and long-term respectively. For 
example, a certain solution may be very good to get a product on the market, but 
not very good for the long-term architecture of the product. The time aspect is 
highly relevant when long term maintenance cost is substantial (e.g. when 
developing in-house) or can be minimized (e.g. by adapting OSS). Decision-
makers either have to take time aspects into account when prioritizing between 
different asset origins or evaluations have to be done separately for different time 
aspects, e.g. short- and long-term, and the trade-off between them has to be 
agreed upon. 

Activity 6: Identify and describe the context – Context information such as 
product context, organizational context and product context may have an impact 
of the decision-making process. For example, organizational context such as 
governance structure of the organization might indicate the types of stakeholders 
that should be considered in the decision (Activity 1). In addition, depending on 
the regulations/policies some asset origins might not be possible to use. For 
example, the organizational policy might not allow any code to be open. Thus, 
OSS might not be a suitable asset origin (Activity 2). The selection criteria and 
priorities (Activities 3 and 4) depend on the context of the product. For example, 
if the product has many users, then one of the criteria would be to choose a 
component that support many users. Therefore, identifying the context is 
important in a decision-making process. The context description is important to 
enable comparison with previous cases internally and externally as well as with 
the research literature, for this purpose the case has to be described. This should 
be done using the context model, where salient aspects have to be captured. This 
may include business model(s) used, application domain, system size and 
development method as well as a range of other aspects [30]. Independently, it is 
crucial to capture these aspects to enable identification of similar cases and hence 
relevant evidence and experiences.  

Activity 7: Look for similar cases in a knowledge repository – The 
identification of similar cases is done using the context information as well as the 
asset origins considered as suitable and the criteria. Thus, a similar case is 
defined as having some key aspects of the context in common (from Activity 6) 
as well as a focus on similar criteria (from Activities 3 and 4) and similar suitable 
asset origins (Activity 2). Similar cases are identified and studied to identify 
relevant evidence and experience and to uncover potential alternative decision 
scenarios [8]. The knowledge repository could be solely based on internal cases 
or a more elaborate database containing both internal and external cases. The 
information in the knowledge repository may indicate that, other asset origins, 
criteria, property models or decisions have been considered in other similar cases. 
Thus, it is important to be able to challenge the choices made in the other 
activities as illustrated in Figure 4 and Figure 5 . 



A Decision-making Process-line for Selection of Software Asset Origins and 
Components – Refinement and Evaluation 21 

 
 
Activity 8: Decide on property models to use – Once the criteria are decided, 

there is a need to decide how the criteria should be evaluated. If using a 
knowledge repository, this can be done by retrieving valuable information in 
terms of what others have used in similar cases (Activity 7). If there is no 
knowledge repository, the property models for each criterion have to be decided 
without additional support, whether they are expert opinions or more advanced 
estimation models. 

Activity 9: Evaluate the criteria, make estimations using the property 
models (including expert judgment) and evaluate the impact of the decision – 
The criteria can be either measured or estimated. For example, it is possible to 
measure the performance of an existing COTS or OSS component. However, the 
cost to develop a new component can only be estimated. Given the chosen 
property models, estimations need to be done for each criterion for the asset 
origins under consideration and potentially for different time aspects based on the 
approach decided in Activity 5. The impact of the decision and the changes that 
the new decision will bring must also be evaluated. Such evaluations provide 
better insight into the decision and to perform cost-benefit analysis. The benefits 
of the decision should outweigh the costs introduced due to the changes needed 
to implement the decision. Such evaluations are particularly important when an 
component in use is replaced with a new component from another source (asset 
origin). The benefits should not only outweigh the costs but also should be better 
than the component in use. Trade-offs should also be considered. For example, 
reducing license cost might require additional effort. 

Activity 10: Weigh the estimation results of the selected properties based on 
the priorities of criteria – The estimation results from the different property 
models should be weighed together. This is non-trivial given that the values as 
such cannot be combined easily in many cases. It is rather the estimation of each 
criterion and its distance from the targets that need to be weighed together.  

Activity 11: Make a tentative decision – Once the outcomes from the property 
models have been weighed together, it should be possible for the decision-makers 
to make a tentative decision. If a knowledge repository is available, it is 
recommended to browse previous decisions and review relevant tentative 
scenarios and compare the tentative decision with decisions from similar cases as 
described in Activity 7. Relevant business context factors should be evaluated 
here based on similar cases. This should be done to make a final evaluation of the 
decision, and ensure that the reasoning done is as correct as possible and that no 
relevant available information is ignored. The tentative decision may be 
implemented in the form of prototypes.  

Activity 12: Make a final decision – This has been the objective of the decision-
making process and hence it is a very important activity for the development. It is 
important that the stakeholders are able to communicate both the actual decision 
and the rationale for the decision. 

Activity 13: Store the case in the decision knowledge repository – The case 
information, including the context information, the criteria used, the stakeholders 



22 Badampudi et al.  
 
 

involved and the asset origins considered should be carefully documented. This 
activity is important as it allows for transparency if the case is properly 
documented (including the decision rationale) and helps to organically grow the 
evidence-base knowledge repository. It is important to add new cases given the 
speed of change and hence ensure that recent cases are available for decisions to 
come. 

 
The decision-makers can build their own decision-making processes by including or 
excluding the set of activities. At the end of the decision-making process, the 
objective is that the stakeholders should have come to either a consensus or at least 
that the involved stakeholders know why the decision was made, and are able to 
communicate it in the organization. 

6 Validation and Case studies  

6.1 Overview of the companies   

The validation was done in two phases, first the coverage of the checklist designed in 
iteration 1 (Section 4.1) was validated in Companies A and B. The validation outcome 
indicated that the checklist was not missing any decision-making activities however, 
some reformulation of the activities was needed. The reformulated checklist was then 
reviewed by external researchers based on which the representation of the checklist 
was reformulated into a process-line. The coverage of the process-line was validated 
in Company C. The case studies were conducted at three companies. Due to the 
strategic nature of this type of decision, the names of the companies are confidential. 
However, it does not affect the outcomes from the case studies, since the sole purpose 
is to validate the coverage of the checklist and process-line and not in detail report 
data from the company. The case studies were designed as described in Section 4. The 
overview of the companies including the size of the company in terms of number of 
employees, profile and customer category is presented in Table 1. 

Table 1: Overview of the companies  

Company Size Profile Customer 
Category 

Company 
A 

~ 
100000 

Global networking and 
telecommunications equipment and 
services 

B2B and B2C 

Company 
B ~5000 Global telecommunications B2B and B2C 

Company 
C ~600 Global provider of cloud-based 

Business Support Solutions (BSS) B2B 

 
From Table 1 we can see that the companies are diversified in terms of the size of the 
companies. The size of the company might affect the decision-making process 
adopted by the companies. Therefore, identifying the decision-making activities 



A Decision-making Process-line for Selection of Software Asset Origins and 
Components – Refinement and Evaluation 23 

 
 
followed by diversified companies will help in validating the coverage of the process-
line. In addition, the companies have diversified customer category therefore, the 
process-line can be validated in different contexts. 

6.2 Overview of the cases  

Case 1 description at Company A – In this case the company wanted to replace a 
component already in use. Due to the existing problems such as lack of timely support 
from suppliers and substantial license costs, a need to replace the component was 
identified. In-house and outsourcing were not suitable options due to the immense 
development effort required. Based on the positive result of a proof-of-concept, and 
success stories of using the same OSS component by other companies, the decision to 
use the OSS component was made. The stakeholders involved in the decision, i.e. the 
architect, line manager and system manager were interviewed. The architect was the 
decision initiator, contributor and was also involved in the final decision along with 
the line manager and system manager. 
 
Case 2 description at Company B – The hardware for the products is partly 
internally developed and partly purchased from suppliers. The software that runs on 
this hardware is based on an OSS platform with extensive adaptations and unique 
functionality developed in-house. The stakeholders involved in the decision were 
interviewed, i.e. the product experience planner who was the decider, project scope 
manager who contributed in the decision with the required information and 
knowledge and personnel from the legal and sourcing department who was the 
influencer in the decision. The case at Company B was a decision between two COTS 
suppliers. The decision-makers had already selected COTS as the asset origin. 
However, other options were considered, but they were ruled out very early in the 
process, and hence the actual decision-making became a decision between two 
different COTS components. Considering OSS components, it became apparent that 
OSS could not provide the necessary functionality and support. The in-house and 
outsourcing options were the least favourable already from the beginning due to the 
immense effort required to provide the solution comparable with the currently 
available COTS components. Thus, the focus was set on deciding between two COTS 
components. The decision process took several months and was heavily influenced by 
technical investigations led by so-called product experience planners. Top 
management used their technical recommendations when making the decision. The 
sourcing department at the company negotiated the contract details with the selected 
COTS supplier. Legal aspects (have control over the patent portfolio and enough 
resources to fight in the court if some other company initiates or pursues legal 
procedures) were significant in this case and considered next to technical functionality 
and quality aspects. Finally, the interaction process between the suppliers and 
Company B, as well as how they supported the components took a substantial role in 
the decision. 
 
Case 3, 4 and 5 descriptions at Company C – The architects were mainly involved 
in the decision. The strategic decision as a company was to use as much OSS as 



24 Badampudi et al.  
 
 
possible. Therefore, there was no approval needed for using an OSS component. The 
decision was mainly focused on fit to functionality criterion and the chief technical 
officer agreed to decisions proposed by the architects. Hence, we interviewed only the 
architects for exploring the cases in Company C. In all three cases, OSS was the 
preferred choice of asset origin. In Case 3, a decision to use a new OSS plugin was 
made to improve the functionality of an OSS component already in use. In Case 4, the 
decision was to replace the COTS deployment framework in use with an OSS 
deployment framework. In Case 5, the decision was between changing to a new OSS 
component, or continue to use the current OSS component. Therefore, all three cases 
were distinct since, Case 3 was a new decision, Case 4 was to change from one asset 
origin to another, and Case 5 was a decision between two components from the same 
asset origin. The overview of the cases in terms of the goals, final decision and 
outcome is presented in Table 2. 
 

  Table 2: Overview of the cases with respect to the goal of the decision, the 
final decision made and the decision outcome 

Company Case Goal Final decision Decision 
outcome 

Company A Case 1 Replace component in use COTSàOSS Positive 

Company B Case 2 
Choose a COTS vendor 
for building a new 
component 

COTS vendor 
chosen Positive 

Company C 

Case 3 
Add new functionality for 
a component in use 

OSS 
component 
chosen 

Not 
positive 

Case 4 Change the deployment 
framework component COTSàOSS Positive 

Case 5 Replace component in use No replacement Positive 
 
The goal of three decisions (Cases 1, 4 and 5 in Table 2) were to replace the current 
COTS component with a new OSS component. In Case 1, the decision was to switch 
to the new component however, in Case 5 after the investigation the decision was to 
continue using the component in use. In Case 5, the component in use was perceived 
to be a sub-optimal solution in terms of functionality fitness. Therefore, the goal was 
to replace the component in use with a component having better functionality. 
However, the team was not familiar with the new component and it required 
additional training or hiring trained personnel. The additional cost and time to train or 
hire new personnel prevented the decision-makers to switch to the new component. In 
retrospect, the decision-makers perceived the decision to be positive as switching to 
the new component would increase the cost (increased head count/training) and 
delivery time.  Therefore, maintaining the cost and timeliness received more 
importance than functionality fitness (this is further elaborated in Section 6.5-Activity 
4). In conclusion, it was considered better to keep the component although it was not 
the original goal. It was perceived as positive to have done the evaluation, although it 
did not result in any change. In Case 4, the decision was to change the COTS 
framework in use to a new OSS framework. 



A Decision-making Process-line for Selection of Software Asset Origins and 
Components – Refinement and Evaluation 25 

 
 
 
In Case 2, the goal was to choose a new COTS component. Even though the other 
asset origins were usually considered in the decision-making process by Company B. 
For this component, the other asset origins did not have any suitable solution. 
Therefore, the decision was mainly to choose a COTS vendor.  

6.3 Overview of the decision-making process followed by the companies 

The activities followed or not followed in the companies are illustrated in Figure 6 
and elaborated in Sections 6.4 and 6.5. In addition, we depict how the activities were 
mentioned (explicitly or not) in the interviews. The total number of activities followed 
by the companies is indicated on the x axis and the frequency of the activities 
followed in the cases is indicated on the y axis. The circle symbol  in Figure 6 
represents the coverage of the activities followed by the companies. The circle with 
diamond inside  indicates that the activities did not come up in the interviews when 
asked about the decision-making process. However, when asked about the specific 
activities they mentioned that they followed the activities. The diamond symbol  
indicates that the activities were followed however, either partially or not for its 
intended purpose. 
 
Figure 6 represents the coverage of the activities followed by the companies using the 
process-line (and not checklist), as the process-line is the final solution of our study. 
The cross on the dotted arrow lines indicates that there was no information flow 
between the phases and the repository. The number of activities followed by the cases 
is similar. However, Case 3 followed the least number of activities and it was also the 
decision that was perceived to be negative as shown in Table 2. Activity 5: 
Timeframe that was not followed was perceived to be an important activity that 
resulted in having a negative outcome.  
 
Seven activities of the process-line were followed in all five decisions as shown in 
Figure 6. The activities related to the repository (i.e. 7: Similar cases and 13: 
Document case) were the least followed activities. In addition, the documentation was 
done however, not for reusing in future decisions. Success stories from similar cases 
were considered in the decisions however, the success stories were based on the 
decision-makers’ knowledge and were not retrieved from a repository as they were 
not documented.  
 
In the preparation phase, 4: Criteria prioritization and 5: Timeframe activities were 
not followed in all the cases. Since criteria are not always prioritized, 10: Weighing 
activity is also not followed in all the cases. Tentative decisions were made in the 
three out of four cases where the decision was made to take an action.  
 
Overall, the practitioners did not perceive any decision-making activities to be 
missing in the process-line. The details of how the activities are followed by the 
companies are discussed in Sections 6.4 and 6.5.  



26 Badampudi et al.  
 
 
6.4 Detailed description of the decision-making activities followed in all the 

cases  

Activities 1, 2, 3, 6, 8, 9 and 12 were followed in all the cases. The descriptions on 
how these activities were followed is provided below. 
 
Activity 1: Identify stakeholders to be involved in the decision -  
 
Table 3 provides the stakeholders involved in the decision committee and their roles 
for each case. In most cases the architects played an important role in the decisions. 
Except for Case 2, the architects were the initiators, contributors and deciders as 
mentioned in  
 
Table 3. In Case 1, the budget approval was required from the design centre head and 
product manager. In Case 2, the legal and sourcing department was responsible for 
negotiating and signing the contract with the component suppliers. The number of 
roles involved in the decision varies from case to case. 
 

 

Activities followed by the companies

Decision-making

Knowledge Repository System

Investigation

Preparation
Case 1 Case 2 Case 3 Case 4 Case 5

1: Stakeholders
2: Origins

3: Criteria Selection
4: Criteria Prioritization

5: Timeframe
6: Context

7: Similar Cases
13: Document Case

8: Property Models
9: Evaluation
10: Weighing

11: Tentative
12: Final Decision

Company A Company B Company C

5
5
55
3
3
5

5
5
3

3
5

Context input

Retrieve 
similar 
cases

Retrieve 
similar 
cases

Retrieve 
similar 
decisions

1
3

Total no.of 
activities followed
by the companies

Document 
the case 

11 11 8 1110

Total no.of 
cases following 
the activity

Followed and explicitly mentioned

Followed and not explicitly mentioned

Followed but partially



A Decision-making Process-line for Selection of Software Asset Origins and 
Components – Refinement and Evaluation 27 

 
 

Figure 6: The process-line activity coverage in related to the decision-making 
process followed by the companies.  

  

 

 

Table 3: Stakeholders involved in the decision committee and their roles in the 
decision. 

 
Figure 7 provides the number of roles involved in the decision. Case 2 has the highest 
number of stakeholders with different roles involved in the decision. As the decision 
was based on selecting between different COTS vendors, involving COTS vendors in 
the decision and negotiating the legal aspects were part of the decision. In Case 1, 
there was no stakeholder responsible for discussing legal aspects however, it was 
realized as an important role in the decision-making and was considered for future 
decisions. Since, Cases 3, 4 and 5 were conducted in a comparatively small company, 
the decision committee consisted of only two members. The decision was made by 
the architect and chief technical officer agreed to the decision in all three cases in 
Company C.  

Case 
no. 

Decision committee Decision-making role 

Case 1 

Design centre head and product 
manager 

Budget approver 
 

Line and system manager Decider 

Architect Decision initiator and contributor 
and decider 

Case 2 

Product experience planner and 
project manager Deciders 

Project scope manager, developers 
and testers Decision contributors 

Legal and Sourcing department Decision influencers 
Component providers Decision influencers 

Case 
3, 4 

and 5 

Chief technical officer Decider 

Architect  Decision initiator and contributor 
and decider 



28 Badampudi et al.  
 
 

 
Figure 7: Number of stakeholder roles involved in each decision. 

The number of stakeholders involved, their roles and the personality of the 
stakeholders affect the inclusion or exclusion of the decision-making activities and the 
time spent on each activity as perceived as one of the architect interviewed. For 
example, some stakeholders might need more information to approve a decision.  
 
Activity 2: Screen and evaluate suitability of the asset origins – In all cases OSS 
was the preferred origin and only two origins were considered as shown in Figure 8. 
In case 2, various OSS components were available and evaluated regularly but due to 
lack of full support for text input in over 60 languages they could not be considered. 
COTS remained as the only option with two potential COTS suppliers. In-house and 
outsourcing were not considered as suitable alternatives due to the extensive effort 
(100+ developers working for several months) in Cases 1 and 2. Company C has a 
strategy to use OSS as the first choice. Developing the component was considered as 
the last option.  

 
Figure 8: Number of asset origins involved in each decision. 

Activity 3: Decide criteria from goals – The number of criteria considered is case 
dependent as shown in Figure 9. In Case 1, the goal was to replace the component in 
use with a new component that overcomes the problems identified with the 
component in use. The general criteria selected based on this goal were: maintenance 
effort, technical support, costs, distribution, fault tolerance and fitness in terms of 
functionality. Apart from these criteria, specific criteria related to the actual decision 

0

1

2

3

4

5

6

7

8

9

Case 1 Case 2 Case 3 Case 4 Case 5
Number of roles

0

1

2

Case 1 Case 2 Case 3 Case 4 Case 5
Number of asset origins considered



A Decision-making Process-line for Selection of Software Asset Origins and 
Components – Refinement and Evaluation 29 

 
 
to select the component were: scalability (architecture for scaling), security, 
performance for big data, replication, source code availability for defect fixing, 
maturity of the OSS community and the number of users using the component.   
 
In Case 2, the criteria used in the decision were: support for multiple languages, 
support for defect fixes, ability to survive “patent fights”, reduced costs, better user 
experience, possibility to add customized user experience elements (like buttons), and 
technical features (next word prediction and text recognition from sloppy writing).   
 
In Cases 3, 4 and 5, functionality fit was the criterion to select the component. In case 
5, the skills needed to maintain the new OSS component was also considered as a 
criterion in addition to functionality fit.  

 
Figure 9: Number of criteria considered in each decision. 

 
Activity 6: Identify and describe the context – In Case 1, organizational, product 
and supplier contexts were considered in the decision. The governance structure of 
Company A was such that all relevant stakeholders should be involved in the 
decision. The product context such as complexity, criticality, the number of 
customers, and subscribers or users using the product was considered. The context of 
the supplier community such as maturity and number of recent releases was 
considered. 
 
In Case 2, the context is implicitly discussed but not modelled. The company does not 
have enough knowledge within text recognition to internally develop the component 
and all competitors use external suppliers. The text recognition component is 
important for the product offering but not considered as the main driver for 
purchasing the product. 
 
In Cases 3, 4 and 5, the context was considered important. For each decision, the 
following question is answered – “Are we the organization that can support the    
decision (i.e. do we have the required skills or support required to implement the 
decision?) or can we become that organization?” 
 

0

2

4

6

8

10

12

14

Case 1 Case 2 Case 3 Case 4 Case 5
Number of criteria considered



30 Badampudi et al.  
 
 
Activity 8: Decide on property models to use – In all cases, expert opinion was used 
to evaluate the criteria. Deciding on how to evaluate/estimate the criteria did not come 
up in the interview but when asked about the process the interviewees mentioned that 
they followed the activity. The evaluation was based on stakeholders’ opinions, 
experience and knowledge. 
 
Activity 9: Evaluate the criteria, make estimations using the property models 
and evaluate the impact of the decision – In Cases 1, 4 and 5, where the goal was to 
change or replace the component in use, the experts were aware of the attributes such 
as time, cost and effort for the component already in use. The evaluation was done 
using expert opinion method to find alternatives that improve the existing values and 
not make it worse. In Case 3, the functionality of the plugin was evaluated by the 
decision-makers by testing the functionality of the plugin. 
 
Company B (Case 2) had the following properties: level of support (measured by 
checking if the supplier has regular meetings with the procurer and how quickly they 
react for issue requests), and code quality was important but only externally measured 
by checking how many crashes the component had. Internal code quality could not be 
measured. Support for multiple languages was measured by checking how good the 
functionality and the next word prediction is in several languages. User testing and 
prototype-based evaluations were heavily used in this case. 
 
In Case 1 the scalability and redundancy of the OSS component were evaluated. The 
impact of the decision in terms of risks was also evaluated. For example, if the OSS 
component did not evolve, then the need to modify the component is identified. In 
order to modify the component, the source code needs to be fully understood. This 
involves a learning curve and results in increased head count. The patents and 
proprietary rights were also evaluated. 
 
The number of additional resources required to use the new component was estimated 
in Cases 1 and 5. The trade-off between the risk of having to contribute to the OSS 
community and monetary value gained by not having to pay for external support was 
evaluated in Case 1. Similarly, in Case 5, the trade-off between the additional time 
and cost to train employees or hire new employees and its fit to functionality was 
evaluated.  
 
Activity 12: Make a final decision - A final decision was made in all cases. A COTS 
component was replaced with an OSS component in Cases 1 and 4. In Case 2, a 
decision to acquire a COTS component from a COTS vendor and a new OSS plugin 
component in Case 3 was made. In Case 5, it was decided to continue using the 
component in use and not change to a new component. 

6.5 Detailed description of the decision-making activities followed in a sub-set 
of the cases  

Activities 4, 5, 7, 10, 11 and 13 were followed only in some of the cases. The 
descriptions on how these activities were followed is provided below. 



A Decision-making Process-line for Selection of Software Asset Origins and 
Components – Refinement and Evaluation 31 

 
 
 
Activity 4: Decide on priorities of criteria – In case 1, prioritization of the criteria 
was not mentioned explicitly in the interviews. However, the criteria driven from 
current issues i.e. reduced maintenance time and lower license cost was perceived 
more important than finding the best possible component replacement based on 
criteria such as scalability. Therefore, timely support and cost of license were 
prioritized over other criteria. 
 
In Case 2, the selection criteria were prioritized. Support for multiple languages and 
support for maintenance and defect fixes received the highest priorities. Technical 
support and cost were prioritized over accessibility of the source code. Code quality 
and intended user experience were also important. 
 
In Cases 3 and 4, there was no prioritization as only one criterion was considered. In 
Case 5, the skills required to maintain the OSS component were considered more 
important than functionality fit. Mismatch in the required and available expertise of 
the current team was a bigger risk than the benefit of functionality fitness. If the 
people need to be trained to use the new functionality of the OSS component or new 
people need to be hired, then the OSS component was not considered as a good 
alternative. 
 
Activity 5: Decide on how to handle the time aspect - The short- and long-term 
impact of the solution was not explicitly mentioned in the interviews. In Case 2, the 
interviewees talked about long-term implications of the decision (support and patent 
fights and support for maintenance over 2-5 years) versus short-term (providing bug 
fixes on time and quick updated for the upcoming product releases).  
 
In Cases 4 and 5, the long-term implications of the decision were considered. In 
addition, there was no need for an immediate solution as the current solution acted as 
a backup.  
 
However, in Case 1 the patent issues were realized much later after the decision was 
taken, which indicates that patent issues have a long-term impact. In addition, in Case 
3, the compatibility issues were perceived to have a long-term impact as the 
stakeholders realized that the updates between the component and the plugin were not 
always synced. 
 
Activity 7: Look for similar cases in a knowledge repository – In Case 1, the 
decisions were not documented and similar cases were not retrieved from the 
repository. However, the same OSS component was previously used by the company 
successfully, also other large companies used the same OSS component. Although the 
criteria in the previous decisions were not reused the successful implementation of the 
component in previous cases increased the confidence in making the decision.  
 
In Case 2, it was not perceived that there were similar cases. There was no component 
that offered a similar level of functionality, quality aspects and long-term support 



32 Badampudi et al.  
 
 
from the supplier. However, “similar” could be interpreted a little broader, i.e. to learn 
from similar cases in the company and not only in the current product-line. Thus, 
implicitly the previous decision to select between COTS providers could be 
considered as similar. In a broader sense, any COTS component purchase creates a 
question about later maintenance and bug fixes and also support for additional 
functionality.  
 
In Cases 3, 4 and 5, there were no similar decisions made as perceived by the 
interviewees.  
 
Activity 10: Weigh the estimation results of the selected properties based on the 
priorities of criteria – Weighing activity was conducted in Cases 1, 2 and 5. It was 
explicitly mentioned in Case 5 and in Case 1 and 2 the interviewees mentioned it 
when asked about the weighing activity.  
 
As discussed in Activity 4 followed in Case 1, reduced maintenance time and lower 
license cost were prioritized criteria. These criteria were traded-off with the additional 
people (head count) needed to build a local support team in order to replace the 
technical support provided by COTS vendor. The additional head count cost was 
traded-off with the COTS vendor license cost. At the end of the weighing, it was 
perceived that adding additional people to support the maintenance locally was better 
(faster and more transparent) than relying on the COTS vendor. In addition, the cost 
of adding people was perceived to be lower than the COTS vendor license cost. 
 
In Case 5, the benefit of having better functionality was trade-off with the addition 
time and cost in training or hiring the people. At the end of the weighing, it was 
perceived that using the current component was better (workable solution) than 
adding additional people to support the maintenance of the component. 
 
In Case 2, the company implicitly compared the service level agreements between the 
COTS providers. Cost was weighed against the other decision criteria in the final 
phase and at the end cost was not a factor since both offerings had the same price. 
Initially, the prices were different, but at the end the price was the same. In other 
words, one supplier lowered their price to ensure that the price as such was not a 
decisive factor. Thus, the level of support and the “relationship with the supplier” 
were the key criteria for the decision. 
 
Activity 11: Make a tentative decision - A proof-of-concept was created and the 
tentative selection to use the component on a smaller product in Cases 1 and 4 was 
made. In addition, in Case 2, a tentative decision was made to narrow it down to two 
options. These two options were evaluated after which one of the components came 
out as better with respect to some aspects. The key aspects evaluated here were the 
performance levels in different languages and possible differences in that and how 
they will impact the expected user experience. As a part of the proof-of-concept, the 
company also requested several adaptations from suppliers and experienced their 
response to extension requests. 
 



A Decision-making Process-line for Selection of Software Asset Origins and 
Components – Refinement and Evaluation 33 

 
 
Activity 13: Store the case in the knowledge repository - The decision was not 
documented in the classical sense in Cases 1 and 2. It turned into the knowledge about 
what the decision-makers selected and why. The minutes of the meetings with the 
decision committee were stored in Cases 2, 4 and 5. However, they were not stored 
for the purpose of reusing the knowledge for future decisions.  
 
Finally, it should be noted that no new activities were identified through the 
interviews and discussions. Different asset origins were considered as viable options 
by Company B. However, only one asset origin was a suitable option and the 
decision-making was mainly to select a component from the asset origin. It is 
noteworthy that the decision-making process-line fits well with the decision to select 
between different asset origins and to select between different suppliers (two 
components from the same asset origin, i.e. COTS in this case).  

6.6 Discussion and implications from the cases  

It is noteworthy that the decision-making process-line presented in Section 5 was 
found useful for selecting between components of the same asset origin. This is 
validated through the component selection at Company B. Selecting between asset 
origins is primarily a strategic decision, while the selection between components is 
mostly performed on a tactical level [1]. The process-line presented in this paper is 
likely to support both strategic as well as tactical level decisions.  
 
The decision-making process followed by the companies is case dependent as we see 
in Section 6 and Figure 6. Thus, the process-line requires substantial flexibility not 
only in how the activities are conducted but what activities are conducted. The order 
of the activities (which activity comes first and which second) is also flexible. 
However, there is sequential order of execution between the preparatory, investigation 
and decision/making phases. 
 
Although the activities executed were similar there were some variations in the way 
the processes were executed. This led us to identify the possible variation in the 
execution of all the activities in the process-line based on the cases. In addition, the 
execution of some activities could be dependent on the execution of other activities. 
The variations and dependencies are presented in Figure 10.  
 
Each activity execution could vary, for example, as shown in the first box in Figure 
10 a decision-maker could identify all the relevant stakeholders at the beginning of 
the process or only a sub-set of the stakeholders and add more stakeholders at later 
stages whenever required. There were no variations identified based on the interviews 
for the activity to identify and evaluate the context, criteria and the weighing activity. 
Similarly, no variations in the tentative decision and the final decision were identified 
in the interviews. The “weighing” activity depends on the execution of the “criteria 
prioritization” and “evaluate” activities. If the criteria are prioritized and evaluated 
(represented by AND gate in Figure 10), then the weighing activity can be executed 



34 Badampudi et al.  
 
 
by weighing the priority of the criteria together with the estimated results obtained 
from the evaluation. 
 
The execution of the process-line could be iterative for example, a sub-set of 
stakeholders could initiate the decision and in each iteration more stakeholders could 
be added. After each iteration, a decision if more investigation is needed to reach to a 
decision could be made. If further investigation is needed, then activities could be 
executed again. This finding is from Case 5, where the decision was made to not 
continue the investigation and use the component in use without any replacement.  
 

 
Figure 10: The process-line for decision-making including variations in 

activity execution. 

 
The process-line in Figure 4 and the process-line with variations in execution in 
Figure 10 were shown to the interviewees in Company C. The interviewees’ 
perceived the process-line in Figure 4 to be applicable from a managerial perspective 
and the process-line with variations in Figure 10 was perceived to be applicable from 
a technical perspective. In addition, having a process-line with a set of activities was 
perceived to be useful for the decision when the time is short as the process of 
selecting the decision-making activities to include in their decision-making process 
could be faster. On the other hand, having more time would allow the decision-
makers to use the process-line and conduct the activities more thoroughly according 
to another interviewee. Another use stated by the interviewees was that the process-
line is applicable when there is a problem in the current decision/making process and 
they are looking for ways to improve it. However, a wider survey is needed to capture 
the applicability of the process-line. 

Decision-making

Investigation

Preparation

Weighing

Context

Identify all relevant 
stakeholders

Identify a
subset of 

stakeholders

Evaluate all 
relevant origins

Derive criteria 
from current 
situation

Same 
importance

Prioritize

Identify 
all criteria

Long-term

Select 
Property
Models

Choose ad-
hoc approach

Tentative Final Decision

Knowledge 
repository 
support

Similar
 cases

Store 
Decisions

Retrieve 
similar 
cases

Retrieve similar decisions

Context 
input

Stakeholders Origins Criteria Selection Criteria Prioritization Timeframe

Property Models

Represents dependency 
between activities

AND

mid-term

Entire timeframe

Short-term
Evaluate subset 

of origins

Continue 
investigation?

Stop

Yes

No

Start

Decision Start/Stop

Evaluate

Retrieve 
similar 
cases

Document the case

AND

Variation points



A Decision-making Process-line for Selection of Software Asset Origins and 
Components – Refinement and Evaluation 35 

 
 
7 General discussion and validation implications  

7.1 Checklist v1.0 validation and refinement into Checklist v2.0 

The Checklist v1.0 validation conducted in Companies A and B, resulted in the 
formulation of Checklist v2.0. The following changes were made to the activity 
descriptions based on the validation.  

• Evaluating the suitability of only one origin is added to the description of the 
“Screen and evaluate the suitability of the asset origins” activity.  

• In “Decide criteria from goals” activity, we made a distinction between 
criteria used to reject an asset origin or replace an existing component, and 
the actual criteria used to make the decision.  

• The context description activity is refined to identify the context information 
that could impact the decision in addition to describing the context 
information.  

• As some criteria can be measured and evaluated, we reformulated the 
activity to estimate the criteria to include evaluations and not only 
estimations as described in the original proposal [45]. For example, 
scalability and functionality of an existing component can be evaluated. 
However, time to build a new component may potentially be estimated using 
some form of cost estimation model. In addition, the impact of the decision, 
cost-benefit analysis and changes that need to be made in order to 
incorporate the new decision are added to this activity.  

• We also noticed that the tentative decision implemented in the form of 
prototypes and proof-of-concepts are more reliable and the decision-makers 
are more confident about their decision when they implement prototypes and 
proof-of-concepts. Thus, we have added these types of evaluations to the 
tentative decisions. 

 
In both cases the decision was not documented. Documenting the decision and storing 
it in a repository allows information to be reused from previous similar decisions. As 
we can see a shift in the way software is development, reusing existing components is 
becoming increasingly common. Hence, as more such decisions to select an asset 
origin will be made, documenting such decisions will create a rich repository that can 
be used for further decisions. 

7.2 Checklist v2.0 validation and refinement into process-line (Checklist v3.0) 

We mainly changed the representation of the solution to eliminate a specific order 
between each activity. The following changes have been made – 

• The activities are divided into three phases: preparation, investigation and 
decision-making.  

• The information flow between the phases and repository is made explicit. 



36 Badampudi et al.  
 
 

• The variation in execution and dependencies between activities and phases is 
also represented as shown in Figure 10. 

8 Summary and further work  

The development of today’s software products, systems and services is far from trivial 
and often result in rather complex decision support models and decision-making 
processes. The decisions of choosing software components from different origins, 
such as in-house development vs. COTS, OSS and outsourcing, are most often 
strategic and have significant consequences on competitiveness. The decision-making 
process-line presented in this paper provides a starting point for supporting such 
decisions and addresses the research gap identified in a recent systematic literature 
review [3].  
 
The presented decision-making process-line for selection of software asset origins can 
be applied for both B2B and B2C contexts as long as relevant stakeholders are 
identified and involved in decision-making. For B2C contexts, end users and other 
external stakeholders need to be involved and accurately represented. 
  
In future work, we plan to further evaluate the generalizability of the decision-making 
process-line to support different levels of decisions, i.e. strategic decisions (to select 
between different asset origins), tactical decisions (to select between different 
suppliers or different components) and selection between different services. In 
addition, we plan to survey several business scenarios that involve diverse business 
models, asset origins, company characteristics and ecosystem participation models. 
We aim at clearly outlining short- and long-term consequences of each variation of 
activity execution. These should form guidelines that software business practitioners 
may use when considering various sourcing options.  
 
We plan to implement the process-line in practice and evaluate the implementation as 
part of future work. The applicability of the process-line is important to evaluate 
through a large survey. A survey to collect the feedback on the applicability of the 
process-line is planned as future work. Moreover, we plan to expand our research on 
the evidence-based knowledge repository in the following ways: to create the first 
implementation of a repository that can support decision-makers and to create tool 
support for executing the process and storing the data in the knowledge-based 
repository. Finally, we plan to conduct an empirical study to evaluate the use of 
presented decision-making process-line to formulate specific decision-making 
processes and identify future work directions.  

Acknowledgments 
The work is supported by a research grant for the ORION project (reference number 
20140218) from The Knowledge Foundation in Sweden. We would also like to thank 
our colleagues in the ORION project for fruitful discussions. Finally, we would like to 
thank the reviewers for valuable input that have helped improving the paper. 



A Decision-making Process-line for Selection of Software Asset Origins and 
Components – Refinement and Evaluation 37 

 
   



38 Badampudi et al.  
 
 
References 
[1] Aurum A. and Wohlin, C.: The Fundamental Nature of Requirements Engineering 

Activities as a Decision-Making Process, Inf. and Soft. Tech., 45, (2003) 945–954 

[2] Armbrust, O., Katahira, M., Miyamoto, Y., Münch, J., Nakao, H., and Ocampo, A. (2009). 
Scoping software process lines. Software Process: Improvement and Practice, 14(3), 181-
197. 

[3] Badampudi, D., Wohlin, C. Petersen, K.: Software Component Decision-making: In-
house, OSS, COTS or Outsourcing - A Systematic Literature Review, Journal of Systems 
and Software, Vol. 121, No. 11, November, pp. 105-124, 2016. 

[4] Berander, P. and Jönsson, P.: Hierarchical Cumulative Voting (HCV) - Prioritization of 
Requirements in Hierarchies. International Journal of Software Engineering and 
Knowledge Engineering 16, (2006)- 819–849  

[5] Biffl, S., Aurum, A., Boehm, B., Erdogmus, H. and Grünbacher, P. (eds.). Value-Based 
Software Engineering. Springer Science & Business Media (2006)  

[6] Bizer, C. and Cyganiak, R.: Quality-Driven Information Filtering Using the WIQA Policy 
Framework, Web Semantics: Science, Services and Agents on the WWW, 7 (2009) 1-10 

[7] Cárdenas-Garcia, S. and Zelkowitz, M. V.: A Management Tool for Evaluation of 
Software Design. IEEE Transactions on Software Engineering 17, (1991) 961–971 

[8] Carlson, J., Papatheocharous, E., & Petersen, K. (2016, April). A Context Model for 
Architectural Decision Support. In IEEE Proceedings of the 1st International Workshop 
on Decision Making in Software ARCHitecture (MARCH) (2016) 9-15) 

[9] Cicchetti, A., Borg, M., Sentilles, S., Wnuk, K., Carlson, J. and Papatheocharous, E.: 
Towards Software Assets Origin Selection Supported by a Knowledge Repository. In 1st 
MARCH Workshop at WICSA and CompArch 2016, April 5, Venice (Italy) (2016) 

[10] Cortellessa, V., Marinelli, F. and Potena, P.: Automated Selection of Software 
Components Based on Cost / Reliability Tradeoff. Proceedings of the 3rd European 
Workshop on Software Architecture (EWSA’06), (2006) 66–81 

[11] Cortellessa, V., Marinelli, F. and Potena, P.: An Optimization Framework for “Build-or-
buy” Decisions in Software Architecture. Computers and Operations Research 35 (2008) 
3090–3106 

[12] Cusumano, M. A.: The Business of Software: What Every Manager, Programmer, and 
Entrepreneur Must Know to Thrive and Survive in Good Times and Bad, Simon and 
Schuster, (2004) 

[13] de Carvalho, D. D., Chagas, L. F., Lima, A. M., & Reis, C. A. L. (2014, November). 
Software process lines: A systematic literature review. In International Conference on 
Software Process Improvement and Capability Determination (pp. 118-130). Springer.  

[14] de Carvalho, D. D., Chagas, L. F., & Reis, C. A. L. (2014, September). Definition of 
Software Process Lines for Integration of Scrum and CMMI. In Computing Conference 
(CLEI), 2014 XL Latin American (pp. 1-12). IEEE. 

[15] Aleixo, F. A., Freire, M. A., dos Santos, W. C., & Kulesza, U. (2010, June). A Model-
driven Approach to Managing and Customizing Software Process Variabilities. In ICEIS 
(3) (pp. 92-100). 

[16] Flyvbjerg B., Five misunderstandings about case-study research, in: Qualitative Research 
Practice, SAGE, 2007, pp. 390–404. 



A Decision-making Process-line for Selection of Software Asset Origins and 
Components – Refinement and Evaluation 39 

 
 
[17] Franke, U.: Towards Preference Elicitation for Trade-Offs between Non-Functional 

Properties. In Enterprise Distributed Object Computing Conference (EDOC), 2016 IEEE 
20th International (pp. 89-98). IEEE. DOI: 10.1109/EDOC.2016.7579389 

[18] Franke, U. and Buschle, M.: Experimental Evidence on Decision-Making in Availability 
Service Level Agreements. IEEE Transactions on Network and Service Management, 13, 
(2016) 58-70 

[19] Gregoriades, A. and Sutcliffe, A.: Scenario-Based Assessment of Nonfunctional 
Requirements. IEEE Transactions on Software Engineering 31, (2005) 392–409  

[20] ISO/IEC 25012: http://iso25000.com/index.php/en/iso-25000-standards/iso-25012  
[21] Jansen, S. Brinkkemper, S. and Cusumano, M. A.: Software Ecosystems: Analyzing and 

Managing Business Networks in the Software Industry, Edward Elgar Publishing, (2013) 
[22] Jha, P. C., Bali, S., Kumar, U. and Pham, H.: Fuzzy Optimization Approach to Component 

Selection of Fault-tolerant Software System. Memetic Computing 6, (2014) 49–59  

[23] Jha, P. C., Bali, V., Narula, S. and Kalra, M.: Optimal Component Selection Based on 
Cohesion & Coupling for Component Based Software System Under Build-or-buy 
scheme. Journal of Computational Science 5, (2014) 233–242  

[24] Kramer, T. and Eschweiler, M.: Outsourcing Location Selection with SODA: A 
Requirements Based Decision Support Methodology and Tool. Lecture Notes in Computer 
Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in 
Bioinformatics) 7908 LNCS, (2013) 530–545 

[25] Kramer, T., Heinzl, A. and Spohrer, K.: Should this Software Component be Developed 
Inside or Outside our Firm? - A Design Science Perspective on the Sourcing of 
Application Systems. In New Studies in Global IT and Business Service Outsourcing. 
Springer Berlin Heidelberg, (2011) 115–132 

[26] Lawlis, P. K., Mark, K. E., Thomas, D. A. and Courtheyn, T.: A Formal Process for 
Evaluating COTS Software Products. Computer 34, (2001) 58–63  

[27] Martens, B. and Teuteberg, F.: Decision-Making in Cloud Computing Environments: A 
Cost and Risk Based Approach, Information Systems Frontiers, 14, (2012) 871-893 

[28] Open Government Data (OGD): https://opengovdata.org/ 

[29] Papatheocharous, E., Petersen, K., Cicchetti, A., Sentilles, S., Shah, S. M. A. and 
Gorschek, T.: Decision Support for Choosing Architectural Assets in the Development of 
Software-Intensive Systems: The GRADE taxonomy. Proceedings of the 1st International 
Workshop on Software Architecture Asset Decision-making, Article No. 48 (2015) 

[30] Petersen, K. and Wohlin, C.: Context in Industrial Software Engineering Research. 
Proceedings of the 2009 3rd International Symposium on Empirical Software Engineering 
and Measurement, (2009) 401–404 

[31] Petersen K., Badampudi D., Shah S., Wnuk K., Gorschek T., Papatheocharous E., 
Axelsson J., Sentilles S., Crnkovic I. and Cicchetti A.: Choosing Component Origins for 
Software Intensive Systems: In-house, COTS, OSS or Outsourcing?--A Case Survey. 
IEEE Transactions on Software Engineering. Vol. PP, No. 99, March, pp.1-1, 2017. 

[32] Popp, K. M.: Software Industry Business Models, IEEE Software, 28 (2011) 26-30 
[33] Potena, P. L.: Composition and Tradeoff of Non-functional Attributes in Software 

Systems. European Software Engineering Conference and Symposium on the Foundations 
of Software Engineering, (2007) 583–585 



40 Badampudi et al.  
 
 
[34] Regnell, B. and Brinkkemper, S.: Market-driven Requirements Engineering for Software 

Products, in Engineering and Managing Software Requirements (editors. A. Aurum and C. 
Wohlin), Springer (2005) 287-308. 

[35] Resnik, M. D.: Choices: An Introduction to Decision Theory. University of Minnesota 
Press (1987) 

[36] Saaty, T. L.: Decision Making with the Analytic Hierarchy Process. International Journal 
of Services Sciences 1, (2008) 1-83  

[37] Sentilles, S., Papatheocharous, E., Ciccozzi, F. and Petersen, K.: A Property Model 
Ontology. Proceedings of the 42nd Euromicro Conference on Software Engineering and 
Advanced Applications (SEAA) (2016). 

[38] Schief, M., Buxmann, P and Schiereck, D.: Mergers and Acquisitions in the Software 
Industry, Business & Information Systems Engineering, 5, (2013) 421-431.  

[39] Singpurwalla, N. D.: Determining an Optimal Time Interval for Testing and Debugging 
Software. IEEE Transactions on Software Engineering 17 (1991) 313–319 

[40] Šmite D., Wohlin, C., Galviņa, Z. and Prikladnicki, R.: An empirically Based 
Terminology and Taxonomy for Global Software Engineering. Empirical Software 
Engineering 19, (2014) 105–153 

[41] Starmer, C.: Developments in non-expected utility theory: the hunt for a descriptive theory 
of choice under risk. Journal of Economic Literature 38, (2000) 332–382 

[42] Ssaed, A. A., Wan Kadir, W. M. N. and Hashim, S. Z. M.: Metaheuristic search approach 
based on in-house/out-sourced strategy to solve redundancy allocation problem in 
component-based software systems. Int. J. of Soft. Eng. and its Applic. 6, (2012) 143–154 

[43] Vale, T., Crnkovic, I., de Almeida E. S., da Mota Silveira Neto, P. A., Cerqueira 
Cavalcantic, Y., and de Lemos Meira, S. R.: Twenty-eight years of component-based 
software engineering. Journal of Systems and Software 111, (2016) 128–148 

[44] Wieringa, R. J.: Design science methodology for information systems and software 
engineering. Springer (2014) 

[45] Wohlin, C., Wnuk, K., Smite, D., Franke, U., Badampudi, D. and Cicchetti, A.: 
Supporting Strategic Decision-making for Selection of Software Assets. Proceedings of 
the 7th International Conference on Software Business (ICSOB), (2016) 1-15, Springer 
LNBIP 240. 

[46] Wnuk, K.: Involving relevant stakeholders into the decision process about software 
components. In 2nd MARCH Workshop at WICSA and CompArch 2017, April 6, 
Gothenburg, Sweden) (2017). 


