
A Comparison of Issues and Advantages in Agile and Incremental Development between
State of the Art and an Industrial Case

Kai Petersen∗,a,b, Claes Wohlina

aSchool of Engineering, Blekinge Institute of Technology, Box 520, SE-372 25, Sweden
bEricsson AB, Box 518, SE-371 23

Abstract

Recent empirical studies have been conducted identifying a number of issues and advantages of incremental and agile methods.
However, the majority of studies focused on one model (Extreme Programming) and small projects. To draw more general conclu-
sions we conduct a case study in large scale development identifying issues and advantages, and compare the results with previous
empirical studies on the topic. The principle results are that 1) the case study and literature agree on the benefits while new issues
arise when using agile in large-scale, and 2) an empirical research framework is needed to make agile studies comparable.

Key words:
Agile, Incremental, State of the Art, Case Study

1. Introduction

The nature of software development has changed in recent
years. Software is now included in a vast amount of products
(cars, entertainment, mobile phones) and is a major factor deter-
mining whether a product succeeds. In consequence it becomes
more and more important to be flexible in handling changing
requirements to meet current customer needs and to be able
to deliver quickly to the market. As a solution, agile methods
have started to be adopted by industry and recent studies have
been focusing on evaluating agile and incremental development
models.

A systematic review [4] identified and analyzed studies on
agile software development. A 33 studies relevant for the re-
view were identified of which 25 investigated Extreme Pro-
gramming (XP). Furthermore, only three papers investigated
projects with more than 50 people involved in total. Thus, the
results so far are hard to generalize due to the focus on one
specific method and small projects. In order to address this re-
search gap a large-scale implementation of a set of agile and
incremental practices is investigated through an industrial case
study at Ericsson AB. In particular, issues and advantages of
using agile and incremental methods are extracted from exist-
ing studies and are compared with the results of the case study.
Three subsystems have been investigated at Ericsson through
33 interviews, covering persons from each subsystems and dif-
ferent roles.

∗Corresponding author
Email addresses: kai.petersen@bth.se,

kai.petersen@ericsson.com (Kai Petersen), claes.wohlin@bth.se
(Claes Wohlin)

URL: http://www.bth.se/besq; www.ericsson.com (Kai
Petersen), http://www.bth.se/besq (Claes Wohlin)

The incremental and agile model used at the company is a
selection of agile and incremental practices, so it cannot be
mapped one to one to the models presented in literature. How-
ever, the company’s agile and incremental model uses practices
from SCRUM (SC), XP, and incremental and iterative devel-
opment (IID). Some of the key practices used at the company
are, for example, the devision of internal and external releases,
small and motivated teams developing software in three month
projects (time-boxing), frequent integration of software, and al-
ways developing the highest prioritized features first.

The main contribution of the study is to help in the decision
of adopting agile methods and showing the problems that have
to be addressed as well as the merits that can be gained by agile
methods. Based on this, the following objectives are formulated
for the study:

• Illustrate one way of implementing incremental and agile
practices in a large-scale organization.

• Provide an in-depth understanding of the merits and issues
related to agile development.

• Increase the generalizability of existing findings by inves-
tigating a different study context (large scale and telecom-
munication domain) and comparing it to state of the art.

The structure of the paper is shown in Figure 1: Section 2
presents the state of the art, summarizing issues and advan-
tages identified in literature. Thereafter, the investigated pro-
cess model is described in Section 3, and the practices applied
in the company’s model are mapped to the practices associated
with incremental and agile development, XP and SCRUM for
the purpose of generalizability. Section 4 illustrates the research
method, which constitutes the context in which the study is con-
ducted, the data collection procedures, and a description of the

Preprint submitted to Journal of Systems and Software January 28, 2009



data analysis methods. The results of collected data (Section
5) show issues and advantages identified in the case study, as
well as a mapping between the findings of the case study and
the state of the art described in Section 2 (see 1). Sections 6
and 7 present the implications of the results. The implications
of the comparison of state of the art and case are discussed,
and the mapping (3) can be used to discuss generalizability and
comparability of results.

State of the Art (SotA)
(Section 2)

 Incremental
 and AgileProcess Model

(Section 3)

Research Method
(Section 4)

Results
(Section 5)

Discussion
(Section 6)

Conclusion
(Section 7)

SotA (Issue, Advantages) 

Model, Mapping

Context, Data Collection, Analysis

Mapping of Issues and Advantages
Between SotA and Case Study

Case Study (Issues, Advantages)

Implications

Outcome

Figure 1: Structure of the Paper

2. State of the Art

The studies presenting advantages and issues of agile and in-
cremental methods have been identified in a recent systematic
review of empirical studies in agile software development [4].
The issues and advantages presented here are from the review
as well as looking at the original articles included in the review.
Furthermore, one further article not included in the systematic
review has been identified ([15]). The issues and advantages are
presented as tables receiving an ID (A01-A11, I01-I10) which
is used as a reference when comparing the issues and advan-
tages identified in this case study with the findings in state of
the art. The tables also contain information of which develop-
ment models are related to a specific issue and how large the
project was (measured in number of team members).

Table 1 provides an overview of advantages of agile and in-
cremental development that have been empirically shown in the
studies identified in [4]. The advantages that have been shown
for agile methods are clearly dominated by studies that inves-
tigated XP or a modified version of XP ([6]). Two advantages
(A01, A02) have been shown for SCRUM as well. The size of
the projects is quite small (up to 23) and for many projects the
size has not been reported. The main advantages are related
to benefits of communication leading to better learning and
knowledge transfer (A01, A03, A07). Furthermore, it is empha-
sized that people feel comfortable using agile methods (A08,
A10). Also, customers appreciate agile methods as they pro-
vide them with the opportunity of influencing the software pro-
cess and getting feedback (A09). The same is true vice versa,
meaning developers also appreciate the presence of customers
(A02). Developers value the technical focus of agile methods
increasing their motivation (A05). There is also a perception
of increased quality in software products (A11) and higher pro-
ductivity (A10) when using pair programming.

Besides the advantages, agile and incremental models face
a number of issues that are summarized in Table 2. Studies
identifying issues reveal the same pattern as studies identify-
ing advantages, that is small projects have been studied and the
main focus has been on XP. The positive effects that have been
shown for pair programming (A03, A10, A11), like higher qual-
ity and productivity and facilitated learning, need to be seen
alongside a number of issues. That is, pair programming is
perceived as exhausting (I04) and requires partners with equal
qualifications (I10). Agile can also be considered an exhaust-
ing activity from customers’ point of view as the customer has
to commit and be present throughout the whole development
process. Team related issues are that members of teams have to
be highly qualified and inter-team communication suffers (I05,
I10). From a management point of view two issues are iden-
tified, namely that they feel threatened by the empowerment
of engineers (I07) and that technical issues are raised too early
(I08). Furthermore, agile projects do not scale well (I03) and
have too little focus on architecture development (I01). Agile
also faces implementation problems when realizing continuous
testing as this requires much effort (I01).

The advantages and issues of the state of the art shown in
Tables 1 and 2 are used as an input for the comparison with the
results from the case study in Section 5.

3. Incremental and Agile Process Model

The process model used at the company is described and
thereafter its principles are mapped to incremental and iterative
development, SCRUM, and XP.

3.1. Model Description

Due to the introduction of incremental and agile development
at the company the following company specific practices have
been introduced:

• Small teams: The first principle is to have small teams
conducting short projects lasting three months. The dura-
tion of the project determines the number of requirements
selected for a requirement package. Each project includes
all phases of development, from pre-study to testing. The
result of one development project is an increment of the
system and projects can be run in parallel.

• Implementing highest priority requirements: The pack-
aging of requirements for projects is driven by require-
ment priorities. Requirements with the highest priorities
are selected and packaged to be implemented. Another
criterion for the selection of requirements is that they fit
well together and thus can be implemented in one coher-
ent project.

• Use of latest system version: If a project is integrated with
the previous baseline of the system, a new baseline is cre-
ated. This is referred to as the latest system version (LSV).
Therefore, only one product exists at one point in time,
helping to reduce the effort for product maintenance. The

2



Table 1: Advantages in Incremental Agile Development (State of the Art)

ID Advantages Model Size Study

A01 Better knowledge transfer due to better communication and frequent feedback from each iter-
ation.

XP/XP/XP/SC&XP 9/-/-/7 [1, 6, 18, 15]

A02 Customers are perceived by programmers as very valuable allowing developers to have dis-
cussions and get early feedback.

XP/SC/XP/XP -/6/-/6 [6, 9, 18, 19]

A03 Pair programming facilitates learning if partners are exchanged regularly. XP 6 [19]
A04 Process control, transparency, and quality are increased through continuous integration and

small manageable tasks.
XP - [6]

A05 XP is very much technical-driven empowering engineers and thus increases their motivation. XP - [6]
A07 Small teams and frequent face-to-face meetings (like planning game) improves cooperation

and helps getting better insights in the development process.
XP(modification) - [18]

A08 The social job environment is perceived as peaceful, trustful, responsible, and preserving qual-
ity of working life.

XP 23 [16]

A09 Customers appreciate active participation in projects as it allows them to control the project
and development process and they are kept up to date.

XP 4 [5]

A10 Developers perceive the job environment as comfortable and they feel like working more
productive using pair programming.

XP - [10]

A11 Student programmers perceive the quality of code higher using pair programming XP - [10]

Table 2: Issues in Incremental and Agile Development (State of the Art)

ID Issues Model Size Study

I01 Realizing continuous testing requires much effort as creating an integrated test environment is hard for
different platforms and system dependencies.

XP(modification) - [18]

I02 Architectural design does not have enough focus in agile development leading to bad design decisions. gen./gen. -/- [12, 17]
I03 Agile development does not scale well. gen. - [3]
I04 Pair programming is perceived as exhaustive and inefficient. XP/XP/XP 4/12/6 [5, 8, 19]
I05 Team members need to be highly qualified to succeed using agile. XP 6 [14]
I06 Teams are highly coherent which means that the communication within the team works well, but inter-

team communication suffers.
XP/SC&XP -/7 [6, 15]

I07 The empowerment of engineers makes managers afraid initially, and thus requires sufficient training of
managers.

XP - [6]

I08 Implementation starts very early, thus technical issues are raised too early from a management point of
view.

XP - [6]

I09 On-site customers have to commit for the whole development process which puts them under stress. XP 16 [11]
I10 From the perspective of students, pair programming is not applicable if one partner is much more

experienced than the other.
XP - [13]

LSV can also be considered as a container where the incre-
ments developed by the projects (including software and
documentation) are put together. On the project level, the
goal is to focus on the development of the requirements
while the LSV sees the overall system where the results of
the projects are integrated. When the LSV phase is com-
pleted, the system is ready to be shipped.

• Anatomy plan: The anatomy plan determines the content
of each LSV and the point in time when a LSV is sup-
posed to be completed. It is based on the dependencies be-
tween parts of the system developed which are developed
in small projects, thus influencing the time-line in which
projects have to be executed.

• Decoupling Development from Customer Release: If ev-
ery release is pushed onto the market, there are too many
releases used by customers that need to be supported. In

order to avoid this, not every LSV has to be released, but
it has to be of sufficient quality to be possible to release
to customers. LSVs not released to the customers are re-
ferred to as potential releases. The release project in itself
is responsible for making the product commercially avail-
able and to package it in the way that the system should be
released.

In Figure 2 an overview of development process is provided.
At the top of Figure 2 the requirements packages are created
from high priority requirements stored in the repository. These
requirements packages are implemented in projects (for exam-
ple Project A-N) resulting in a new increment of the product.
Such a project has a duration of approximately three months
(time-boxed). When a project is finished developing the incre-
ment, the increment is integrated with the latest version of the
system, referred to as last system version (LSV). The LSV has
a pre-defined cycle (for example, projects have to drop their

3



Requirements 
Repository

 Requirements
Packages

Needs Specific
Needs

Change
Request

Change
Request

Market

Prio 1 Prio 2 Prio 3 Prio 4 Prio 5

Customer 
Specific

Project A-N

Project B-N

Project C-N

Project A-N

Project A-N

LSV
Baselines LSV LSV LSV LSV LSV

Release
N

Potential
Release

Release
N+1

Customer
Adoption 

Potential
Release

Potential
Release

Projects

Figure 2: Development Process

components within a specific time frame to the LSV). At the
bottom of the Figure, the different releases of the system are
shown. These are either potential releases or customer releases.

The development on project level is run as iterations and each
iteration creates an increment. The project does not deliver one
increment but a set of increments put together in a drop to the
LSV. The process flow works as follows: A set of requirements
comes into a new project having a duration of three months.
The project is divided in several iterations, each iteration cre-
ating a new increment. An iteration takes approximately two
weeks. Each iteration is a continuous flow with the following
steps:

1. The requirements are handed over to the project.
2. Requirements are designed and implemented.
3. The implementation is deployed within the test environ-

ment (including test cases).
4. The results from the executed test are monitored.

3.2. Mapping
The principles used in the process model at the company (C)

are mapped to the ones in incremental and iterative develop-
ment (IID), extreme programming (XP), and SCRUM (SC).
In Table 3 we show which principles used in incremental and
iterative development (IID), extreme programming (XP), and
SCRUM (SC) are used in the process model at the company
(C). The Table (created based on the information provided in
[7]) shows that 4 out of 5 incremental principles are fulfilled.
Furthermore, the model used at the company shares 7 out of
13 principles with XP and 6 out of 11 principles with SCRUM.
If many practices are fulfilled in the case study (which is the
case for IID and the agile models) we argue that lessens learned

provide valuable knowledge of what happens when the process
models are transferred to industry in a given context.

Table 3: Mapping

Principle IID XP SC C

Iterations and Increments
√ √ √ √

Internal and External Releases
√ √

Time Boxing
√ √ √ √

No Change of Started Projects
√ √ √

Incremental Deliveries
√

On-site Customer
√ √

Frequent Face-to-Face Interaction
√ √ √

Self-organizing Teams
√ √

Empirical Process
√ √

Sustainable Discipline
√

Adaptive Planning
√ √

Requirements Prioritization
√ √ √

Fast Decision Making
√

Frequent Integration
√ √ √

Simplicity of Design
√

Refactoring
√

Team Code Ownership
√

The company’s model realizes the principles shared with IID,
XP, and SCRUM as follows:

Iterations and Increments: Each projects develops an incre-
ment and delivers it to the LSV, the LSV being the new version
of the product after integrating the increment. The projects de-
veloping the increments are run in an iterative manner.

Internal and External Releases: Software products delivered
and tested in the LSV can be potentially delivered to the market.

4



Instead of delivering to the market they can be used as an input
to the next internally or externally used increment.

Time Boxing: Time boxing means that projects have a pre-
defined duration with a fixed deadline. In the company model
the time box is set to approximately three month. Furthermore,
the LSV cycles determine when a project has to finish and drop
its components to the LSV.

No Change to Started Projects: If a feature is selected and
the implementation realizing the feature has been started then it
is finished.

Frequent Face-to-Face Interaction: Projects are realized in
small teams sitting together. Each team consists of people ful-
filling different roles. Furthermore, frequent team meetings are
conducted in the form of stand-up meetings as used in SCRUM.

Requirements Prioritization: A prioritized requirements list
where the highest prioritized requirements are taken from the
top and implemented first is one of the core principles of the
company’s model.

Frequent Integration: Within each LSV cycle the results
from different projects are integrated and tested. As the cycles
have fixed time frames frequent integration is assured.

Overall it is visible that the model shares nearly all principles
with IID and realizes a majority of XP and SCRUM principles.
However, we would like to point out that when comparing the
results with models investigated in empirical research it is not
always made explicit to what degree different practices are ful-
filled in those studies. In other words, it is unknown to what
extent a so-called XP-study actually implements all XP prac-
tices. This issue and its implications are further discussed in
Section 6.

4. Research Method

The research method used is case study. The design of the
study follows the guidelines provided for case study research in
[20].

4.1. Case Study Context

Ericsson AB is a leading and global company offering solu-
tions in the area of telecommunication and multimedia. Such
solutions include charging systems for mobile phones, multi-
media solutions and network solutions. The company is ISO
9001:2000 certified. The market in which the company operates
can be characterized as highly dynamic with high innovation
in products and solutions. The development model is market-
driven, meaning that the requirements are collected from a large
base of potential end-customers without knowing exactly who
the customer will be. Furthermore, the market demands highly
customized solutions, specifically due to differences in services
between countries.

4.2. Research Questions and Propositions

This study aims at answering the following research ques-
tions:

• RQ1: What are the advantages and issues in industrial
large-scale software development informed by agile and
incremental practices? So far, very little is known about
advantages and issues of using agile and incremental prac-
tices in large-scale industrial software development. Thus,
the answer to this research question makes an important
step toward filling this research gap.

• RQ2: What are the differences and similarities between
state of the art and the case study results? By answer-
ing this research question new insights in comparison to
what has been studied before become explicit. Further-
more, contradictions and confirmations of previous results
are made explicit and facilitate the generalizability of re-
sults.

Furthermore, propositions are stated which are similar to
hypotheses, stating what the expected outcome of a study is.
Propositions also help in identifying proper cases and units of
analysis. The proposition is stated for the outcome of RQ2: As
the case differs from those presented in state of the art new is-
sues and benefits are discovered that have not been empirically
identified before.

4.3. Case Selection and Units of Analysis
Three subsystems that are part of a large-scale product are

studied at the company. The large-scale product is the case be-
ing studied while the three subsystems are distinct units of anal-
ysis embedded in the case. Table 4 summarizes some character-
istics of the case and units of analysis. The LOC measure only
includes code produced at the company (excluding third-party
libraries). Furthermore, the approximate number of persons in-
volved in each subsystem are stated. A comparison between
the case and the Apache web server shows that the case and
its units of analysis can be considered large-scale, the overall
system being 20 times larger than Apache.

Table 4: Units of Analysis

Language Size (LOC) No. Persons

Overall System >5,000,000 -
Subsystem 1 C++ 300,000 43
Subsystem 2 C++ 850,000 53
Subsystem 3 Java 24,000 17
Apache C++ 220,000 90

4.4. Data Collection Procedures
The data is collected through interviews and from process

documentation.

4.4.1. Selection of Interviewees
The interviewees were selected so that the overall develop-

ment life cycle is covered, from requirements to testing and
product packaging. Furthermore, each role in the development
process should be represented by at least two persons if possi-
ble. The selection of interviewees was done as follows:

5



1. A complete list of people available for each subsystem was
provided by management.

2. At least two persons from each role have been randomly
selected from the list. The more persons are available for
one role the more persons have been selected. The reason
for doing so is to not disturb the projects, that is if only one
person is available in a key role it disturbs the project more
to occupy that person compared to when several people
share the same role.

3. The selected interviewees received an e-mail explaining
why they have been selected for the study. Furthermore,
the mail contained information of the purpose of the study
and an invitation for the interview. Overall, 44 persons
have been contacted of which 33 accepted the invitation.

The distribution of people between different roles and the
three subsystems (S1-S3) is shown in Table 5. The roles are
divided into ”What”, ”When”, ”How”, ”Quality Assurance”,
and ”Life Cycle Management”.

What: This group is concerned with the decision of what
to develop and includes people from strategic product manage-
ment, technical managers and system managers. Their respon-
sibility is to document high-level requirements and breaking
them down for design and development.

When: People in this group plan the time-line of software
development from a technical and project management perspec-
tive.

How: Here, the architecture is defined and the actual imple-
mentation of the system takes place. In addition, developers do
testing of their own code (unit tests).

Quality Assurance: Quality assurance is responsible for test-
ing the software and reviewing documentation.

Life Cycle Management: This includes all activities support-
ing the overall development process, like configuration man-
agement, maintenance and support, and packaging and ship-
ment of the product.

Table 5: Distribution of Interviewees Between Roles and Units of Analysis

S1 S2 S3 Total

What (Requirements) 2 1 1 4
When (Project Planning) 3 2 1 6
How (Implementation) 3 2 1 6
Quality Assurance 4 3 - 7
Life Cycle Management 6 4 - 10

Total 18 12 3 33

4.4.2. Interview Design
The interview consists of five parts, the duration of the in-

terviews was set to approximately one hour. In the first part
of the interview the interviewees were provided with an intro-
duction to the purpose of the study and explanation why they
have been selected. The second part comprised questions re-
garding the interviewees background, experience, and current
activities. Thereafter, the actual issues and advantages were

collected through a semi-structured interview. The interview
was designed to collect issues and advantages from the inter-
viewees. The interview was initially designed to only capture
issues, however, during the course of the interview advantages
were mentioned by the interviewees and follow-up questions
were asked. In order to collect as many issues as possible, the
questions have been asked from three perspectives: bottlenecks,
rework, and unnecessary work. The interviewees should always
state what kind of bottleneck, rework, or unnecessary work they
experienced, what caused it, and where it was located in the
process. The interview guide is provided in Appendix A.

4.4.3. Process Documentation
The company provides process documentation to their em-

ployees, as well as presentations on the process for training pur-
poses. We study this documentation to facilitate a good under-
standing of the process in the organization. Furthermore, pre-
sentations given at meetings are investigated, which show the
progress and first results of introducing agile and incremental
practices from a management perspective. However, the main
source of information is the interviews, with the process docu-
mentation mainly used to get a better understanding of the pro-
cess and to triangulate what has been said in the interviews.
The documentation and talking to people in the organization
resulted in the description of the process model in Section 3.

4.5. Data Analysis Approach

As mentioned earlier, the conclusions of the case study are
based on the mapping of the company’s model to general pro-
cess models, the state of the art, and the case study investigating
issues and advantages.

State of the art: In order to identify from literature which is-
sues and advantages exist, the systematic review on agile meth-
ods [4] is used as an input. As a starting point the advantages
and disadvantages have been extracted from the review (SotA).
To identify more advantages and issues, the results and discus-
sion sections of the identified papers in the review have been
read, focusing on qualitative results as those are best compara-
ble to the outcome of this study.

Process mapping: The mapping was done based in the in-
formation gathered in the interviews, documentation of the de-
velopment process, and validation with a process expert at the
company. The process expert is a driver for agile implemen-
tation at the company and has profound knowledge of general
agile models as well as the company’s model.

Advantages/issues mapping: The derivation of advantages
and issues is done in a similar way and advantages/issues is
here referred to as factors. As part of the case study analysis,
the first author of the paper transcribed more than 30 hours of
audio recordings from the interviews which are used for the
data analysis. The data was analyzed in a four-step process,
the first four steps being conducted by the first author over a
three-month period.

1. Clustering: The raw data from the transcriptions is clus-
tered, grouping statements belonging together. For ex-
ample, statements related to requirements engineering are

6



grouped together. Thereafter, statements addressing simi-
lar areas are grouped. To provide an example, two state-
ments related to requirements prioritization are shown in
the text-box below.

Statement 1: The prioritization is very very hard. I
dont envy the SPMs but that is the single most critical
thing to get the incremental and agile process work-
ing.
Statement 2: the priority change and to inform the
project that this has changed has been difficult and
what we have done in order to solve that is that in
this prioritized requirements list where we are actu-
ally changing we have invited the release program
manager who is responsible for the project to sit in
and the main technical coordinator so they are part of
the decision to change it. Prior to that we didnt have
it and we had more difficult, we just did that a cou-
ple of weeks ago, this improved the situation but still
we have difficulties to have a formalized way of doing
these because changes happen.
Statement 3: on the theoretical level priority list nice,
the problem is that there is a lot of changes in the
situation where we are now, there are a lot of changes
in the priority list here which means that we have been
wasting some work done here, a little bit more than
some.

2. Derivation of factors: The raw data contains detailed ex-
planations and therefore is abstracted by deriving factors
from the raw data. Each factor is shortly explained in one
or two sentences. The result was a high number of factors,
where factors varied in their abstraction level and could be
further clustered. Based on the original statements regard-
ing the requirements prioritization the following factors (in
this case issues) have been derived:

Prioritization Issue 1: The prioritization is success
critical in incremental and agile development and at
the same time hard to create and maintain (based on
statement 1).
Prioritization Issue 2: Informing the project that the
priorities of requirements change has been difficult
and requires a more formal process (based on state-
ment 2).
Prioritization Issue 3: The priority list changes due to
that there is a lot of changes in the situation (adoption)
leading to rework (based on statement 3).

3. Mapping of Issues: The issues were grouped based on
their relation to each other and their abstraction level in a
mind map. Issues with higher abstraction level are closer
to the center of the mind map than factors with lower ab-
straction level. In the example, the issues related to re-
quirements prioritization are in one branch (see Figure 3).
This branch resulted in issue CI02 in Table 7.

4. Validation of Issues: In studies of qualitative nature there
is always a risk that the data is biased by the interpreta-
tion of the researcher. Thus, the issues have been vali-
dated in two workshops with three representatives from

the company. The representatives have an in-depth knowl-
edge of the processes. Together, the first three steps of
analysis described here were reproduced with the authors
and company representatives. As input for the reproduc-
tion of issues, a subset of randomly selected issues and
advantages have been selected. The outcome of the work-
shop was positive as there was no disagreement on the in-
terpretation of the issues. To further improve the data the
workshop participants reviewed the final list of issues and
advantages and only provided small improvement sugges-
tions on how to formulate them. Thus, the list of issues
can be considered being of high quality.

Figure 3: Cutout from Mind Map

Finally, the SotA and case study results are compared to iden-
tify whether new issues have been identified in this case study,
and to explain why other advantages found in SotA cannot be
seen in the case study. It is important to mention that not all
issues and advantages found in the case study are considered
in the comparison. Only general issues and advantages should
be taken into consideration. Thus, we only included issues that
have been mentioned by two or more persons.

4.6. Threats to Validity

Threats to the validity of the outcome of the study are im-
portant to consider during the design of the study, allowing ac-
tions to be taken mitigating them. Threats to validity in case
study research are reported in [20]. The threats to validity can
be divided into four types: construct validity, internal validity,
external validity and reliability.

Construct Validity: Construct validity is concerned with ob-
taining the right measures for the concept being studies. One
threat is the selection of people to obtain the appropriate sam-
ple for answering the research questions. Therefore, experi-
enced people from the company selected a pool of interviewees
as they know the persons and organization best. From this pool
the random sample was taken. The selection by the representa-
tives of the company was done having the following aspects in
mind: process knowledge, roles, distribution across subsystem
components, and having a sufficient number of people involved
(although balancing against costs). Furthermore, it is a threat
that the presence of the researcher influences the outcome of the
study. The threat is reduced as there has been a long coopera-
tion between the company and university and the author collect-
ing the data is also employed by the company and not viewed as
being external. Construct validity is also threatened if interview
questions are misunderstood or misinterpreted. To mitigate the
threat pre-tests of the interview have been conducted.

7



Table 6: Advantages Identified in Case Study

ID Advantages SotA (ID)

CA01 Small projects and projects allow to implement and release requirements packages fast which leads to reduction of require-
ments volatility in projects.

CA02 The waste of not used work (requirements documented, components implemented etc.) is reduced as small packages started
are always implemented.

CA03 Requirements in requirements packages are precise and due to the small scope estimates for the package are accurate. A04
CA04 Small teams with people having different roles only require small amounts of documentation as it is replaced with direct

communication facilitating learning and understanding for each other.
A07

CA05 Frequent integration and deliveries to subsystem test (LSV) allows design to receive early and frequent feedback on their
work.

A01

CA06 Rework caused by faults is reduced as testing priorities are made more clear due to prioritized features, and that testers as
well as designers work closely together.

A07

CA07 Time of testers is used more efficiently as in small teams as testing and design can be easily parallelized due to short ways of
communication between designers and testers (instant testing).

A07

CA08 Testing in the LSV makes problems and successes transparent (testing and integration per package) and thus generates high
incentives for designers to deliver high quality.

A04

Internal Validity: Internal validity is primarily for explana-
tory and causal studies, where the objective is to establish a
causal relationship. As this study is of exploratory nature inter-
nal validity is not considered.

External Validity: External validity is the ability to generalize
the findings to a specific context. It is impossible to collect data
for a general process, i.e. exactly as it is described in literature.
The process studied is an adoption of practices from different
general process models (see Section 3). Care has been taken
to draw conclusions and map results to these general models to
draw general conclusions and not solely discussing issues that
are present due to the specific instantiation of the process at the
studied setting. However, if one maps the general findings in
this paper to other development processes their context must be
taken into account. Furthermore, a potential threat is that the ac-
tual case study is conducted within one company. To minimize
the influence of the study being conducted at one company, the
objective is to map the findings from the company specific pro-
cesses and issues to general processes. The characteristics of
the context and practices used in the process are made explicit
to ease the mapping (see Table 3).

Reliability: This threat is concerned with repetition or repli-
cation, and in particular that the same result would be found if
re-doing the study in the same setting. There is always a risk
that the outcome of the study is affected by the interpretation
of the researcher. To mitigate this threat, the study has been
designed so that data is collected from different sources, i.e. to
conduct triangulation to ensure the correctness of the findings.
The interviews have been recorded and the correct interpreta-
tion of the data has been validated through workshops with rep-
resentatives of the company.

5. Results

First, the advantages identified in the case study are com-
pared with SotA, and the same is done for the issues.

5.1. Advantages

Table 6 shows the advantages identified in the case study,
furthermore the ID of the advantages of SotA clearly related to
the ones in the case study are stated in column SotA (ID). It is
shown that six out of eight advantages can be clearly linked to
those identified in literature.

Transparency and control: Better control and transparency
is achieved by having small and manageable tasks (A04). The
case study led to the same result. The prioritized list of require-
ments consists of requirements packages that have to be im-
plemented and the requirements packages have a small scope
(for example compared to waterfall models where the complete
scope is defined upfront). Due to clear separation of packages
which are delivered as an increment, responsibilities for an in-
crement can be clearly defined increasing transparency (CA03).
In particular problems and successes are more transparent. That
is, if an increment is dropped to the LSV for test one can trace
which increments are of high or low quality and who is respon-
sible for them. Consequently, this creates incentives for teams
to deliver high quality as their work result is visibly linked to
them (CA08).

Learning, understanding, and other benefits of face-to-face
communication: In agile development team members commu-
nicate intensively face-to-face as they have frequent meetings
and are physically located together (A07). Thus, learning and
understanding from each other is intensified. In the case study,
the interviewees provided a concrete example for this. Be-
fore using agile, testers and designers were separated. Conse-
quently designers were not able to put themselves in the shoes
of the testers verifying their software or understand what in-
formation or documentation would help testing. Now design-
ers and testers sit together and thus they can learn from each
other. The designers understand how the quality of the imple-
mentation impacts the testers. Furthermore, testers can point
designers to parts of the system that from their perspective are
critical and thus require more intensive testing (CA04). The
direct communication also enables instant testing due to short
lines of communication (CA07). An additional benefit is the in-

8



Table 7: Issues Identified in Case Study

ID Issue SotA (ID)

CI01 Handover from requirements to design takes time due to complex decision processes.
CI02 The priority list is essential in the company’s model to work and is hard to create and maintain.
CI03 Design has free capacity due to the long lead times as in requirements engineering complex decision making (e.g, due to CI02) takes

long time.
CI04 Test coverage reduction within projects due to lack of independent testing and shortage of projects, requiring LSV to compensate

coverage.
CI05 The company’s process requires to produce too much testing documentation.
CI06 LSV cycle times may extend lead-time for package deliveries as if a package is not ready or rejected by testing it has to wait for the

next cycle.
I01

CI07 Making use of the ability of releasing many releases to the market increases maintenance effort as many different versions have to be
supported and test environments for different versions have to be recreated.

I01

CI08 Configuration management requires high effort to coordinate the high number of internal releases.
CI09 The development of the configuration environment to select features for customizing solutions takes a long time due to late start of

product packaging work and use of sequential programming libraries.
CI10 Product packaging effort is increased as it is still viewed from a technical point of view, but not from a commercial point of view.
CI11 Management overhead due to a high number of teams requiring much coordination and communication between. I03
CI12 Dependencies rooted in implementation details are hard to identify and not covered in the anatomy plan. I02

creased informal communication where important information
is continuously shared, ultimately resulting in less rework and
higher quality (CA06).

Frequent feedback for each iteration: Knowledge is trans-
fered through frequent feedback whenever completing and de-
livering an iteration (A01). In the case study a similar result was
obtained. Whenever increments are dropped to the LSV there is
a clear visibility of who delivered what and with what level of
quality. The frequency of integration is enforced by pre-defined
LSV cycles that require integration every few weeks. This of
course also facilitates frequent feedback (CA04).

Further advantages that have not been explicitly identified in
literature surfaced during the case study.

Low requirements volatility: Small requirements packages
are prioritized and can go quickly into the development due to
their limited scope. When implemented they are dropped to
the LSV and can potentially be released to the market. As the
market in this case is highly dynamic this is an important advan-
tage. That is, if hot requirements can be implemented quickly
and thus can be released before the customers’ needs change
(CA01).

Work started is always completed: Packages that have started
implementation are always completed. Therefore, there is very
little waste in development as work done is not discarded, but
ends up as a running part of the software. However, it should
be emphasized that it is essential to implement the right things,
making requirements prioritization an essential issue for this
advantage to pay off (CA02).

5.2. Issues

The issues identified in this case study as well as the
references to similar issues of SotA are shown in Table 7. The
following issues are shared between SotA and the findings of
this study.

Testing lead times and maintenance: The realization of con-
tinuous testing with a variety of platforms and test environments
is challenging and requires much effort (I01). This SotA issue
relates to two issues identified in this case study. First, test-
ing lead times are extended as packages that should be deliv-
ered to the LSV might not be dropped due quality issues or
that the project is late. If this happens shortly before an LSV
cycle ends and the next increment is built, the package has to
wait for the whole next cycle to be integrated (CI07). Secondly,
if increments are released more frequently maintenance effort
increases. That is, customers report faults for many different
versions of the software making it harder to reproduce the fault
on the right software version as well as in the right testing en-
vironment including released hardware (CI07).

Management overhead and coordination: Agile methods do
not scale well (I03). In fact, we found that it is challenging to
make agile methods scalable. On the one hand, small projects
can be better controlled and results are better traceable (as dis-
cussed for CA08). On the other hand, many small projects
working toward the same goal require much coordination and
management effort. This includes planning of the technical
structure and matching it against a time-line for project plan-
ning (CI11).

Little focus on architecture: The architecture receives lit-
tle focus in agile development leading to bad design decisions
(I02). The company’s development model requires a high level
architecture plan (anatomy plan) enabling them to plan the
time-line of the projects. However, dependencies between parts
of the system rooted in technical details are not covered in the
plan. As one project implementing a specific package has no
control over other packages the discovery of those dependen-
cies early has not been possible (CI12).

Further issues that have not been explicitly identified in liter-
ature surfaced during the case study.

Requirements prioritization and handover: In the develop-

9



ment of large scale products the strategy of the product and the
release plans have to be carefully planned and involve a high
number of people. Due to the complexity and the number of
people that have to be involved in each decision the continu-
ity of the requirements flow is thwarted (CI01). Consequently
teams have to wait for requirements and a backlog is created
in development (CI03). The decision is further complicated by
prioritization, prioritization being perceived as an essential suc-
cess factor by the interviewees, which also plays an important
role in other agile methods. For example, SCRUM uses a prod-
uct backlog which is an ordered list of features, the feature of
highest priority always being at the top of the list. Getting the
priority list right is challenging as the requirements list in itself
has to be agile reflecting changing customer needs (dynamic
re-prioritization)(C2).

Test coverage reduction of basic test: Teams have to conduct
unit testing and test their overall package before delivering to
the LSV. However, the concept of small projects and the lack of
independent verification make it necessary that the LSV com-
pensates the missing test coverage. The perception of intervie-
wees was that it is hard to squeeze the scope into three month
projects. One further factor is the get-together of designers and
testers resulting in dependent verification and validation. For
example, designers can influence testers to only focus on parts
of the system, saying that other parts do not have to be tested
because they did not touch them.

Increased configuration management effort: Configuration
management has to coordinate a high number of internal re-
leases. Each LSV is a baseline that could be potentially re-
leased to the market. Thus, the number of baselines in agile
development is very high.

Issues CI05, CI09, and CI10 are more related to the con-
text than the other issues described earlier, even though from
the company’s perspective they play an important role and thus
have been mentioned by several people. Because of the limited
generalizability of those issues to other models they are only
discussed briefly.

Due to the previous way of working at the company a high
amount of documentation remained (CI05). The ambition is to
reduce the number of documents as many documents are unnec-
essary because they are quickly outdated while other documents
can be replaced by direct communication (CA04). However,
this issue could be generalized to other companies in transition
to a more agile way of working. Issues (CI09) and (CI08) are
related to product packaging which mainly focuses on program-
ming the configuration environment of the system. The envi-
ronment allows to select features for specific customers to tai-
lor the products to their specific needs (product customization).
The findings are that this requires long lead times (CI09) and
that product packaging gets information too late, even though
they could start earlier (CI10).

6. Discussion

This section discusses the comparison of state of the art and
the case study results. We describe the observations made based

on the results, and the implications for practice and research.
This includes suggestions for future work.

6.1. Practices Lead to Advantages and Issues
Observation: Using certain practices bring benefit and at the

same time raise different issues. In related work this was visi-
ble for outcomes related to pair programming. On one hand it
facilitates learning, but on the other hand it is also exhaustive
and leads to problems if the programmers are on different lev-
els. Similar results have been identified in this case study as
well:

• Small projects increase control over the project, increase
transparency, and effort can be estimated in a better way
(CA08). At the same time the small projects have to be
coordinated which raises new challenges from a manage-
ment perspective with large scale in terms of size of prod-
uct and people involved (CI11).

• Frequent integration and deliveries to the LSV in given
cycles provide regular feedback to the developers creating
packages (A01). Though related issues are that if a pack-
age is rejected it has to wait for the whole new LSV cycle
(CI06) and configuration management has increased work
effort related to baselining (CI08).

• Direct communication facilitates learning and understand-
ing for each other (CA04). However, the close relation
between testers and designers affects independent testing
negatively (CI04).

Implications for Practice: For practice this result implies that
companies have to choose practices carefully, not only focusing
on the advantages that come with the techniques. At the same
time it is important to be aware of drawbacks using incremental
and agile practices which seem to be overlooked all too often.

Implications for Research and Future Work: Research has to
support practice in raising the awareness of problems related to
incremental and agile development. None of the studies in the
systematic review by Dybå et al. [4] had the identification of
issues and problems as the main study focus. To address this
research gap we propose to conduct further qualitative studies
focusing on issues which often seem to come together with the
advantages. It is also important to find solutions solving the
issues in order to exploit the benefits that come with agile to an
even greater degree. This requires new methods to fully utilize
the benefits of agile, to name a few general areas that should be
focused on:

• Agile requirements prioritization techniques to support
and deal with frequent changes in priority lists which have
been identified as success critical (see CI02).

• Research on tailoring of configuration management for ag-
ile due to high number of baselines and changes that need
to be maintained (see CI08).

• Research on decision making processes and decision sup-
port in agile processes (see CI01).

10



6.2. Similarities and Differences between SotA and Industrial
Case Study

Observation: The initial proposition was that there is a dif-
ference in issues between what is said in SotA and the find-
ings of the case study. The opposite is true for the advantages,
we found that there is quite a high overlap between advantages
identified in SotA and this case study. Six out of eight advan-
tages have also been identified in SotA as discussed in Section
5. This is an indication that agile leads to similar benefits in
large scale development and small scale development. On the
other hand, the overlap regarding the issues is smaller. Many is-
sues identified in SotA are not found in this case study, mainly
because a few of them are related to pair programming which
is not a principle that is applied yet at the company. On the
other hand, only a few issues (three out of twelve) identified
in this case study have been empirically shown in other stud-
ies. Several explanations are possible for this result. Firstly, the
studies did not have issue identification as a main focus. An-
other explanation is that even though agile leads to benefits in
large-scale development it is also harder to implement due to
increased complexity in terms of product size, people and num-
ber of projects (reflected in issues like CI01, CI02, CI03, CI08,
CI11), which of course results in more issues raised.

Implications for Practice: Many of the new problems found
in the case study occur due to complexity in decision making,
coordination, and communication. We believe that when study-
ing a company developing small products then the same bene-
fits would be found, but the number of issues identified would
be much lower. Thus, companies in large-scale development
which intend to adopt incremental and agile methods need to be
aware of methods supporting in handling the complexity. For
example, Cataldo et al. [2] propose a method that helps coor-
dinate work based on the automatic identification of technical
dependencies, i.e. this makes more clear which teams have to
communicate with each other.

Implications for Research: This observation leads to the
same conclusion as the previous one (practices lead to advan-
tages and issues): further knowledge is needed about what are
the main issues in large scale agile development and how they
can be addressed to get the most out of the benefits.

6.3. A Research Framework for Empirical Studies on Agile De-
velopment

The need for a research framework is an important implica-
tion for research. That is, in order to learn more about issues
and make different studies comparable we believe that there is
a great need for a framework of empirical studies on agile de-
velopment. For example, when agile is studied it is often not
clear how a certain model is implemented and to what degree
the practices are fulfilled. Instead, it is simply said that XP or
SCRUM is studied. However, from our experience in industry
we know that methods presented in books are often tailored to
specific needs and that practices are enriched or left out as they
do not fit into the context of the company. This makes it hard
to determine which practices or combinations of practices in a
given context lead to advantages or issues. Such a framework
could include information about:

• Attributes that should be provided in order to describe the
context. For example, studies do not report the domain
they are investigating or how many people are involved in
the development of the system (see for example Table 2).
Furthermore, product complexity should be described and
it needs to be clear whether a team or product has been
studied.

• Practices should be made explicit and it should be ex-
plained how and to what degree they are implemented al-
lowing the reader to generalize the outcome of the studies.
For example, the framework should describe when a prac-
tice is considered as fully, partly, or not at all fulfilled.

7. Conclusions and Future Work

This paper compares the state of the art investigating issues
and advantages when using agile and incremental development
models with an industrial case study where agile as well as in-
cremental practices are applied. The articles considered in the
state of the art are based on empirical studies. The case being
studied can be characterized as large-scale in terms of product
size and number of persons involved in the development pro-
cess. Regarding the research questions and contributions we
can conclude:

Issues and Advantages: We found that implementing agile
and incremental practices in large-scale software development
leads to benefits in one part of the process, while raising issues
in another part of the process. For example, using small and
coherent teams increases control over the project, but leads to
new issues on the management level where the coordination of
the projects has to take place. Further examples for this have
been identified in the study.

Comparison of State of the Art and Case Study - Advantages:
Previous empirical studies and the case study results have a high
overlap for the advantages. In summary, the main advantages
agreed on by literature this case study are 1) requirements are
more precise due to reduced scope and thus easier to estimate,
2) direct communication in teams reduces need for documen-
tation, 3) early feedback due to frequent deliveries, 4) rework
reduction, 5) testing resources are used more efficiently, and 6)
higher transparency of who is responsible for what creates in-
centives to deliver higher quality. New advantages identified
in this case study are 1) low requirements volatility in projects,
and 2) reduction of waste (discarded requirements) in the re-
quirements engineering process.

Comparison of State of the Art and Case Study - Issues: Only
few issues identified in the case study are mentioned in litera-
ture. Issues agreed on are 1) challenges in regard to realize con-
tinuous testing, 2) increased maintenance effort with increase
of the number of releases, 3) management overhead due to the
need of coordination between teams, and 4) detailed dependen-
cies are not discovered on detailed level due to lack of focus on
design. In total eight new issues have been identified in this case
study, five are of general nature while three are strongly related
to the study context. The general issues are 1) Long require-
ments engineering duration due to complex decision processes

11



in requirements engineering, 2) requirements priority lists are
hard to create and maintain, 3) Waiting times in the process,
specifically in design waiting for requirements, 4) reduction of
test coverage due to shortage of projects and lack of indepen-
dent testing, 5) increased configuration management effort. The
three context related issues are 6) high amount of testing doc-
umentation, 7) long durations for developing the configuration
environment realizing product customizations, and 8) increase
in product-packaging effort.

The proposition of the study is partly true, i.e. the study did
not identify many new advantages that have not been found in
previous empirical studies. However, the study identified new
issues that have not been reported in empirical studies before.
Those issues are mainly related to increased complexity when
scaling agile.

Furthermore, we identified the need for an empirical research
framework for agile methods which should help to make studies
comparable. In future work more qualitative studies with an
explicit focus on issue identification have to be conducted.

References

[1] B. Bahli and E.-S. Abou-Zeid. The role of knowledge creation in adopting
xp programming model: An empirical study. In ITI 3rd International
Conference on Information and Communications Technology: Enabling
Technologies for the New Knowledge Society, 2005.

[2] M. Cataldo, P. Wagstrom, J.-D. Herbsleb, K.-M. Carley. Identification of
coordination requirements: implications for the Design of collaboration
and awareness tools. In Proc. of the 2006 ACM Conference on Computer
Supported Cooperative Work (CSCW 2006), pages 353–362, 2005.

[3] D. Cohen, M. Lindvall, and P. Costa. Advances in Computers, Advances
in Software Engineering, chapter An Introduction to Agile Methods. El-
sevier, Amsterdam, 2004.

[4] T. Dybå and T. Dingsøyr. Empirical studies of agile software develop-
ment: A systematic review. Information & Software Technology, 50(9-
10):833–859, 2008.

[5] S. Ilieva, P. Ivanov, and E. Stefanova. Analyses of an agile methodology
implementation. In Proc. of the 30th EUROMICRO Conference (EU-
ROMICRO 2004), pages 326–333, 2004.

[6] D. Karlström and P. Runeson. Combining agile methods with stage-gate
project management. IEEE Software, 22(3):43–49, 2005.

[7] C. Larman. Agile and Iterative Development: A Manager’s Guide. Pear-
son Education, 2003.

[8] A. MacKenzie and S. R. Monk. From cards to code: How extreme pro-
gramming re-embodies programming as a collective practice. Computer
Supported Cooperative Work, 13(1):91–117, 2004.

[9] C. Mann and F. Maurer. A case study on the impact of scrum on overtime
and customer satisfaction. In Proc. of the AGILE Conference (AGILE
2005), pages 70–79, 2005.

[10] K. Mannaro, M. Melis, and M. Marchesi. Empirical analysis on the satis-
faction of it employees comparing xp practices with other software devel-
opment methodologies. In Proc. of the 5th International Conference on
Extreme Programming and Agile Processes in Software Engineering (XP
2005), pages 166–174, 2004.

[11] A. Martin, R. Biddle, and J. Noble. The xp customer role in practice:
Three studies. In Agile Development Conference, pages 42–54, 2004.

[12] P. McBreen. Questioning Extreme Programming. Pearson Education,
Boston, MA, USA, 2003.

[13] G. Melnik and F. Maurer. Perceptions of agile practices: A student survey.
In Second XP Universe and First Agile Universe Conference on Extreme
Programming and Agile Methods (XP/Agile Universe 2002, pages 241–
250, 2002.

[14] H. Merisalo-Rantanen, T. Tuunanen, and M. Rossi. Is extreme pro-
gramming just old wine in new bottles: A comparison of two cases. J.
Database Manag., 16(4):41–61, 2005.

[15] M. Pikkarainen, J. Haikara, O. Salo, P. Abrahamsson, and J. Still. The im-
pact of agile practices on communication in software development. Em-
pirical Softw. Engg., 13(3):303–337, 2008.

[16] H. Robinson and H. Sharp. The characteristics of xp teams. In Proc.
of the 5th International Converence on Extreme Programming and Agile
Processes in Software Engineering (XP 2004), pages 139–147, 2004.

[17] M. Stephens and D. Rosenberg. Extreme Programming Refactored: The
Case Against XP. Apress, Berkeley, CA, 2003.

[18] H. Svensson and M. Höst. Introducing an agile process in a software
maintenance and evolution organization. In Proc. of the 9th European
Conference on Software Maintenance and Reengineering (CSMR 2005),
pages 256–264, 2005.

[19] B. Tessem. Experiences in learning xp practices: A qualitative study.
In Proc. of the 4th International Conference on Extreme Programming
and Agile Processes in Software Engineering (XP 2004), pages 131–137,
2003.

[20] R. K. Yin. Case Study Research: Design and Methods, 3rd Edition, Ap-
plied Social Research Methods Series, Vol. 5. Prentice Hall, 2002.

A. Interview Guide

A.1. Phase 1: Introduction

Interviewer tells respondent something about himself, his
background, training, and interest in the area of inquiry.

A.1.1. Presentation of Study Goals
Explain the nature of the study to the respondent, telling how

or through whom he came to be selected

• Goal of the study: Understanding hindering factors in the
agile and incremental development model. We seek a
broad overview of what issues are there regarding hinder-
ing factors and how severe the issues are in comparison,
i.e. we are not looking into each of them in detail. There-
fore, we would like the interviewee to provide us with con-
cise descriptions for each of the factors.

• Benefit for the interviewee: Is the basis for further improv-
ing the different models considering the different views
of people within the organization, gives interviewee the
chance to contribute to the improvement of the model they
are supposed to apply in the future. Your view counts!

A.1.2. General Information of the Interview Process
• Indicate that the interviewee may find some of the ques-

tions far-fetched, silly or difficult to answer, for the reason
that questions that are appropriate for one person are not
always appropriate for another. Since there are no right or
wrong answers, the interviewee is not to worry about these
but to do as best he or she can with them. We are only in-
terested in his or her opinions and personal experiences.

• Interviewee is to feel perfectly free to interrupt, ask clar-
ification of the interviewer, criticize a line of questioning
etc.

• Give assurance that the interviewee will remain anony-
mous in any written reports growing out of the study, and
that his or her responses will be treated with strictest con-
fidence, this is true for everybody (managers, colleagues,
etc.)

12



• Interviewee will receive Feedback regarding the study in
form of a presentation and discussion of the results ob-
tained.

A.1.3. Taping
Provide motivation for taping: Increases the validity of the

study as otherwise interpretation of what the interviewee says
takes place twice (when taking notes reformulate things, and
also when interpreting the notes). Goal is to put forward what
the interviewee wants to say, not what we think he wants to say!

A.2. Phase 2: Warm-Up
Question 1: What is your professional background:

• How long at Ericsson

• Previous education

Question 2: What is your role within the development lifecy-
cle at Ericsson (short description)?

• Department

• Discipline (there are a number of predefined disciplines,
like requirements, design, etc., at Ericsson)

• Work activities / responsibilities

Question 3: In which areas of software development have
you worked in the past (e.g. requirements engineering, design,
implementation and so forth)?

Question 4: In which areas of software engineering do you
consider yourself most experienced?

Question 5: What is your experience with the development
process? Here the interviewee has to rate his or her experience
on the following scale:

1. No previous experience
2. Studied documentation
3. Seminar and group discussions
4. Used the model in one project
5. Used the model in several projects
6. Other

A.3. Phase 3: Main Body of the Interview
A.3.1. Questions Regarding Bottlenecks

Definition provided to the interviewee: Bottlenecks is a phe-
nomena that hinders the performance or capacity of the en-
tire development lifecycle due to a single component causing it
(=bottleneck). Bottlenecks are therefore a cause for reduction
in throughput.

Question 1: What are three bottlenecks you experienced /

you think are present in the incremental and agile development
process?

When describing three bottlenecks, please focus on:

• Which product was developed?

• Where in the development process does the bottleneck oc-
cur?

• Why is it a bottleneck (ask for the cause)?

• How does the bottleneck affect the overall development
lifecycle?

A.3.2. Questions Regarding the Production of Waste
When talking about waste, we distinguish two types of waste

we would like to investigate. These types of waste are unneces-
sary work and avoidable rework. A definition for each type is
presented to the interviewee.

Type 1 - Avoidable Rework: Investigating avoidable rework
helps us to answer: ”are we doing things right”? That is, if
something has been done incorrectly, incompletely or inconsis-
tently then it needs to be corrected through reworked.

Question 1: What avoidable rework (three for each) has been
done / will be done in the incremental and agile development
process?

When describing the avoidable rework, please focus on:

• Which product was developed?

• Where in the development process is the avoidable rework
done?

• What was done incorrectly, incompletely or inconsis-
tently?

• Why is the rework avoidable?

Type 2 - Unnecessary work: Investigating unnecessary work
helps us to answer: ”are we doing the right things”? That is,
unnecessary work has been conducted that does not contribute
to customer value. It is not avoidable rework, as it is not con-
nected to correcting things that have been done wrong.

Question 1: What is unnecessary work (three for each) done
in the incremental and agile development process?

When describing the unnecessary work, please focus on:

• Which product was developed?

• Where in the development process is the unnecessary work
done?

• Why is the unnecessary work executed?

• How is the unnecessary work used in the development?

A.4. Phase 1: Closing

Question: Is there anything else you would like to add that
you think is interesting in this context, but not covered by the
questions asked?

13



Kai Petersen is an industrial PhD student at Ericsson AB
and Blekinge Institute of Technology. He received his Mas-
ter of Science in Software Engineering (M.Sc.) from Blekinge
Institute of Technology. Thereafter, he worked as a research as-
sistant at University of Duisburg Essen, focusing on software
product-line engineering and service-oriented architecture. His
current research interests are empirical software engineering,
software process improvement, lean and agile development,
and software measurement.

Claes Wohlin is a professor of software engineering and the
Pro Vice Chancellor of Blekinge Institute of Technology, Swe-
den. He has previously held professor chairs at the universities
in Lund and Linköping. His research interests include empir-
ical methods in software engineering, software metrics, soft-
ware quality, and requirements engineering. Wohlin received
a PhD in communication systems from Lund University. He
is Editor-in-Chief of Information and Software Technology and
member of three other journal editorial boards. Claes Wohlin
was the recipient of Telenors Nordic Research Prize in 2004 for
his achievements in software engineering and improvement of
reliability for telecommunication systems.

14


