

H. Petersson, T. Thelin, P. Runeson and C. Wohlin, "Capture-Recapture in Software
Inspections after 10 Years Research - Theory, Evaluation and Application", Journal

of Software and Systems, Vol. 72, No. 2, pp. 249-264, 2004.

1

Capture-recapture in Software Inspections after 10 Years Research
– Theory, Evaluation and Application

Abstract
Software inspection is a method to detect faults in the early phases of the software life cycle. In order
to estimate the number of faults not found, capture-recapture was introduced for software inspections
in 1992 to estimate remaining faults after an inspection. Since then, several papers have been written
in the area, concerning the basic theory, evaluation of models and application of the method. This
paper summarizes the work made in capture-recapture for software inspections during these years.
Furthermore, and more importantly, the contribution of the papers are classified as theory, evalua-
tion or application, in order to analyse the performed research as well as to highlight the areas of
research that need further work. It is concluded that 1) most of the basic theory is investigated within
biostatistics, 2) most software engineering research is performed on evaluation, a majority ending up
in recommendation of the Mh-JK model, and 3) there is a need for application experiences. In order
to support the application, an inspection process is presented with decision points based on capture-
recapture estimates.

1. Introduction

Software inspection (Ebenau and Strauss, 1994; Gilb and Graham, 1993) is a method to detect faults
in software artefacts early in the development cycle. It was first described by Fagan (1976), and since
then inspections have been established as state of the practice and have evolved to become a mature
empirical research area, as it is of reasonably limited scope to research and nevertheless of substan-
tial practical importance. The research has addressed changes to the inspection process, e.g. (Bisant
and Lyle, 1989; Knight and Myers, 1993; Martin and Tsai, 1990; Parnas and Weiss, 1985), support
to the process, e.g. (Basili et al., 1996; Eick et al., 1992) and empirical studies, e.g. (Porter et al.,
1995; Thelin and Runeson, 2000a). The support to the inspection process includes reading tech-
niques (Basili et al., 1996) and the use of capture-recapture techniques to estimate the remaining
number of faults after an inspection (Eick et al., 1992). Furthermore, the benefits of conducting soft-
ware inspections have been studied in industry (Weller, 1993). Reading techniques are applied to the
individually performed part of inspections, in order to aid reviewers with more information of how
to search for faults. The purpose is to increase the efficiency and effectiveness. Several reading tech-
niques have been proposed: checklist-based reading (Fagan, 1986), defect-based reading (Porter et
al., 1995) perspective-based reading (PBR) (Basili et al., 1996), traceability-based reading (Travas-
sos et al., 1999) and usage-based reading (Thelin et al., 2001).

Capture-recapture (Chao, 1998) is a statistical method that can be applied to software inspections
to estimate the fault content of an artefact. It can be applied to all software artefacts that can be in-
spected, for example, requirements, design and code documents. Capture-recapture was first applied
to software inspections by Eick et al. (1992), and since then a number of papers have been published
that evaluate and improve capture-recapture for software inspections, see for example (Petersson,
2002; Thelin, 2002). The method uses the overlap between the sets of faults found by different re-
viewers to estimate the fault content. It is assumed that the reviewers work independently of each
other and therefore the fault searching has to be performed before, and not during, an inspection
meeting. The size of the overlap indicates the number of faults left; if the overlap is large, few faults

Håkan Petersson1, Thomas Thelin1, Per Runeson1 and Claes Wohlin2

1Dept. of Communication Systems
Lund University

{hakan.petersson, thomas.thelin,
per.runeson}@telecom.lth.se

2Dept. of Software Engineering and Computer
Science, Blekinge Institute of Technology

claes.wohlin@bth.se

2

are left to be detected; if the overlap is small, many faults are undetected. Using statistical methods,
an estimation value and a confidence interval can be calculated. This information can be used by in-
spection coordinators and project managers to take informed decisions, which is exemplified in Sec-
tion 5.

The first known use of capture-recapture was by Laplace (1786), who used it to estimate the pop-
ulation size of France (Pollock, 1991). In biology, capture-recapture is used to estimate the popula-
tion size of animals, e.g. the number of fish in a lake, and it is also used in medical research (Chao,
1998). In software engineering, capture-recapture methods have been used together with fault seed-
ing (Mills, 1972). The number of faults remaining after testing are estimated based on the overlap
between identified seeded faults and non-seeded faults. Capture-recapture methods have also been
utilized in other variants of software testing (Stringfellow et al., 2002; Yang, 1995)

The purpose of this paper is to summarize the capture-recapture research in software inspections
during the past ten years. During these years, a number of research papers have been published. By
categorizing the papers, an overview of conducted research is given and areas that need further re-
search are identified. The papers have been classified into three main categories theory, evaluation
and application. Several papers have considered the theory and evaluation of capture-recapture.
Only one published paper has reported experience from a trial application of capture-recapture in an
industrial environment.

To find the relevant literature for the survey, a literature search was carried out. This was made
through searching the databases INSPEC1, IEEE on-line2, Science Direct3 and ACM4 using the key-
words “capture recapture”, “defect content estimation” and “fault content estimation”. In addition,
some papers were obtained by personal communications with researchers, known to have published
research in the field. Finally, all references in the included papers were checked to guarantee that no
referenced paper was missed.

As the application part was found to be weak, an inspection process is presented that uses the cap-
ture-recapture estimates as decision points. The process is intended as a guide for practical applica-
tion of capture-recapture in software organizations.

This paper is outlined as follows. In Section 2, the theory of capture-recapture is presented. A
summary of the research in the capture-recapture papers is provided in Section 3 and in Section 4,
the generalized findings of the research are summarized. Section 5 presents an inspection process
which is integrated with capture-recapture estimates. In Section 6, future research is suggested and
in Section 7 a summary of this paper is provided.

2. Capture-Recapture

There are many variants of models and estimators based on the capture-recapture principles. An es-
timator is a formula used to predict the number of faults remaining in an artefact. A model is the um-
brella term for a number of estimators based on the same prerequisites. Four basic capture-recapture
models are used for software inspections, see Table 1. However, more models have been developed
for other domains, but have not yet been investigated for software inspections.

The overlap among the faults that the reviewers find is used as a basis for the estimation. The
smaller overlap among the reviewers, the more faults are assumed to remain, and the larger overlap,
the fewer faults are assumed to remain. The extreme cases are the following: either, all reviewers
have found exactly the same faults, which means that there are probably very few faults left, or none
of the reviewers has found a fault that another reviewer has found, which indicates that there are
probably many faults left. To estimate the number of faults left, statistical estimators are used, which
are designed to model different variations in software inspections.

There are two main categories of models, models for open populations and models for closed pop-
ulations. Open populations means populations which change in size through births and deaths, while
closed populations remain of the same size throughout the counting period. In software inspections,
the models for closed populations are primarily applicable, as all reviewers are given the same ver-
sion of the inspected artefact.

1. http://www.iee.org/Publish/INSPEC/
2. http:/ieeexplore.ieee.org
3. http://www.sciencedirect.com
4. http://www.acm.org/

3

The models handle variations in the ability of the reviewers to find faults, as well as the faults’
probability to be found. The most basic model (M0) assumes that all faults are equally probable to
be found and that all reviewers have equal abilities to find faults. More advanced models use either
the assumption that the probabilities of fault detection vary (Mh), or the abilities of reviewers vary
(Mt), or both (Mth), see Table 1. Within each model, a number of estimators has been developed.

Mh stands for model with heterogeneity, which refers to the biological context where the popu-
lation is heterogene, i.e. it is easier to find some animals and harder to find other ones. Mt stands for
model with time response which refers to that there may be different conditions for trapping the an-
imals at different trapping occasions, depending on for example, weather conditions. The trapping
occasions mean in the software context different reviewers, and hence Mt refers to variability be-
tween reviewer abilities.

In addition to capture-recapture, two other fault content estimation methods have been developed
that utilize the overlap information, curve-fitting models and subjective estimations. The curve-fit-
ting models use a mathematical function, which is fitted to the inspection data and extrapolated to a
limit value. For example, the detection profile method (DPM) (Wohlin and Runeson, 1998), uses an
exponential function. Subjective estimations use the reviewers’ knowledge to estimate fault content
after inspections. The reviewers estimate the most probable value of the number of faults left (El
Emam et al., 2000). Enhanced methods have been developed (Biffl, 2000), where reviewers’ esti-
mates are combined. Some of these models require that the most probable, minimum and maximum
values are estimated by the reviewers.

3. State-of-the-Art

This section summarizes and classifies the papers written in the area of capture-recapture applied to
software inspections, see Table 2. Research contributions can from a general point of view be divid-
ed into theory, evaluation and application. Theory includes basic research, which investigates and
describes the fundamentals of capture-recapture models and estimators. This has been extensively
investigated in biostatistics, but has been further developed and transferred to software engineering
and especially to inspections. The second step in a research chain is to evaluate the proposed meth-
ods and to improve them. The third step in the chain is application, where the results from theory
and evaluation are transferred to be used in an industrial setting. Moving from theory to application
takes a long time (Redwine and Riddle, 1985). Researchers need to establish basic results before
software organizations are willing to adopt them. In this survey, only one paper has been classified
as an experience paper. That paper only uses results from the very first paper on capture-recapture
in software engineering (Eick et al., 1992) and no later research.

A secondary classification is made to classify the papers in subsets of the main classification.
Only the subsets needed for the summarized papers are included, i.e. the classification scheme is not
necessarily exhaustive. The classification shows the main ideas of the papers and is intended to guide
the readers to help them understand the research conducted. The research findings are further dis-
cussed in Section 4, where future research is pointed out. The classification of a paper includes a pri-

Table 1: The models, prerequisites and estimators in capture-recapture. More
models exist in capture-recapture but have not been used for software inspections.

Model Prerequisites Estimators

M0 All faults have equal detection probability.
All reviewers have equal detection ability.

M0-ML – Maximum likelihood (Otis
et al., 1978)

Mt All faults have equal detection probability.
Reviewers may have different detection abilities.

Mt-ML – Maximum likelihood (Otis
et al., 1978)
Mt-Ch – Chao’s estimator (Chao,
1989)

Mh Faults may have different detection probabilities.
All reviewers have equal detection ability.

Mh-JK – Jackknife (Burnham and
Overton, 1978)
Mh-Ch – Chao’s estimator (Chao,
1987)

Mth Faults may have different detection probabilities.
Reviewers may have different detection abilities.

Mth-Ch – Chao’s estimator (Chao et
al., 1992)

4

mary classification denoted with an “x” and a secondary classification, denoted with an “(x)”.
Although a paper contributes in one area, it may also contain smaller contributions in other areas.
These smaller contributions receive a secondary classification.

3.1. Basic Theory

Most of the basic capture-recapture theory as well as the derivation of all the models and estimators
have been described and developed within the research of biostatistics. Capture-recapture in soft-
ware inspections is an adaptation of an old technique into a new application area. There are, however,
some papers published within the software inspection community, which contribute to the investi-
gation and evolution of the basic theory. This includes theory concerning the assumptions or the in-
troduction of new theoretical concepts that arise because of inspections being a new area of
application. The report by Freimut (1997) is included in this category because of being the first com-
prehensive description of all capture-recapture models suitable to be evaluated for use in software
inspections.

A basic question for capture-recapture in software inspections is whether capture-recapture esti-
mators are appropriate to use for software inspections. The assumptions of capture-recapture is
whether (a) reviewers are equal in their ability to find faults, (b) there is a risk that the reviewers co-
operate, which violates the assumption of independence between reviewers and (c) the faults are
equally difficult to discover. These aspects have been investigated by Eick et al. (1993), Ekros et al.
(1998) and Miller (2002). There is no agreement of the result found in this subject. For example,
Ekros et al. (1998) state that capture-recapture models are not suitable to software inspections where-
as Miller (2002) found that no such empirical evidence can be proved. The result in (Miller 2002)

Table 2: The classification of the capture-recapture papers.
Theory Evaluation Application

Author(s) Year Basic
Theory

New
Approaches

Evaluation of
Estimators

Improvements of
Estimators

Estimators
and PBR Tool Support Experience

Reports

Eick et al. 1992 x
Eick et al. 1993 x
Vander Wiel and Votta 1993 (x) x (x)
Wohlin et al. 1995 x
Briand et al. 1997 x
Ebrahimi 1997 (x) x (x)
Freimut 1997 x (x) (x)
Ardissone et al. 1998 (x) x
Briand et al. 1998 x
Ekros et al. 1998 x (x)
Runeson and Wohlin 1998 x
Wohlin and Runeson 1998 x (x)
Miller 1999 x
Petersson and Wohlin 1999a x
Petersson and Wohlin 1999b x
Thelin and Runeson 1999 x
Biffl 2000 x
Briand et al. 2000 x
Petersson and Wohlin 2000 x
Thelin and Runeson 2000a (x) x
Thelin and Runeson 2000b (x) x
Biffl and Grossman 2001 (x) x
El Emam and Laiten-
berger

2001 (x) x

Freimut et al. 2001 x
Wohlin et al. 2001 x
Miller 2002 x
Miller et al. 2002 x
Padberg 2002 x (x)
Thelin et al. 2002 x (x)

5

points in the direction that there is no dependence among reviewers. However, if such dependence
should exist, Ebrahimi (1997) has developed an estimation model which do not have this restriction.

A solution to (c) would be to group the faults and estimate each group separately by Mt-ML. This
solution was suggested by White et al. (1982, p. 163) and Vander Wiel and Votta (1993). This idea
has since then been further elaborated by Wohlin et al. (1995) and Runeson and Wohlin (1998) by
using a filtering approach of the faults found.

The accuracy of capture-recapture estimations are affected by the amount of input data. The more
faults that are found, and the more reviewers that are used, the more accurate become the estimation
results. The models have different degrees of freedom, which also affect the estimation results. This
is due to that more degrees of freedom require larger amount of data for the estimates.

The accuracy of capture-recapture estimations are often measured as the relative error, see for ex-
ample (Briand et al., 2000). However, since capture-recapture estimators are meant to be used for
decision-making, the measure Relative Decision Accuracy (RDA) may be more appropriate to use
(El Emam et al., 2001; El Emam and Laitenberger, 2001). RDA evaluates how the estimators actu-
ally are utilized within the inspection process, in contrast to evaluating on only how close the esti-
mations are to the true value. However, there are some limitations of RDA, and one of these is that
a threshold needs to be chosen beforehand. The restrictions are further discussed by Thelin and
Runeson (2000a).

3.2. New Approaches

During the years of research on capture-recapture applied to software inspections, new ideas and
suggestions have emerged that reach beyond the mere application and evaluation of existing estima-
tors. This aim is important since the conditions of capture-recapture in software inspections are dif-
ferent from the conditions in biological settings. Most of the capture-recapture estimators have been
developed in biostatistics. Hence, these models are fitted for biology problems and not for software
inspections. A number of approaches have been developed specifically for software inspections due
to that observations of the assumptions are unlikely to be valid. The one presented by Padberg differs
somewhat to the others in that it relies more on experience data than on the overlap information in
the inspection data (Padberg, 2002).

Ebrahimi (1997) argues that in the software development environment, some degree of collusion
among reviewers cannot be avoided. He presents an estimator that does not have the restriction of
independence among reviewers. Ebrahimi compares the estimator to Mt-ML and concludes that they
produce similar results. However, the estimator needs to be evaluated and compared to other estima-
tors when applied to other data sets.

Another new approach is curve-fitting methods (Wohlin and Runeson, 1998), which basic idea is
similar to the ones of reliability growth models for estimation software reliability (Musa, 1998).
Wohlin and Runeson (1998) sort and plot the inspection data according to certain rules and then fit
a mathematical function to the data. Two methods are proposed, the Detection Profile Method
(DPM) and the Cumulative Method. In DPM, the plot shows the number of reviewers that found a
specific fault sorted in decreasing order, while the cumulative method plots the cumulative sum of
faults that are found.

Biffl and Grossman (2001) investigate an approach which utilizes the information from a second
inspection cycle (reinspection). They investigate how estimations from two consecutive inspection
sessions should be combined to gain the most accurate estimate. The best approach was to make one
estimate from the combined data of the two inspection sessions.

The above described investigations have been classified as new approaches. Only the DPM ap-
proach has been replicated by other researchers.

3.3. Evaluation and Improvement of Estimators

An important part of the capture-recapture research has been to evaluate (a) estimators designed in
biostatistics research (b) new proposed estimators and (c) improvements and variants of estimators.
This has resulted in a number of papers that evaluate the estimators. As the research has matured,
most of the capture-recapture research indicates that Mh-JK seems to be the best estimator for soft-
ware inspections. In addition, some proposed improvements are evaluated in the papers in this sec-
tion, e.g. DPM, but still many of these improvements need to be replicated by other researchers. The
evaluations and improvements surveyed below refer to a list of aspects: evaluation criteria, number

6

of reviewers, experience-based methods, curve fitting models, decision making, subjective esti-
mates, confidence intervals, filtering, and model selection procedures.

In the evaluation of estimation capabilities, a number of evaluation measures are used:
• Mean Relative Error (MRE) – the average of the difference between estimate and true value,

sometimes referred to as “bias”.
• Variance of Relative Error – the variance of the difference between estimate and true value,

sometimes referred to as “variance”.
• Relative Decision Accuracy (RDA) – the rate of correct decisions based on the estimate, related

to if they were based on the true value.
• Failure Rate – the rate of cases for which no estimate is produced at all.
• Root Mean Square Error – the root of the standard deviation2 + mean2 of an estimator.

As with all estimation models, the result depends on the quality of data. The accuracy of the es-
timations is improved by an increased amount of data to base the estimations on. In this case, i.e.
applying capture recapture to software inspection data, the same rules applies. The amount of data
from an inspection depends on (a) the number of unique faults that are found, and (b) the number of
reviewers that participate. From the accuracy point of view, the best would be to have a large number
of reviewers. Some studies have shown that at least four to five reviewers should participate in order
to make the accuracy acceptable (Briand et al., 2000; Miller, 1999). Hence, some investigations have
been focused to improve the performance of estimations when having few reviewers. To get any
overlap there must be data from at least two reviewers.

The estimators of capture-recapture have been evaluated in a number of studies. From the begin-
ning, only the most basic models were compared, and then more and more models were used in the
investigations. Although the evaluations have been differently evaluated, a common result can be
identified. For four reviewers and more, Mh-JK is the most preferable model (Biffl, 2000; Briand et
al., 1997; Briand et al., 2000; Miller, 1999; Thelin et al., 2002), although an initial study has pointed
out Mt-ML (Vander Wiel and Votta, 1993). They also point in the direction that most models under-
estimate. However, this may not be a big problem since false positives are often included in the in-
spection data, which would increase the estimation result. In fact, two papers point out one
subestimator of Mh-JK to be the best (Briand et al., 1997; Thelin et al., 2002).

For few numbers of reviewers, the result is ambiguous. Two investigations have focused specif-
ically on two reviewers. These are reported as one simulation study (El Emam and Laitenberger,
2001) and a study with software inspection data (Wohlin et al., 2001). El Emam and Laitenberger
(2001) conclude that Mt-Ch is the best estimator for two reviewers. Mh-JK, which has shown to be
accurate when the number of reviewers is 4 or more, is non-robust in the case with two reviewers
and produces underestimates. However, Mt-Ch does not estimate well when software inspection data
are used for two reviewers (Thelin et al., 2002). Wohlin et al. (2001) present three variants of expe-
rience-based methods and compare them to the capture-recapture estimators. The variants of the ex-
perience-based methods are all based on reviewers’ effectiveness. The experience-based methods
have less bias than any of the capture-recapture estimators, but not significantly lower. The absolute
bias of the relative error as well as the standard deviation is around 20% for the experience-based
models. Consequently, if capture-capture should be used for only two reviewers, more data need to
be collected. The data collected can be used as input to the experience-based methods presented by
Wohlin et al. (2001).

The importance of data collection has been stressed for software inspections since Fagan’s paper
(1976). Also Gilb and Graham (1993) point out that “The metrics themselves are the lifeblood of
inspections.”. The possibility of collecting inspection process metrics should be utilized for fault
content estimations as well. The use of experience data is shown by Petersson and Wohlin (1999b,
2000), who utilize experience data for capture-recapture estimators as well as for DPM. The general
result from these is that experience data improves the estimation results. In addition, Padberg’s ap-
proach of estimating the fault content is completely based on improvement from on experience (Pad-
berg, 2002).

Along with the estimation models from biostatistics, the curve-fitting models presented in Section
3.2 have been evaluated and improved. A problem with all estimators is that they have a tendency to
produce extreme under/over estimations. Briand et al. (2000) evaluate a selection procedure that,
based on certain criteria, chooses between using an enhanced version of DPM (EDPM) and Mh-JK.
This approach shows a small overall improvement of reducing the outliers. However, in the replica-
tion by Petersson and Wohlin (1999a), the results are not confirmed. Thelin and Runeson (2000a)
extend the number of curve fitting methods. Both linear, quadratic, potential as well as DPM and an

7

extended variant of exponential curves are evaluated and benchmarked against Mh-JK. They con-
clude that DPM is the best curve fitting method. However, Mh-JK estimates most accurately. Peters-
son and Wohlin (2000) investigate two alternative ways of improving DPM. The alternatives are to
(a) have a variable point of estimation limit that is calculated from historical data, or (b) use the de-
rivative of the curve to determine where to select the estimate. The derivative DPM managed to im-
prove the original DPM but is no improvement compared to Mh-JK.

A purpose of making estimations of the number of remaining faults is to provide information of
whether a reinspection should be conducted or not. If a reinspection is made, increased knowledge
of the document is gained. The question is then how to best utilize this information in order to get
the best estimate of the number of remaining faults. Biffl and Grossman (2001) suggest and evaluate
three different formulae for this purpose. The approaches are either to (a) first combine the data from
the inspections and then estimate, (b) add the number of faults detected in the first inspection to an
estimate of the reinspection or (c) estimate the first inspection and the reinspection separately and
then add their results. The best approach is (a), which improved the estimators significantly. The in-
terpretation of the results is that the more time is used in inspection, the more accurate estimation
results are obtained.

The aim of applying capture-recapture estimators is to introduce an objective measure to the de-
cision process regarding what to do next with the inspected document. As it is today this decision is
based on a more subjective evaluation of the document made by the inspection manager. This eval-
uation is valuable and capture-recapture based estimates should not aim to replace such evaluation
but to complement it. The estimation calculated by the capture-recapture estimators are based on data
taken from what faults each reviewer found. The reviewer as a source of information should not be
reduced to only a list of found faults but the feeling the reviewer has of the document after having
spent time with it during the inspection should be captured too. There have been promising investi-
gations of how this subjective information can be captured in an estimate, which together with the
objective support by the capture-recapture estimate can guide the inspection manager even better in
his decision. El Emam et al. (2000) present the idea of subjective estimations for software inspec-
tions. Biffl (2000) and Thelin (2002) further investigate the concept and evaluate capture-recapture
estimators against subjective estimations. Each reviewer gave three estimates: maximum, minimum
and most likely number of faults left. Biffl’s result shows that subjective estimations have smaller
bias, but larger variance. However, Thelin’s result shows that capture-recapture is significantly more
accurate considering both point estimates and confidence intervals.

Confidence intervals are used to gain more information from a single estimation. A confidence
interval consists of an upper and lower limit, and a figure showing how probable it is that the true
value lies within these limits. In the capture-recapture research applied to software inspections, most
studies have concentrated on point estimates and not on confidence intervals. The confidence inter-
val gives increased information to base decisions on. The discussion of whether to re-inspect or not
can be expanded with arguments about worst case/best case scenarios and simple risk calculations
based on the probability value. Confidence intervals used for capture-recapture estimators have been
considered in some research papers. Vander Wiel and Votta (1993) evaluate Walds Likelihood con-
fidence interval and a confidence interval for Mh-JK (Burnham and Overton, 1978). Vander Wiel
and Votta recommend using the Likelihood confidence interval instead of Walds and Mh-JK’s, since
the former includes the correct number of faults in most cases. However, the Likelihood confidence
interval is too conservative, which often leads to wide intervals. Other approaches are mentioned by
Biffl (2000) and Biffl and Grossman (2001), but they conclude that these approaches do not work
very well. In a recent study by Thelin et al. (2002), both the use of normal and log-normal distribu-
tions for the intervals are investigated. They conclude that log-normal distributions are the best al-
ternative when creating confidence intervals.

For point estimates as well as confidence intervals, the estimation models are based on assump-
tions that reviewers do not find faults totally by random. It is assumed that there is a connection be-
tween (a) the ability of the reviewers and the difficulty of the faults and (b) the probability of that a
specific fault will be found. Further, it is also assumed that the software inspection data provide in-
formation on all faults in the document, including the ones not found. The problem is that less infor-
mation is available on the set of faults that are difficult to find than on the faults that are easy to find.
Moreover, no information is given on the faults that none of the reviewers found. An idea to group
the faults to improve Mt-ML’s was mentioned by Vander Wiel and Votta (1993). A solution to this
problem would be to filter the faults into different groups and estimate each group separately (White
et al., 1982 p. 163). This kind of filtering or grouping has been tried by Wohlin et al. (1995) and

8

Runeson and Wohlin (1998). Wohlin et al. identify two possible ways of creating a filter that divides
the found faults into groups. Filter 1 is based on the percentage of the reviewers that found a fault.
Filter 2 selects all faults only found by one reviewer and then estimates the other faults separately.
Faults found by only one reviewer are multiplied with an experience-based factor, since no overlap
exists. Applying these filtering techniques, they manage to improve the Mt-ML estimates. The sec-
ond approach is further investigated by Runeson and Wohlin (1998). They conclude that the mean
is not improved with the filtering approach, the variance is smaller using the filtering approach and
Mt-ML overestimates in all cases. The filtering approach is criticised in Briand et al. (1998), which
show that if an estimator underestimates, the variance increases.

Instead of dividing the inspection data into classes, as in the filtering approach, the characteristics
of the data can be tested in order to select the most appropriate estimator. However, to select a model
or an estimator is a complicated problem. The more estimators that are used as candidates, the larger
is the probability of having one that performs very well. At the same time, with many candidates it
becomes harder to choose. On the other hand, having few candidates increases the probability of hav-
ing only poor estimates to choose from. The aim of selecting estimators to be included in a selection
procedure should be to have estimators which complements each other, i.e. when one candidate es-
timates poorly, there should be another that estimates well. Model selection has been evaluated by
the use of distance measures, chi-square tests and smoothing algorithms (Thelin and Runeson,
2000b) and is further analysed by the use of Akaike model selection criterion by Thelin and Runeson
(2000a). None of these approaches works appropriately for the data used in software inspections.
Furthermore, Briand et al. (1998) suggests and investigates a model selection technique to choose
between an enhanced model of DPM (EPDM) and Mh-JK. It showed promising results in the initial
study, but was rejected in the replication by Petersson and Wohlin (1999a).

3.4. Estimators and PBR

Perspective-based reading (PBR) and capture-recapture have prerequisites that seem to be contradic-
tory. PBR inspections use perspectives applied by the reviewers and the goal is to minimize the over-
lap between the fault sets that the reviewers find. Since capture-recapture uses the overlap to estimate
the fault content, PBR may affect the estimation result. In all investigations, however, the same con-
clusion is drawn, which is that capture-recapture can be used in combination with PBR with little or
no impact on the estimation results.

The three investigations conducted in this area is a simulation study by Thelin and Runeson
(1999) and two studies on PBR experiments by Freimut (1997) and Freimut et al. (2001). The com-
mon results from the studies are that capture-recapture estimations can be applied even when using
PBR and that Mh-JK is the best estimator. One question that remains to be answered is whether the
estimators overestimate or not when PBR data are used.

3.5. Experience Reports and Tool Support

Few papers report on industrial use and integration of capture-recapture into an industrial inspection
process. As described in previous sections, controlled experiments are performed in industry but
they are not included in the application class. The only experience report found is by Ardissone et
al. (1998), who describe an implemented tool used for capture-recapture calculations that has been
on trial use in an Italian telecom company. The use of the tool is reported to be adopted with encour-
aging results, but includes little quantitative data.

Miller et al. (2002) describe many capture-recapture estimators in an inspection tool and how it
can be used for decision making for project managers.

3.6. Data sets

The above presented studies are based on different data sets. Most of them come from some form of
experiments, which is a necessity as the total number of faults in the artefact must be known, to en-
able evaluation of the estimation capability of the estimators. An overview of the data sets and some
characteristics are presented in Table 3.

There are in total 52 data sets used in the surveyed papers. Three of these are simulated data. 26
sets come from professional software engineers performing inspections, out of which 16 are from a

9

NASA environment. 23 come from an academic environment, with students or faculty performing
the inspections. The number of reviewers per data set is in most cases between 5 and 8, while some
of the data sets based on students are based on up to 86 reviewers.

The artefacts inspected are requirements documents, design documents, code and pure text doc-
uments. The artefacts consist of between 9 and 30 pages for specification documents and 100-300
lines of code for code documents. Artefacts used in the inspections behind many data sets are the
Automated Teller Machine (ATM) and the Parking Garage (PG) system documents, in Table 3 re-
ferred to as “artificial requirement specification”. These artefacts are available in a lab package (Ba-
sili et al., 1998).

Different reading techniques are used in the inspections; checklist-based reading, perspective
based reading (Basili et al., 1996) and usage-based reading (Thelin et al., 2001) are defined reading
techniques, while ad hoc reading refers to reading based on the reviewers’ competence and experi-
ence.

In some studies, for example (Briand et al., 1998; Petersson and Wohlin, 1999b), data sets with
many reviewers are split into smaller data sets, to provide more data for the evaluation. This is some-
times referred to “virtual inspections”. For example, from a set with 10 reviewers, 252 different data
sets of 5 reviewers can be constructed1.

The dependencies on the data set is illustrated by applying Mh-JK to the different data sets, group-
ing the reviewers in teams of four. Figure 1 shows the dispersion of the estimation results, when ap-
plying the same estimator to the different data sets. The data sets are NasaAdhAP (1-4), ChklATM
(5), EngDMod2 (6), NasaAdhS (7-10), LundPbr (11-12), NasaPbrAP (13-14 & 19-20), NasaPbrS
(15-18), IndPbrAP (21-26), Cdata (27-30), see Figure 1 and Table 3.

Some of the data sets in Table 3 are grouped into groups since they are derived from the same
experiments and used in the same studies. The mapping between studies and groups of data sets is
presented in Table 4.

4. Main Research Findings

The summarized capture-recapture papers have been classified into three main research directions:
theory, evaluation and application. The main purpose of this classification is to show how the re-
search has progressed over time. As pointed out by Redwine and Riddle (1985), moving from theory

1.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

MhJK 4 Reviewers
Bi

as

Data set

Figure 1. Example of the characteristics of
some of the data sets used in capture-recapture
investigations.

10
5⎝ ⎠

⎛ ⎞ 252=

10

Table 3: Characteristics of data sets

G
ro

up

D
at

a
se

t

E
nv

.

D
oc

. T
yp

e

In
sp

. T
ec

h.

R

ev
.

Fa

ul
ts

Si
ze

AT&T1 Prof. Design ?. 8 ? ?
AT&T2 Prof. Req. ? 6 ? ?

AT&Tsim Sim. n/a n/a 5 100 n/a
Gilb&Graham Prof. Design Chkl 5 27 15 pp

EngDMod2 Prof./Stud. Textual AdH. 22 38 9

N
as

aA
dh

A
P AdhAtmJun NASA Art Reqa AdH. 8 29 17 pp

AdhAtmNov NASA Art. Req AdH. 6 29 17 pp
AdhPgJun NASA Art. Req AdH. 6 27 16 pp
AdhPgNov NASA Art. Req AdH. 6 27 16 pp

N
as

aA
dh

S NasaAJun NASA Req AdH. 7 15 27
NasaANov NASA Req AdH. 6 18 27
NasaBJun NASA Req AdH. 6 15 27
NasaBNov NASA Req AdH. 6 15 27

M
ye

rs

Myers Prof. Code AdH 59 15 63 LOC

C
da

ta

Cdata3A Prof./Stud. Code Chkl 5 22 190 LOC
Cdata4A Prof./Stud. Code Chkl 5 16 113 LOC
Cdata5A Prof./Stud. Code Chkl 5 16 85 LOC
Cdata6A Prof/Stud. Code Chkl 5 35 304 LOC
Cdata7Ab Prof/Stud. Code Chkl 4 20 208 LOC

St
ra

th

StrathChklA Stud Code Chkl 46 12 147 LOC
StrathChklG Stud Code Chkl 45 12 141 LOC
StrathToolA Stud Code Tool 45 12 147 LOC
StrathToolG Stud Code Tool 46 12 141 LOC
StrathPbrC Stud Art. Req PBR 26 26 31 pp
StrathPbrW Stud Art. Req PBR 26 42 24 pp
StrathChklC Stud Art. Req Chkl 24 26 31 pp
StrathChklW Stud Art. Req Chkl 24 42 24 pp

Lu
nd

Pb
r PBRAtm Stud. Art. Req PBR 15 29 17 pp

PBRPg Stud. Art. Req PBR 15 30 16 pp

ChklATM Stud./Faculty Art. Req Chkl 6 29 17 pp

N
as

aP
br

A
P PbrAtmJun NASA Art. Req PBR 6 29 17 pp

PbrAtmNov NASA Art. Req PBR 6 29 17 pp
PbrPgJun NASA Art. Req PBR 8 27 16 pp
PbrPgNov NASA Art. Req PBR 6 27 16 pp

N
as

aP
br

S PbrNAJun NASA Req PBR 6 15 27
PbrNANov NASA Req PBR 6 18 27
PbrNBJun NASA Req PBR 7 15 27
PbrNBNov NASA Req PBR 6 15 27

In
dP

br
A

P

PbrStatA Prof. Code PBR 8 19

200-300
LOC
each

PbrStatB Prof. Code PBR 7 19
PbrTextA Prof. Code PBR 8 16
PbrTextB Prof. Code PBR 7 13
PbrZinsA Prof. Code PBR 8 17
PbrZinsB Prof. Code PBR 7 16

V
ie

nn
a ViennaPBR Stud Req PBR 86 86 35 pp

Vienna Chkl Stud Req. Chkl 83 86 35 pp
2InspSim Sim. n/a n/a 2 30 n/a
PbrSim Sim. n/a n/a 4 30 n/a

U
br

UbrA Basic Stud Design UBR 14 37 9 pp

UbrB Basic Stud Design UBR
random 13 37 9 pp

UbrC Base Stud Design UBR 11 38 9 pp
UbrD Base Stud Design Chkl 12 38 9 pp

a. Artificial requirement specification.
b. Only used by Runeson and Wohlin (1998)

11

to application takes a long time. Although some issues need to be further evaluated and some more
basic research needs to be carried out, the future challenge for capture-recapture researchers is to ap-
ply the knowledge gained during the ten years of capture-recapture research for software inspections.

In this section, we extract the knowledge gained from the summaries in Section 3, in order to aid
researchers and software organizations with common knowledge collected over the years.

In the theory category, the main contribution has been to make the transfer of capture-recapture
techniques into the software engineering area and summarize the literature in biostatistics. So far,
closed models have been extensively investigated and described.

In the evaluation category, many studies are conducted to evaluate the estimators. Evaluations
have been made for reading techniques and for different software documents. The common knowl-
edge in this area is:
1. most estimators underestimate,
2. Mh-JK is the best estimator for software inspections,
3. Mh-JK is appropriate to use for 4 reviewers and more
4. DPM is the best curve fitting method, and
5. capture-recapture estimators can be used together with PBR.

In the application category, only two papers has been written, although we suspect that more ap-
plication investigations have been conducted. Still, they need to be reported in order to build a body
of knowledge of capture-recapture for software inspections. Another issue worth noting is that the
paper classified in the area experience reports does not use any of the research results of the theory
or evaluation area other than the initial capture-recapture paper for software inspections by Eick et

Table 4: Data used in different studies.

Author(s) Year

A
t&

t1

A
t&

t2

A
t&

tS
im

G
&

G

En
gD

N
as

aA
dh

A
P

N
as

aA
dh

S

M
ye

rs

C
da

ta

St
ra

th

Lu
nd

Pb
r

C
hk

lA
tm

N
as

aP
br

A
P

N
as

aP
br

S

In
dP

br
A

P

Pb
rS

im

V
ie

nn
a

2I
ns

pS
im

U
br

Eick et al. 1992 x
Eick et al. 1993 x
Vander Wiel and Votta 1993 x
Wohlin et al. 1995 x
Briand et al. 1997 x x
Ebrahimi 1997 x x
Freimut 1997 x x x x x
Ardissone et al. 1998
Briand et al. 1998 x x
Ekros et al. 1998 x x x x x x x
Runeson and Wohlin 1998 x
Wohlin and Runeson 1998 x
Miller 1999 x
Petersson and Wohlin 1999a x x x
Petersson and Wohlin 1999b x x x x x x x x x
Thelin and Runeson 1999 x
Biffl 2000 x
Briand et al. 2000 x x
Petersson and Wohlin 2000 x x x x x x x x x
Thelin and Runeson 2000a x x x x x x x x x
Thelin and Runeson 2000b x x
Biffl and Grossman 2001 x
El Emam and Laitenberger 2001 x
Freimut et al. 2001 x
Wohlin et al. 2001 x
Miller 2002 x
Miller et al. 2002 x
Padberg 2002 x x x x x
Thelin et al. 2002 x

12

al. (1992). To address the lack of papers actually reporting the application of capture-recapture, the
next section outlines how capture-recapture can be integrated in an inspection process.

5. Application of Capture-Recapture

Capture-recapture and other fault content estimation methods have been researched in a software en-
gineering context for 10 years. Several lessons have been learned and the methods are sufficiently
understood and matured to be introduced into an industrial software development process. The first
observation to make is that the actual change in the software inspection process is minor and the po-
tential benefits are an increased ability to estimate and thereby control software quality in terms of
software faults.

An example of a process that can be used to combine inspections and capture-recapture is de-
scribed in this section and shown in Figure 2.

 After the individual inspection (1), the inspection records are handed in to an inspection coordi-
nator who compiles the faults into one document (2). The main purpose of the meeting (3) is to find
new faults, but also to share knowledge and experience and take informed decisions about the in-
spected artefact. The inspection coordinator may then use the inspection record for process improve-
ment and gives the record to the authors of the artefact to correct the faults (4).

The only requirement for the use of capture-recapture methods in an inspection process is that the
faults detected should be tracked for each individual reviewer. Studies have shown that the estima-
tion methods are not very sensitive to the actual reading technique (Thelin and Runeson, 1999),
which means that the capture-recapture methods can fairly safely be applied independent of if check-
lists, perspective-based reading or any other individual preparation method is used.

On the other hand, the estimation methods open several opportunities to support the decision-
making in the software inspection process. In particular, the capture-recapture methods support two
decision points in the inspection process, i.e. after individual preparation, see A in Figure 2, and after
the inspection meeting (if one is held), see B in Figure 2.

Before decision point A, the process still leaves options with respect to the individual preparation,
including:
• Individuals fill in forms that are delivered to one person prior to the meeting. This person com-

piles the information and is also responsible for making a capture-recapture estimate. Before the
estimation, it is important that the person tries to identify which faults noted by the individual
reviewers may actually be regarded as the same.

• Each individual fills in a form on-line and the comments from the other reviewers are made
available to the reviewers after filling in their form, or after a specific date. This type of system
could also easily support capture-recapture estimations and also help reduce the number of false
positives, since all reviewers may view the faults marked by the other reviewers.
In the estimation, it is recommended to use the Mh-JK, given the research, e.g. (Briand et al.,

2000), (Miller, 1999) and (Thelin et al. 2002). It should also be noted that since the estimator has a
tendency to underestimate, it is recommended to keep track of the actual behaviour so that any sys-
tematic estimation error can be compensated in the long run. This means keeping track of historical
data in terms of estimation accuracy. A possible added value is also to introduce subjective estima-
tions (El Emam et al., 2000) regarding the remaining fault content from each individual reviewer.

3. Meeting

2. Compilation

1. Reviewers

4. Correction

A B

Figure 2. The inspection process with decision points highlighted.

13

Subjective estimations have shown to be competitive in accuracy, which means that they could pro-
vide important input to the decisions in the inspection process.

The subjective estimate, the objective estimate and possibly calibrated objective estimate form an
input to a decision point A. The decisions should, of course, not solely be taken based on the esti-
mates. However, they should act as an important source of information for any decision-maker. The
decisions could be one of the following, listed from the most negative to the most positive:
A1. Terminate the inspection and send the artefact back for refinement and improvement. This deci-

sion basically says that the artefact was not really ready for inspection. This may also be found
out by sampling the artefact and using only 1-2 people (Petersson, 2002; Thelin et al., 2001).
Thelin et al. (2001) describe an inspection process where, in order to save inspection effort, the
documents are sampled. Then, based on a pre-inspection on the samples, the inspection effort is
focused on the documents that need it the most. Gilb and Graham (1993) and Burr and Owen
(1996) have proposed sampling of software artefacts, although leaving several open research
questions, including, for example, sample size and number of reviewers. They suggest inspect-
ing part of a software artefact in order to determine whether the artefact is ready for the main
inspection. Gilb and Graham (1993) argue that the same types of faults exist in different forms
throughout the same document.

A2. An inspection meeting is scheduled based on that the artefact is regarded as being sufficiently
inspected by the individual reviewers. A meeting may be needed due to the estimated number of
faults remaining or other potential reasons, for example, that the meeting is a means for informa-
tion sharing and knowledge transfer. This is in most inspection processes the normal procedure,
although here it is more viewed as an informed decision.

A3. Assign additional reviewers to further inspect the artefact. This decision indicates that there is
an uncertainty in terms of the quality and that more opinions are needed. This basically means
postponing the decision, and wait for more input.

A4. Continue the development without a meeting. This decision is based on that the artefact is
viewed as having good enough quality and the estimated number of faults is sufficiently low.
A first part of a meeting could be to present the fault content estimations to all reviewers. This

could form the basis for a discussion regarding the perceived remaining fault content and it could
also act as guidance with respect to try to identify faults at the meeting.

The main part of the meeting is not affected by the use of capture-recapture methods. However,
it is recommended at the end of the meeting that the inspection team return to the estimates and try
to come to a common view of the remaining fault content. Moreover, it is possible to make a new
fault content estimation based on the faults found by the individual reviewers, although with false-
positives removed and an improved perception of which faults noted by the reviewers should be
viewed as being identical.

The output from the meeting forms the input to the second decision point, i.e. B. The possible out-
put in terms of fault content estimations include subjective individual estimates, capture-recapture
estimate before the meeting, subjective estimate by the team at the start and at the end of the meeting
and a capture-recapture estimate after the meeting. The input to the decision point includes, of
course, also other considerations and experiences, but the opportunity to perform fault content esti-
mations provides an added value to the decision-maker. The five possible decisions at decision-point
B are, from the most negative to the most positive decision:
B1. Terminate the current inspection and send the artefact back for refinement and improvement,

see also A1.
B2. Assign additional reviewers for further inspection of the artefact. This means going back to

decision point A, see also A3.
B3. Update the artefact and then re-inspect it. This may be done by a selected team, possibly

smaller than the original team. This decision is not viewed as the same as B1 and it is also
viewed as a better situation than B2, since this decision means that there is less uncertainty.
Decision B2 is very much a decision taken based on a perception of uncertainty.

B4. Update the artefact and assign one person to check it. After approval, the development contin-
ues. In practice, the development may start before the formal approval given that people are
informed about the main changes so that the further development is based on a firm ground.

B5. The artefact may need some updating but the task is left for the responsible author. Basically, it
means that the artefact should be improved and thereafter it is good enough for the further devel-
opment.

14

 The objective of this outline of the inspection process with two decision points inserted is to il-
lustrate that capture-recapture methods may make a valuable contribution to any inspection process.
Thus, the bottom-line is that capture-recapture methods are easily introduced into software inspec-
tion processes and that the methods may form an important support for informed decisions.

6. Further Research in Capture-Recapture

In Section 4, the main research findings are discussed in three main areas. Here, these areas are re-
visited in the light of needed further research.

 With respect to theory and the models available in biostatistics, there are still areas that have not
been explored, e.g. open models and change-in-ratio models (Pollock, 1991). An interpretation of
open models for software inspections is that faults may be introduced or removed during inspection,
or that estimates are performed based on a series of inspections of the same artefact. This has been
regarded as not useful for software inspections, but none has actually explored this subject. Change-
in-ratio makes an estimation using the difference between the number of faults in several fault class-
es over time. This could, for example, be used as risk management information in a spiral or incre-
mental development process to estimate the fault content after design using data from the
requirements and the design phase. These are just two topics needed to be looked into. Other future
research points are listed below:
• Gain further knowledge of the models of capture-recapture and evaluate whether these are

appropriate for software inspections. Some initial research has been conducted in this areas, see
Ekros et al. (1998) and Miller (2002).

• Design and evaluate measures for decision-making in the software inspection process. One such
measure is the relative decision accuracy, which purpose is to measure whether the estimators
are useful for decision making in software inspections. The decision accuracy has been proposed
by El Emam et al. (2000) and is further evaluated by Thelin and Runeson (2000a).

• The estimator developed by Ebrahimi (1997) should be replicated.
• The connection between curve fitting methods, their prerequisites and Mh-JK needs to be inves-

tigated.

With respect to evaluation, there are some studies improving the estimation results. However,
they need to be replicated by other researcher in order to know whether they work in different set-
tings. Main future research points are to:
• Investigate whether one of the subestimators is better than the full estimator of Mh-JK (Miller,

1999). A replication of the initial study by Miller (1999) is carried out by Thelin et al. (2002).
However, more replications are needed, especially together with confidence interval investiga-
tions.

• Evaluate whether PBR makes estimators overestimate or not (Thelin and Runeson, 1999). In
addition, other reading techniques than PBR should be investigated together with capture-recap-
ture. UBR is one reading technique that has to be evaluated together with capture-recapture
(Thelin, 2002).

• Replicate suggested improvements, e.g. (Briand et al., 1998; Petersson and Wohlin, 1999b; The-
lin and Runeson, 2000b).

• Investigate capture-recapture for 2 and 3 reviewers (El Emam and Laitenberger, 2001).
• Investigate relation to detection probability, the number of faults found and the number of

reviewers with the estimation result (Briand et al., 1998; Thelin et al., 2002).

In the application category, there are only two studies published. Consequently, the main research
in this area should focus upon transferring fault content estimations into software organizations and
report the results as case studies or surveys. This is probably the main challenge for researchers in
this field. How should fault content estimations like capture-recapture and subjective methods be ap-
plied in a real environment in software organizations? Collaboration between software organizations
and researchers will help to improve the estimations for software inspections.

15

7. Summary

This paper reports the status of capture-recapture research for software inspections, which has been
ongoing for 10 years. In this survey, all available papers within the area and their research contribu-
tion have been summarized. From these summaries a number of pointers for future research is stated.
The papers are also categorized in order to facilitate other researchers’ work as well as highlighting
the areas of research that need further work.

Three main categories have been used together with a number of sub-categories within each main
category.
• Theory – Basic Theory, New Approaches
• Evaluation – Evaluation of Estimators, Improvements of Estimators, Estimators and PBR
• Application – Tool Support and Experience Reports

The most apparent result from the classification is the lack of papers in the application area. Only
one published paper reports experience from a trial application of capture-recapture in an industrial
environment (not including the controlled experiments).

Furthermore, it is concluded that 1) most of the basic theory is investigated within biostatistics,
2) most software engineering research is performed on evaluation, a majority ending up in recom-
mendation of the Mh-JK model, and 3) there is a need for application experiences. In order to support
the application, an inspection process is presented with decision points based on capture-recapture
estimates.

Acknowledgements

This work was partly funded by The Swedish Agency for Innovation Systems (VINNOVA), under
a grant for the Center for Applied Software Research at Lund University (LUCAS).

References

Ardissone, M. P., Spolverini, M., Valentini, M., 1998. Statistical Decision Support Method for In-
Process Inspections, In: Proceedings of the 4th International Conference on Achieving Quality
in Software, 135-143.

Basili, V. R., Green, S., Laitenberger, O., Lanubile, F., Shull, F., Sørumgård, S., Zelkowitz, M. V.,
1996. The Empirical Investigation of Perspective-Based Reading, Empirical Software Engineer-
ing 1 (2), 133-164.

Basili, V. R., Green, S., Laitenberger, O., Lanubile, F., Shull, F., Sørumgård, S., Zelkowitz, M. 1998.
Lab Package for the Empirical Investigation of Perspective-Based Reading, Available at: http://
www.cs.umd.edu/projects/SoftEng/ESEG/manual/pbr_package/manual.html.

Biffl, S., 2000. Using Inspection Data for Defect Estimation, IEEE Software 17 (6), 36-43.
Biffl, S., Grossman, W., 2001. Evaluating the Accuracy of Defect Estimation Models Based on In-

spection Data From Two Inspection Cycles, In: Proceedings of the 23th International Conference
on Software Engineering, 145-154.

Biffl, S., 2001. Software Inspection Techniques to Support Project and Quality Management, Habil-
itationsschrift, Shaker Verlag, Austria.

Bisant, D. B., Lyle, J. R., 1989. A Two-Person Inspection Method to Improve Programming Produc-
tivity, IEEE Transactions on Software Engineering 15(10), 1294-1304.

Briand, L., El Emam, K., Freimut, B., Laitenberger, O., 1997. Quantitative Evaluation of Capture-
Recapture Models to Control Software Inspections, In: Proceedings of the 8:th International
Symposium on Software Reliability Engineering, 234-244.

Briand, L., El Emam, K., Freimut, B., Laitenberger, O., 1998. A Comparison and Integration of Cap-
ture-Recapture Models and the Detection Profile Method, In: Proceedings of the 9th International
Symposium on Software Reliability Engineering, 32-41.

Briand, L., El Emam, K., Laitenberger, O., Fussbroich, T., 1998. Using Simulation to Build Inspec-
tion Efficiency Benchmarks for Development Projects, In: Proceedings of the 20th International
Conference on Software Engineering, 340-349.

Briand, L., El Emam, K., Freimut, B., 2000. A Comprehensive Evaluation of Capture-Recapture
Models for Estimating Software Defect Content, IEEE Transactions on Software Engineering 26

16

(6), 518-540.
Burnham, K. P., Overton, W. S., 1978. Estimation of the Size of a Closed Population when Capture-

Recapture Probabilities Vary Among Animals, Biometrika 65, 625-633.
Burr, A., Owen, M., 1996. Statistical Methods for Software Quality – Using Metrics for Process Im-

provement, International Thomson Computer Press.
Chao, A., 1987. Estimating the Population Size for Capture-Recapture Data with Unequal Catcha-

bility, Biometrics 43, 783-791.
Chao, A. 1989. Estimating Population Size for Sparse Data in Capture-Recapture Experiments, Bi-

ometrics 45, 427-438.
Chao, A., Lee, S. M., Jeng, S. L., 1992. Estimating Population Size for Capture-Recapture Data

when Capture Probabilities Vary by Time and Individual Animal, Biometrics 48, 201-216.
Chao, A., 1998. Capture-Recapture Models, Encyclopaedia of Biostatistics, Editors: Armitage &

Colton, Wiley, New York.
Ebenau, R. G., Strauss, S. H., 1994. Software Inspection Process, McGraw-Hill, New York.
Ebrahimi, N., 1997. On the Statistical Analysis of the Number of Errors Remaining in a Software

Design Document after Inspection, IEEE Transactions on Software Engineering 23(8), 529-532.
Eick, S. G., Loader, C. R., Long, M. D., Votta, L. G., Vander Wiel, S. A., 1992. Estimating Software

Fault Content Before Coding, In: Proceedings of the 14th International Conference on Software
Engineering, 59-65.

Eick, S. G., Loader, C. R., Vander Wiel, S. A., Votta, L. G., 1992. How Many Errors Remain in a
Software Design Document after Inspection?, In: Proceedings of the 25th Symposium on the In-
terface, 195-202.

Ekros, J-P., Subotic, A., Bergman, B., 1998. Capture-Recapture – Models, Methods, and the Reality,
In: Proceedings of the 23rd Annual NASA Software Engineering Workshop.

El Emam, K., Laitenberger, O., Harbich, T., 2000. The Application of Subjective Estimates of Effec-
tiveness to Controlling Software Inspections, Journal of Systems and Software 54 (2), 119-136.

El Emam, K., Laitenberger, O., 2001. Evaluating Capture-Recapture Models with Two Inspectors,
IEEE Transactions on Software Engineering 27 (9), 851-864.

Fagan, M. E., 1976. Design and Code Inspections to Reduce Errors in Program Development, IBM
Systems Journal 15 (3), 182-211.

Fagan, M. E., 1986. Advances in Software Inspections, IEEE Transactions on Software Engineering
12 (7), 744-751.

Freimut. B., 1997. Capture-Recapture Models to Estimate Software Fault Content, Diploma Thesis,
University of Kaiserslautern, Germany.

Freimut, B., Laitenberger, O., Biffl,. S., 2001. Investigating the Impact of Reading Techniques on the
Accuracy of Different Defect Content Estimation Techniques, In: Proceedings of the 7th Inter-
national Software Metrics Symposium, 51-62.

Gilb, T., Graham, D., 1993. Software Inspections, Addison-Wesley, UK.
Knight, J. C., Myers, A. E., 1993. An Improved Inspection Technique, Communications of ACM 36

(11), 50-69.
Laplace, P. S., 1786. Sur les Naissances, les Mariages et les Morts Histoire de L’Académie Royale

des Sciences, Paris.
MacDonald, F., 1998. Computer-Supported Software Inspection, PhD Thesis, Dept. of Computer

Science, University of Strathclyde, UK.
Martin, J., Tsai, W. T., 1990. N-fold Inspections: A Requirements Analysis Technique, Communica-

tions of the ACM 36 (11), 51-61.
Miller, J., Wood, M., Roper, M., 1998. Further Experiences with Scenarios and Checklists, Empirical

Software Engineering 3 (3), 37-64.
Miller, J., 1999. Estimating the Number of Remaining Defects after Inspection, Software Testing,

Verification and Reliability 9 (4), 167-189.
Miller, J., 2002. On the Independence of Software Inspectors, Journal of Systems and Software 60

(1), 5-10.
Miller, J., MacDonald, F., Ferguson, J., 2002. ASSISTing Management Decisions in the Software

Inspection Process, Information Technology and Management 3 (1-2), 67-83.
Mills, H., 1972. On the Statistical Validation of Computer Programs,Technical report FSC-72-6015,

IBM Federal Systems Division.

17

Montgomery, D., 1997. Design and Analysis of Experiments, John Wiley and Sons, USA.
Musa, J. D., 1998. Software Reliability Engineering: More Reliable Software, Faster Development

and Testing, McGraw-Hill, USA.
Myers, G. J., 1978. A Controlled Experiment in Program Testing and Code Walkthroughs/Inspec-

tions Communication of ACM 29 (9), 760-768.
Otis, D. L., Burnham, K. P., White, G. C., Anderson, D. R., 1978. Statistical Inference from Capture

Data on Closed Animal Populations, Wildlife Monographs, 62.
Padberg, F., 2002. Empirical Interval Estimates for the Defect Content After an Inspection, In: Pro-

ceedings of the 24rd International Conference on Software Engineering, 58-68.
Parnas, D. L., Weiss, D. M., 1985. Active Design Reviews: Principles and Practices, In: Proceedings

of the 8th International Conference on Software Engineering, 418-426.
Petersson, H., Wohlin, C., 1999a. Evaluation of using Capture-Recapture Methods in Software Re-

view Data, In: Proceedings of the 3rd International Conference on Empirical Assessment & Eval-
uation in Software Engineering.

Petersson, H., Wohlin, C., 1999b. An Empirical Study of Experience-Based Software Defect Content
Estimation Methods, In: Proceedings of the 10th International Symposium on Software Reliabil-
ity Engineering, 126-135.

Petersson, H., Wohlin, C., 2000. Evaluating Defect Content Estimation Rules in Software Inspec-
tions, In: Proceedings of the 4th International Conference on Empirical Assessment & Evaluation
in Software Engineering.

Petersson, H., 2002. Supporting Software Inspections through Fault Content Estimation and Effec-
tiveness Analysis, PhD Thesis, Dept. of Communication Systems, Lund University, Sweden.

Pollock, K. H., 1991. Modeling Capture, Recapture, and Removal Statistics for Estimation of De-
mographic Parameters for Fish and Wildlife Populations: Past, Present, and Future, Journal of the
American Statistical Association 86 (413), 225-238.

Porter, A., Votta, L., Basili, V. R., 1995. Comparing Detection Methods for Software Requirements
Inspection: A Replicated Experiment, IEEE Transactions on Software Engineering 21 (6), 563-
575.

Redwine. S., Riddle, W., 1985. Software Technology Maturation, In: Proceedings of the 8th Interna-
tional Conference on Software Engineering, 189-200.

Regnell, B., Runeson, P., Thelin, T., 2000. Are the Perspectives Really Different? - Further Experi-
mentation on Scenario-Based Reading of Requirements, Empirical Software Engineering: An In-
ternational Journal 5 (4), 331-356.

Rexstad, E., Burnham, K. P., 1991. User’s Guide for Interactive Program CAPTURE, Colorado Co-
operative Fish and Wildlife Research Unit, Colorado State University, Fort Collins, CO 80523,
USA.

Runeson, P., Wohlin, C., 1998. An Experimental Evaluation of an Experience-Based Capture-Recap-
ture Method in Software Code Inspections, Empirical Software Engineering 3 (4), 381-406.

Stringfellow, C., von Mayrhauser, A., Wohlin, C., Petersson, H., 2002. Estimating the Number of
Components with Defects Post-Release that Showed No Defects in Testing, Software Testing,
Verification & Reliability 12, 93-112.

Thelin, T., Petersson, H., Wohlin, C., 2001. Sample-Driven Inspections, In: Proceedings Workshop
on Inspection in Software Engineering, 81-91.

Thelin, T., Runeson, P., 1999. Capture-Recapture Estimations for Perspective-Based Reading – A
Simulated Experiment, In: Proceedings of the International Conference on Product Focused Soft-
ware Process Improvement, 182-200.

Thelin, T., Runeson, P., 2000a. Fault Content Estimations using Extended Curve Fitting Models and
Model Selection, In: Proceedings of the 4th International Conference on Empirical Assessment
& Evaluation in Software Engineering.

Thelin, T., Runeson, P., 2000b. Robust Estimations of Fault Content with Capture-Recapture and De-
tection Profile Estimators, Journal of Systems and Software 52 (2-3), 139-148.

Thelin, T., Runeson, P., Regnell, B., 2001. Usage-Based Reading – An Experiment to Guide Review-
ers with Use Cases, Information and Software Technology 45 (15), 925-938.

Thelin, T., Petersson, P., Runeson, P., 2002. Confidence Intervals for Capture-Recapture Estimations
in Software Inspections, Information and Software Technology 44 (12), 683-702.

Thelin, T., 2002. Empirical Evaluations of Usage-Based Reading and Fault Content Estimation for

18

Software Inspections, PhD Thesis, Dept. of Communication Systems, Lund University, Sweden.
Travassos, G., Shull, F., Fredericks, M., Basili, V. R., 1999. Detecting Defects in Object-Oriented De-

signs: Using Reading Techniques to Increase Software Quality, In: Proceedings of the Interna-
tional Conference on Object-Oriented Programming Systems, Languages & Applications, 47-56.

Vander Wiel, S. A., Votta, L. G., 1993. Assessing Software Design Using Capture-Recapture Meth-
ods, IEEE Transactions on Software Engineering 19 (11), 1045-1054.

Weller, E. F., 1993. Lessons from Three Years of Inspection Data, IEEE Software 10 (5), 38-45.
White, G. C., Anderson, D. R., Burnham, K. P., Otis, D. L., 1982. Capture-Recapture and Removal

Methods for Sampling Closed Populations, Technical Report, Los Alomos National Laboratory.
Wohlin, C., Runeson, P., Brantestam, J., 1995. An Experimental Evaluation of Capture-Recapture in

Software Inspections, Software Testing, Verification & Reliability 5 (4), 213-232.
Wohlin, C., Runeson, P., 1998. Defect Content Estimation from Review Data, In: Proceedings of the

20th International Conference on Software Engineering, 400-409.
Wohlin, C., Petersson, H., Höst, M., Runeson, P., 2001. Defect Content Estimation for Two Review-

ers, In: Proceedings of the 12th International Symposium on Software Reliability Engineering,
118-127.

Yang, M. C. K., Chao, A., 1995. Reliability-Estimations & Stopping-Rules for Software Testing,
Based on Repeated Appearance of Bugs, IEEE Transactions on Reliability 44 (2), 315-321.

