B. Regnell, P. Runeson and C. Wohlin, "Towards Integration of Use Case
Modelling and Usage-Based Testing", Journal of Software and Systems, Vol.
50, No. 2, pp. 117-130, 2000.

Towards Integration of
Use Case Modelling and
Usage-Based Testing

Bjorn Regnell, Per Runeson and Claes Wohlin

Abstract

This paper focuses on usage modelling as a basis for both requirements engineering
and testing, and investigates the possibility of integrating the two disciplines of use
case modelling and statistical usage testing. The paper investigates the conceptual
framework for each discipline, and discusses how they can be integrated to form a
seamless transition from requirements models to test models for reliability certifica-
tion. Two approaches for such an integration are identified: integration by model
transformation and integration by model extension. The integration approaches are
illustrated through an example, and advantages as well as disadvantages of each
approach are discussed. Based on the fact that the two disciplines have models with
common information and similar structure, it is argued that an integration may result
in coordination benefits and reduced costs. Several areas of further research are iden-
tified.

1. Introduction

Over the last decades, much effort has been devoted to software implementation
issues. However, as complexity grows, software development needs more than just
programming. Design paradigms, such as object orientation, have entered the scene
claiming to provide robust architectures and reusable components. Recently, the
focus of the software research and practice has also approached issues related to
requirements specification and reliability certification.

This paper presents recent research related to both these areas. The basic idea
behind the presented work is to combine and integrate two different approaches that
focus on the modelling of usage:

n Use Case Modelling, UCM, (Jacobson et al., 1992) and
n Statistical Usage Testing, SUT, (Mills et al., 1987).

Both UCM and SUT address phenomena related to the modelling of anticipated
system usage, although with different background and terminology. UCM focuses on
requirements analysis and usage modelling as a tool for describing and understanding

requirements, while SUT focuses on usage modelling to enable test case generation
for reliability estimation and certification.

In a survey of industrial software projects (Weidenhaupt et al., 1997), it is con-
cluded that there is an industrial need to base system tests on use cases and scenarios.
The studied projects, however, rarely satisfied this demand, as most projects lacked a
systematic approach for defining test cases based on use cases.

UCM was introduced in the object-oriented paradigm (Jacobson et al., 1992) to
complement traditional static object models with dynamic aspects. The work on use
case modelling has in an object-oriented context primarily been focused on the transi-
tion from use case based requirements to high-level design, and how use cases can be
used to find good object structures (Jacobson, 1995; Buhr and Casselman, 1996).

SUT, on the other hand, has focused on how to create a usage model that allows
for generation of test suites which resemble operational conditions, by capturing the
dynamic behaviour of the anticipated users. SUT research has concentrated on how
such a model can be made scalable (Runeson and Wohlin, 1992; Wohlin and Rune-
son, 1994), but the main focus has been on the usage model itself from a testing per-
spective and not on the process of creating it from a requirements perspective. Hence,
we see the need to study the common denominator of UCM and SUT in the perspec-
tive of requirements engineering, in search for an integrated framework for usage
modelling.

There is an intimate relation between requirements specification and system vali-
dation; the major goal of validation is to show, for example through testing, that a
system correctly fulfils its requirements. This fact is the main motivation behind
combining and integrating use case modelling and statistical usage testing. Modelling
effort related to the specification of system usage hopefully can be minimised if it can
be used for both purposes (Wohlin et al., 1994). Software developers want to avoid
modelling the same thing twice.

The main challenges in this work are:

n What concepts in use case modelling on the requirements level can be utilised
in usage-based testing for reliability certification?

n How can we create a seamless transition between usage models for require-
ments specification and usage models for testing?

The presented work includes a conceptual study of each of the approaches,
together with some preliminary results on how the approaches can be combined.
Future work on an integrated usage modelling approach is also discussed. Chapter 2
presents the major motivations to integration and gives a general overview of integra-
tion approaches. Chapter 3 focuses on concepts in usage analysis for requirements
specification with use cases, and Chapter 4 focuses on concepts in usage analysis for
system validation with statistical usage testing. Chapter 5 presents two approaches to
integrated usage modelling in more detail. Some conclusions are presented in
Chapter 6.

2. An Integrated View on Usage Modelling

A schematic picture of the software development process is shown in Figure 1. The

Abstraction

Level
A Requi t [[System
Eﬁgili;rt?(r)r:]egs | | Validation &
EXTERNAL Analysis Certification
VIEW
{’/\IIE\IIEVRNAL Validated | Design Testingl System
reg. spec. | | to be validated
| Implementation |
| | »
Time

Figure 1. Different abstraction levels over time.

figure focuses on two dimensions: time and abstraction level. System development
progresses from requirements elicitation and analysis, through design, implementa-
tion and testing, to validation and certification before delivery of a new system
release. During this progress of activities, the focus changes with respect to abstrac-
tion. Development starts with an external view of the system, continues during design
and implementation with a more detailed focus on system internal issues, before
returning to an external “black-box” view. The external view focuses on externally
observable functionality as seen by the users of the system, while the internal view
focuses on system architecture and the structural and behavioural properties of
objects within the system.

Usage modelling refers to the analysis and representation of system usage from
the external viewpoint and thus fits well with both the early and late phases in
Figure 1. This external view enables usage modelling on a high abstraction level, pre-
venting models to be cluttered with internal details of the system.

Usage modelling deals with the dynamic relations between the events that take
place when the system is used by its users. Thus, we are interested in stimuli to the
system and its responses from the system actions issued by user stimuli. From a
requirements perspective we want to capture what events should take place and in
what order. Use case modelling, as presented in Chapter 3, is focused on the model-
ling of such dynamic aspects. A use case model describes a collection of use cases.
Each use case covers a set of scenarios. The use cases determine the order of the
events and define the possible alternatives in the flow of events.

When the system has been implemented, its function is determined by its pro-
gram. System usage is, however, due to the free will of its human users, non-deter-
ministic. The flow of events in system usage includes points where the next event is
determined by a user action. A use case model represents the different usage possibil-
ities and thus allows for non-deterministic choices of the users. From a testing per-

spective, we want to be able to capture this non-determinism in statistical terms by
quantifying the probabilities (frequencies) of different alternative usages, in order to
make the testing conditions resemble the foreseen operating conditions. Statistical
usage testing, as presented in Chapter 4, is focused on both the usage dynamics and
usage statistics, and quantifies the usage probabilities in, so called, usage profiles or
operational profiles.

The statistical properties of system usage are also interesting from a requirements
perspective. Information on, for example, how often a certain service is used is
important input to the process of prioritizing requirements (Karlsson, et al., 1998).
The probabilities of combining certain services are vital information when analysing
how service combinations can interfere (Kimbler and Wohlin, 1995). Usage frequen-
cies may also be used to optimize user interfaces.

Both Requirements Engineering (RE) and the Verification & Validation (V&V)
have the same challenge of completeness and coverage. Have we covered all the
essential requirements? Does the set of test cases cover adequately the requirements?
Limited resources may require both requirements models and test models to be par-
tial, giving the challenge of finding a level of coverage that is a good approximation
of the complete system usage.

In summary, the commonalities between RE and V&V include:

1. Both areas desire models of system usage.

2. Both areas strive at an external view of the system.

3. Both areas benefit from quantification of usage frequencies.
4. Both areas have the challenge of adequate coverage.

Besides these commonalities, the motivation for integrating usage models in RE
with usage models in V&V is based on the following expected benefits:

1. Modelling effort is reduced, as the same information is used for many pur-
poses.

2. Traceability from requirements to test is promoted, which can be assumed to
lead to less expensive maintenance.

Both RE and V&V have a variety of approaches proposed for usage modelling. In
(Rolland et al., 1998) a survey of existing literature on scenarios and use cases in RE
shows a great span of available methods. In (Jarke, et al., 1998) a survey of industrial
practise revealed a great diversity in the ways that scenarios and use cases are
applied. In (Graham, 1994) a number of different black-box testing techniques are
outlined.

In this exploration of the possibilities of integration, we have chosen to focus only
on two particular approaches: an extended version of Jacobson’s use case modelling
(Regnell, 1996), and an extended version of Whittaker’s state-based markov model
(Whittaker and Thomason, 1994; Runeson and Wohlin, 1995). These approaches are
summarised in Chapter 3 and 4 respectively. Other specific approaches to use case
modelling and usage-based testing can of course be combined in a number of ways.
The specific integration approaches presented in Chapter 5 may be used as input to

further research on the integration of other specific RE and V&V approaches to usage
modelling.

In general, two different integration strategies can be identified, as illustrated in
Figure 2.

Use Case Model Transformation Test Model

Use Case Model Extension Use Case Model
with additional

information for
test case generation

Figure 2. Two ways of integrating usage modelling.

The first integration strategy, model transformation, is based on the assumption that
two different usage models are used: one for RE and one for V&V. The integration
strategy requires guidelines for how to transform the information in the use case
model in combination with additional test-specific information in the process of test
model building.

The second integration strategy, model extension, is based on the assumption that
a tailored use case model can be used directly for V&V, if it is extended with addi-
tional information necessary for testing.

The presented work represents an initial study on each of these strategies, but hard
evidence on which strategy fits best with which context requires further research.
There are, however, some basic reflections on the different strategies:

1. Model extension requires only one model, which can be assumed to imply less
modelling effort and less expensive maintenance, compared to model transfor-
mation.

2. Model transformation may be more appropriate if the models differ greatly
between requirements and test. By creating two models tailored for their spe-
cial purposes, no compromise is needed. The common information may still be
utilised through transformation rules.

Before we continue the investigation of the two proposed integration approaches, we
present a conceptual study of each of the specific methods for use case modelling
(Chapter 3) and statistical usage testing (Chapter 4) respectively.

3. Functional Requirements Specification with
Use Cases

The elicitation, analysis and documentation of requirements on software systems is a
crucial and non-trivial task (Loucopoulos and Karakostas, 1995; Bubenko, 1995).
Well defined concepts and methods are needed when constructing specifications that
represent requirements in an unambiguous, consistent, and complete manner. It is
also important to have representations of requirements that are easily understood by
the different stakeholders that take part in requirements analysis (Pohl, 1993). This
Chapter concentrates on use case modelling for eliciting, analysing and documenting
functional requirements. The use case concept has gained widespread acceptance
within methods and notations such as OOSE (Jacobson, 1992), OMT (Rumbaugh et
al., 1991; Rumbaugh 1994), the Booch method (Booch, 1994), ROOM (Selic et al.,
1994), Fusion (Coleman, et al., 1994), and UML (Fowler and Scott, 1997).

There are many different possibilities of applying use cases and scenarios in
requirements engineering. A survey of european software projects (Weidenhaupt,
1997) concluded that about two thirds of 15 visited projects used the OOSE (Jacob-
son, 1992) approach extended in various ways. Here we concentrate on one such
extension (Regnell, 1996; Regnell et al., 1995; Regnell et al., 1996).

The main purpose of the presentation of the use case modelling concepts in this
Chapter, and the statistical usage testing concepts in Chapter 4, is to provide a back-
ground to our objective of combining the two disciplines into an integrated frame-
work, as discussed in Chapter 5.

In the subsequent sections, an example from the domain of telecommunication
will be used as illustration. This example is a simplification of results from a case
study conducted as a prestudy for the presented work, and involves a simplified Pri-
vate Branch Exchange (PBX) with some common telephony services, such as uncon-
ditional call forwarding (CFU).

3.1 A Conceptual Framework for Use Case Modelling

The main idea behind use case modelling is to elicit and document requirements by
discussing and defining specific contexts of system usage as they are anticipated by
the different stakeholders in the requirements engineering process. The conceptual
framework for the presented use case modelling approach (Regnell et al., 1996) and
their relations are illustrated in Figure 3. These concepts are described in the subse-
guent sections.

Use cases can be viewed on different abstraction levels. At the environment
level, the use case is related to the entities external to intended system. On this level,
a use case is viewed as an entity representing a usage situation. At the structure
level, the internal structure of a use case is revealed together with its different vari-
ants and parts. The event level represents a lower abstraction level where the individ-
ual events are characterized.

participates-in satisfies

Envirlonment { q b .
Leve escribes-usage-o -
Use Case] 2
is-a-realisation-of
Structure

Level
. | Epi
consists-of

consists-of is-a
Event {

Level | Event | 154
is-a

Figure 3. Concept relations and levels of abstraction.

3.2 Environment Level

The users belong to the intended target system’s environment and can be either
humans or other software/hardware based systems. Inside the target system we have a
number of services. A service is a package of functional entities (features) offered to
the users in order to satisfy one or more goals that the users have. Table 1, includes

the services of our PBX example system.

Table 1. Services in the PBX example.

Service Description

NCC Normal Call with Charging
CFU Call Forward Unconditional
RMR Read Markings and Reset

Users can be of different types, called actors. A user is thus an instance of an
actor. An actor (also called user type or agent) represents a set of users that have
some common characteristics with respect to why and how they use the target sys-
tem. Each actor has a set of goals, reflecting such common characteristics. Goals are
objectives that users have when using the services of a target system. Thus, goals are

used to categorize users into actors. Table 2 shows the goals of the two actors sub-
scriber and operator in the PBX example.

Table 2. Actors and their goals in the PBX example.

Actors Goals

Subscriber GS1 To achieve communication with another subscriber

GS2 To cease communication with another subscriber

GS3 To achieve reachability at another destination

GS4 To cease reachability at another destination

Operator GO1 To maintain markings information representing call duration

GO2 To achieve a printout of the number of markings for each subscriber

GO3 To achieve a resetting of the number of markings for each subscriber

The goals are described as patterns using general temporal operators such as
achieve, cease, and maintain (Dardenne and van Lamswerde, 1993).

A use case represents a usage situation where one or more services of the target
system are used by one or more actors with the aim to accomplish one or more goals.
Table 3 shows the use cases of the PBX example, and their relation to actors, goals,
and services.

Table 3. Uses cases in the PBX example.

Use Cases Actors Goals Services
Normal Call Subscriber GS1, GS2, GO1 NCC
Activate CFU Subscriber GS3 CFU
Deactivate CFU Subscriber Gs4 CFU
CFU Call Subscriber GS1, GS2, GS3, GO1 CFU
Read Markings Operator GO2 RMR
Reset Markings Operator GO3 RMR

3.3 Structure Level

The structure level includes concepts that relates to the internal structure of use cases,
such as different variants and parts of a use case.

A scenario® is a specific realisation of a use case described as a sequence of a
finite number of events. A scenario may either model a successful or an unsuccessful
accomplishment of one or more goals. A use case may cover an unlimited number of
scenarios as it may include alternatives and repetitions. A scenario, however, is a spe-

1. Some authors use the terms scenarios and use cases as synonyms, but here we distinguish between
them, to differentiate between type level and instance level.

cific and bound realisation of a use case, with all choices determined to one specific
path. Table 4 shows a number of scenarios identified for the use case normal call.

Table 4. Scenarios for the use case “Normal Call”

Scenario Description

Reply Call to idle subscriber that replies

Busy Subscriber Call to busy subscriber

No Reply Call to idle subscriber that does not reply
Non-Existent Call to non-existent subscriber

Timeout Subscriber waits too long after offHook

The standardised language of Message Sequence Chart (MSC) (ITU-T, 1996;
Regnell et al., 1996) may be used to express the structure level of a use case graphi-
cally. A High Level Message Sequence Chart (HMSC) is illustrated in Figure 4. Each
scenario of the use case “normal call” is represented as an alternative.

Caller.state=id[g

i ! {

Reply [Busy] [NoRepIy] [NonExis] [Timeout]
| | |
< _Caller.state=id[g

Figure 4. High Level Message Sequence Chart.

Each box with rounded corners refers to either another HMSC at a sub-structure
level, or an MSC at the event level

Every use case (and scenario) has a context that demarcates the scope of the use
case and defines its pre-conditions (properties of the environment and the target sys-
tem that need to be fulfilled in order to invoke the use case) and post-conditions
(properties of the environment and the target system at use case termination). An
example of a pre-condition for the “CFU Call” use case is that “the CFU service has
been activated”. An example of a post-condition for the “normal call”” use case is that
“the caller is idle”. Pre- and post-conditions are shown in Figure 4 as diamond sym-
bols.

It is possible to have different degrees of scenario instantiation (Potts et al., 1994);
a completely instantiated scenario corresponds to a system usage trace, where the
sequence of events is totally ordered and every parameter has a specific value. A sce-
nario may also be on a slightly higher level, having symbolic names instead of spe-
cific parameter values.

In use cases and scenarios it may be possible to identify coherent parts, called epi-
sodes. Similar event sequences may occur in several use cases, and episodes can be
used as a modularisation mechanism to encapsulate use case parts and create a hierar-

chical use case model. We will not go into detail on episodes here, for more informa-
tion see (Potts et al., 1994; Regnell et al., 1996).

3.4 Event Level

The lower abstraction level of uses cases, scenarios, and episodes includes events of
three kinds: stimuli (messages from users to the target system), responses (messages
from the target system to users), and actions (target system intrinsic events which are
atomic in the sense that there is no communication between the target system and the
users that participate in the use case).

Stimuli and responses can have parameters that carry data to and from the target
system. In order to express parameters, and also conditions on data, a use case model
may be complemented by a data model. A simple representation of a data model for
the PBX example is given in Figure 5.

toneType =
(dialTone, ringSignal, ringTone, busyTone, errorTone, infoTone) ;
maxNumberOf Subscribers: Natural;
SubscriberType: record (
state: (idle, busy, off);
telNumber: TelNbrType;
CFU_active: Boolean;
CFU_number: TelNbrType;
markings: Natural;
talkingTo: SubscriberType) ;
SubscriberSet:
Set (1..maxNumberOfSubscribers) Of SubscriberType;

Figure 5. A data model for the PBX example.

Given a data model, we may express conditions on the data model that always
should be true. Figure 6 shows such invariants for our PBX example.

When describing the information exchange between actors and the target system,
it may be useful to define unique names for messages (stimuli and responses)
together with information on the data types of their parameters. Table 5 presents the
identified messages for our PBX example.

Based on the data model, the message definitions and natural language descrip-
tions of scenarios, MSC can be used to describe graphically the event level as shown
in Figure 7.

Each actor instance and the system are represented by a vertical time-axis, with
time progressing downwards. Stimuli and responses are represented by arrows
between actors and the system. Conditions are expressed as assertions on the data
model in Figure 5.

It is also possible to describe alternatives and repetitions on the event level.
Figure 8 shows a simple example of an alternative operator on the event level,
expressing a choice between either stimuli A or response B. For more details on oper-
ators for ordering events, see (Regnell et al., 1996).

10

Figure 8. Example of operator notation on the event level.

4. Reliability Requirements Specification and
Certification

Non-functional requirements are an essential part of requirements specifications. In
particular, the reliability requirements are often regarded as one of the most important
non-functional requirements. The reliability requirements cannot be formulated as a
single figure (e.g. probability for failure-free execution or mean time between fail-
ures), since more information is needed. The reliability depends not only on system
properties, for example correctness, but also on the system environment, i.e. how the

The telephone number is unique:

For-all X in SubscriberSet:
For-all Y in SubscriberSet:
if X<>Y then X.telNumber<>Y.telNumber;

If state is idle, the subscriber is not connected to another subscriber.

For-all X in SubscriberSet:
(if X.state=idle then X.talkingTo=nil)

If subscriber X is talking to Y then subscriber Y is talking to X:

For-all X in SubscriberSet:
if X.talkingTo <> nil then
X. state = busy and
Exist Y in Subscriberset:
Y.state=busy and Y.talkingTo=X and
X.talkingTo=Y;

Figure 6. Some invariants in the PBX example.

1

[Caller:Subscrider | System PBX| | Callee:Subscribr

< Caller.state=idle
offHook
< Caller.state=busy >

startTone(dialTone)

number(X)

stopTone(dialTone)

Number Analysis
I
< Callee.teINumber=X, Callee.state=idle
startTone(ringSignal)
< Callee.state=busy >
startTone(ringTone
offHook
stopTone(ringTone))
stopTone(ringSignal)

Connect

Caller.talkingTo=Callee, Callee.talkingTo=Caller

onHook

onHook

Disconnect
and
Update Markings

Caller.state=idle, Callee.state=idle

_-— am =

Figure 7. MSC for the scenario “Reply” of use case “Normal Call™.

system is used. It is necessary to take the anticipated usage into account as the relia-
bility of the system is dependent on the usage; the usage for which the requirement is
valid must be stated together with the requirements of the system.

Usage-based testing with reliability certification is a means for validating reliabil-
ity requirements. Functional requirements are validated at the same time. Thus,
usage-based testing allows for both functional requirements validation and reliability
certification.

This Chapter describes the concepts and representations of a particular usage-
based testing approach, and Chapter 5 provides examples of usage-based testing

12

Table 5. Messages in the PBX example.

Message Description

offHook From Subscriber when lifting receiver

onHook From Subscriber when hanging up the receiver
number(teINbrType) From Subscriber when dialling a Number
activateCFU(telNbrType) From Subscriber when activating CFU
deactivateCFU From Subscriber when deactivating CFU
startTone(toneType) To Subscriber when a tone is given
stopTone(toneType) To Subscriber when a tone is stopped
readMarkings From Operator when issuing a reading of markings
resetMarkings From Operator when issuing a reset of markings
markings(markingListType) To Operator when reporting the markings

models (using the PBX system of Chapter 3), and discusses how to integrate usage-
based testing with use case modelling.

4.1 Usage-based Testing

There are two major approaches to testing: black-box testing and white-box testing.
Black-box testing techniques take an external view of the system and test cases are
generated without knowledge of the interior of the system. White-box testing tech-
niques take an internal view and aim at covering all paths in the code or all lines in
the code or maximising some other coverage measure. The main objective of all test-
ing techniques is to validate that the system fulfils the requirements; mostly the focus
is on functional requirements, but test cases can also address quality issues. For
example, they can either be derived with the objective to locate as many faults as pos-
sible or to certify the reliability level of the software.

Usage-based testing implies a focus on detecting the faults that cause the most
frequent failures, hence maximising the growth in reliability. This paper focuses on
black-box testing and in particular on usage-based testing, which can be used to cer-
tify a particular reliability level and, of course, to validate the functional require-
ments.

The ability to certify software during testing is based on a user-oriented approach.
This requires a model of the anticipated usage of the software and quantification of
the expected usage as the software is released. Several approaches have been investi-
gated and used in this area. Musa (1993), for example, advocates operational profile
testing, Mills et al. (1987) discuss random testing based on the operational profile and
Runeson and Wohlin (1992; 1995) present an approach with user-state dependent
random testing based on the operational profile. The focus in this paper is on the lat-
ter approach, i.e. statistical usage testing based on a state hierarchy model (Wohlin
and Runeson, 1994; Runeson and Wohlin, 1998). The subsequent sections present the
conceptual framework for this approach and discuss how the concepts are repre-
sented in the state hierarchy model.

13

4.2 A Conceptual Framework for Usage-based Testing

A system consists of a number of services provided to the system users. These serv-
ices are implemented by objects. The objective here is to provide a framework for
modelling usage and to enable reliability certification of objects that are parts of a
system, as well as certification of an entire system. In Figure 9, the relations between
target system and environment concepts are illustrated. These concepts form the basis
for creating a model of the usage of the certification object and also for quantifying
the anticipated usage. The concepts of the usage specification test model are further
discussed below and shown in Figure 10.

Usage
described by Specifigation generates
= Service / \ Test
e Usage articipates-in Cases
5 consists-of
; consists-of
5 receives User generates
uses
_______ Response | — — 7 — — —| Stimuli |~ — ~
= .
[J] output-from Certification | fypyt-to
% Object
>,
2 in
3] ‘/{
>
< Reliability

Figure 9. Certification concepts and their relationships.

The concepts in Figure 9 can be defined as follows. The software to be certified is
referred to as a the certification object. A certification object has a certain reliabil-
ity, which is the probability that the object works as intended for a specified time and
in a specified service usage environment. The certification object is used by one or
many users, which can be either human users or other systems. The communication
between the user in the environment and the certification object is made through
stimuli generated by the user and responses sent by the object. The user of the certi-
fication object participates in service usage, which is described by the usage specifi-
cation. From the usage specification, test cases are generated including stimuli and
responses to/from the certification object.

To enable certification, the environment must be modelled to allow for generation
of test cases which resemble the anticipated behaviour in the operational phase. Thus,
modelling concepts capturing the environment are needed. Depending on the type of
testing being applied, different test models have to be derived. The focus here is on
usage-based testing, which means that the test model is a usage specification, see
Figure 10. The usage specification consists of a usage model, which describes the
possible behaviour of the users, and the usage profile, which quantifies the actual
usage in terms of probabilities for different user behaviour.

14

P Usage .
consstiy Specification wf‘o‘c

User eta. Usage Usage
Type consists-of Model Profile
is-a _ 8 gonsists-of consists-of consists-of
consists-of 7
User 73
Sub-type) System Behaviour |Hierarchy
_ S Variable Profile Profile
is-a 1
) . S
User Behaviour Link p’connects
%)
P 9 S &
& O, N D
uses /\o 29 connects & @. z
- O ! @
Service bq? Q \) o
y o =
? — Ihas Transition | 3
% Transition Probability 3
S,
State
State has Weight

Figure 10. The usage test model and its usage-oriented modelling concepts.

The usage model is described through a hierarchy which defines the users and
their relations (user types and user sub-types), the behaviour models which define
the user states and transitions between user states, the system variables which cap-
ture important assets of the system state and the links which define connections
between different behaviour models and system variables.

The usage profile is divided into a hierarchy profile, which describes the proba-
bilities for choosing one specific user in the environment, and the behaviour profile,
which models the behaviour of a single user, while using the available services.

The hierarchy is a tree structure where the nodes in the tree represent groups of
users, based on their usage models and usage profiles. A user type is defined as the
collection of users having the same possible behaviour (normally equivalent to that
the users have the same goal, cf. actor), i.e. they have exactly the same behaviour
models. A user sub-type is a further division of the users into a group where all users
also have the same behaviour profile, hence having a similar statistical behaviour.
The users are instances of a user sub-type and each user has access to a set of serv-
ices, which usage is described by behaviour models.

4.3 Hierarchical Representation of User Behaviour and

15

Usage Profiles

The usage model has to two main parts, the hierarchy and the behaviour parts. The
two model parts are illustrated through a small example in Figure 11 and Figure 12,
which show a part of the PBX example.

For each instance of a service, there is a behaviour model, which consists of states
and transitions. The services in Figure 11, has been divided into states, and the possi-
ble transitions among the states are also shown.

User Spjz User Spjz User Op;
Service NCC Service CFU Service NCC Service CFU Service RMR

Behaviour
Sl (B R

Figure 11. Behaviour model for a part of the PBX example.

It should be noted that the states are external states, i.e. user states, which are
only a subset of the possible system states. User states describe the externally visible
states of the system.

The total state of the usage model is a vector T of states for all behaviour models:

: = [..t t t t t
Tenaviour model [Spis NCC S CFU Sy, NCC S, CFU Opy RMR:|
where t; means the state of service j for user i.

Probabilities are assigned to each arc in the instances of the behaviour models,
hence taking different profiles into account. Furthermore, state weights are assigned
to each state (denoted W, for service k), which reflect the overall stimulus frequency

of the user being in that state.

In Figure 12, the hierarchy is shown, which breaks down the usage of the certifi-
cation object into individual users and their services.

Two user types have been identified, which implies, for example, that all users of
user type Subscriber must have the same behaviour model. Subscriber is divided into
two user sub-types, hence modelling differences in the behaviour profiles, i.e. users
Sio1 through S5 do not have the same behaviour profiles as users Syj; and Sjp.
These users use the services NCC and CFU.

The Operator user type only consists of one user sub-type Op, and only one user
exists of this sub-type, i.e. user Op;. This user uses a single service, i.e. service RMR.
(This example is further elaborated in Section 5.1.)

The hierarchy profile is a little bit more complicated. The complication arises as it
is reasonable to change the probabilities in the hierarchical profile based on the state
of the users. The probability for the selection of a service (denoted p for service k)
equals the current state weight of the service, divided by the sum of the current state
weights for all services.

16

Usage level
User type level

User sub-type level

Service
level

Figure 12. The hierarchy part of the usage model, using the PBX example

W, .
p, = —— ifatleastone W;=0
2.V

For each transition in a behaviour model, the hierarchy profile is updated. The
update algorithm is described in more detail in (Runeson and Wohlin, 1998).

The usage specification is run through, using random numbers. To generate test
cases, the tester is supposed to act as the system and provide the expected responses
of the certification object using the requirements specification as a basis. The stimuli
generated from the usage specification and the responses from the tester are stored on
a test file. The test generation procedure is further described in (Wesslén and Wohlin,
1995).

5. Two Approaches to Integrated Usage
Modelling

The combination of use cases and usage-based testing provides a comprehensive
view of the software development process from a user perspective (Wohlin et al.,
1994). The user does not have to bother about internal technical solutions. Instead the
user can focus on the external view and the actual use of the system. However, to
make the combination seamless, there is a need for bridging the conceptual gap
between the two approaches. This Chapter presents two approaches to integration.
As stated in Chapter 1, use case modelling and usage based testing are sprung out
of different traditions and have different objectives. It should be noted, however, that
both usage-based testing and use case modelling need similar information, which

17

means that the information is not collected solely for either requirements specifica-
tion or testing purposes; use case models contain much information that can be used
for system validation. Although there are many conceptual similarities between use
case modelling, as presented in Chapter 3, and usage-based testing, as presented in
Chapter 4, there does not exist a simple one-to-one mapping between the concepts in
the two disciplines. The use case modelling concepts do, for example, not cover the
stochastic semantics of usage profiles, and the state hierarchy model does, for exam-
ple, not cover the concepts of actor goals or pre- and post-conditions.

When trying to combine the concepts of Section 3 and Section 4 to form an inte-
grated approach to usage modelling, two integration approaches can be identified: (1)
we could try to transform a use case model into a state hierarchy model by translating
the concepts in the former to the concepts in the latter according to some concept
mapping rules, or (2) we could try to extend the use case model to incorporate sto-
chastic semantics and the necessary information for test case generation.

Section 5.1 and Section 5.2 proposes a working procedure for each of these inte-
gration approaches, and the PBX example presented in Section 3 is followed in both
approaches. Section 5.3 discusses their advantages and disadvantages.

5.1 Approach 1: Integration by Transformation

The first approach to integration is based on the observation that many of the con-
cepts in use case modelling and statistical usage testing have similar semantics. For
such similar concepts it may be possible to use simple translation guidelines, and
together with the necessary additional information on the stochastic properties of
users we can create a state hierarchy model by transforming the use case model. This
transformational approach is sketched in Figure 13.

Use Case Model m==! Transformation * State HIerarChy Model
Actors User Types & Sub-types
Services Services
Use Cases gegak\)/i%ur)

iuli L. . ub-behaviour
ﬁg?p“(lhses Additional Information Transitions
i User States
System Actions Probabilities of service usage Behaviour Profile
Probabilities of user stimuli Hierarchy Profile
Number of users
User states

Figure 13. Transforming a use case model into a state hierarchy model.

In general, the transformation includes moving from an event based representa-
tion to a state-based representation and adding other necessary information.

When creating the state hierarchy model, it may be suitable to follow the method
outlined below (Runeson and Wohlin, 1998). The transformation activity uses the
concepts captured by the use case model and additional information of usage proba-
bilities and quantities.

18

. ldentify services
. Define user types

. Define user sub-types and instantiate users

1

2

3

4. Create behaviour models

5. Define the behaviour usage profile
6

. Define the hierarchy usage profile

This method shall not be seen as completely defined steps; iterations are per-
formed when needed. Below the steps are presented.

Identify services. The services can be used directly as defined in the use case model,
see Table 1. In our example the resulting service list is: NCC (Normal Call with
Charging), CFU (Call Forward Unconditional) and RMR (Read Markings and
Reset).

Define user types and sub-types. The actors in the use case model are the basis for
the upper levels of the hierarchy model. Each actor becomes a user type and user sub-
types are added if there are different probability profiles for a user type. Additional
information on the estimated number of instances of each user sub-type determines
the user level in the hierarchy model.

The example has two actors in the use case model, Subscriber and Operator (see
Table 2), which constitute user types in the usage model. The Subscriber user type
has access to two of the services, NCC and CFU, and the Operator user type has the
RMR service.

In addition to the use case information, quantitative information is gathered from
other sources. There are two variants of the Subscriber type, one with high frequency
usage and one with low frequency; each constituting a user sub-type. For each of the
user sub-types, the number of instances are defined as well. There are 5 low-fre-
quency subscribers, 2 high-frequency subscribers and 1 operator. These steps result
in the hierarchy model as presented in Figure 12.

Create behaviour and sub-behaviour models. The information for the behaviour
models are not directly available in the use case model as the information for the hier-
archy model are. However, there are parts of the information in the use cases and the
scenarios (see Table 3 and Table 4 respectively) which can be integrated to a behav-
iour model for the service in question. Furthermore, the messages (see Table 5) con-
stitute the interface between the system and its users and will hence appear in the
usage model as well.

The behaviour model is a state-transition diagram in which use cases and scenar-
ios constitute parts. The state information can in parts be collected from the pre- and
postconditions for the use cases. The messages are attached to the transitions in the
behaviour model, as stimuli to the system.

In our example, the NCC service behaviour model is further elaborated. The Nor-
mal Call use case and its five scenarios (Reply, Busy Subscriber, No Reply, Non-
Existent and Timeout) is the starting point for the behaviour modelling. The first state

19

to define is the starting state, Idle, when no actions haave taken place, see Figure 14.
Then we follow the reply scenario, see Figure 7. The first stimulus that can be gener-
ated from the subscriber is offHook, resulting in the DialTone state. Next step is to
enter a number and the subscriber state moves into RingTone. The called part (called
B-part) answers the call and the state is moved into Talking. Finally when they close
the call with onHook, the subscriber is back to the Idle state.

Figure 14. Behaviour model for service NCC, scenario Reply.

All the other scenarios are taken into account in the model, resulting in the model
in Figure 15. It can be noted that there are a few new labels on the transitions in addi-
tion to the messages in Table 5. Timeouts are modelled as stimuli. There are also
transitions labelled B-Answer and B-Calling which involve another behaviour model,
denoted with asterisk in the figure. These are replaced with links, meaning that transi-
tions in the other behaviour model causes a transition in the current model.

B-Calling*

onHook

Figure 15. Behaviour model for service NCC, all scenarios integrated.

Define the behaviour usage profile. When the behaviour models are ready, the
behaviour profile can be defined. There is no quantitative information on the system
usage in the use cases, so this information has to be collected elsewhere. Typical
information sources are measurements on earlier releases of the system and inter-
views with intended users of the system.

20

Two usage profiles are defined, for the NCC behaviour model, one for each user
sub-type. Fictitious data is presented in the tables below.

Table 6. Behaviour profile “Subscriber”

State Transition Subscri, | Subscrp
Idle offHook 1.0 1.0
DialTone number(idle) 0.70 0.60
number(busy) 0.25 0.30
number(non-exist) 0.03 0.03
timeOut 0.02 0.02
RingSignal | offHook 1.0 1.0
RingTone onHook 0.98 0.98
timeOut 0.02 0.02
Talking onHook 1.0 1.0
BusyTone onHook 1.0 1.0
NoTone onHook 1.0 1.0
ErrorTone onHook 1.0 1.0
InfoTone onHook 1.0 1.0

The state weights represent the frequency of use when being in the respective
states of the behaviour model.

Table 7. State weights.

State weight | Subscriy | Subscry,;
W idle 1 2

W DialTone 100 100

W RingTone | 100 100

w RingSignal 0 S0

W Taiking 15 10

W BusyTone 100 100

W NoTone 100 100

W ErrorTone 100 100

W infoTone 100 100

The state weights for the idle state show that a subscry; has twice as high fre-
quency for starting a talk; the state weights for the talking state show that a subscry;
talks 50% longer than a subsc,,

21

Define the hierarchy usage profile. Finally the hierarchy profile is calculated, based
on the state weights for each service.

P—W‘

i 16
2.

k=1

The concept translations discussed are, as shown in the example, not sufficient for
automatic transformation. There is still a need for skill and intellectual work in the
creation of the usage model.

It can be concluded that the use case model can be transformed into a usage
model. The environment and structure levels contribute to the hierarchy model with a
few additional modelling decisions. The behaviour model derivation is supported by
the structure and event levels, while the profile information has to be collected from
other sources.

5.2 Approach 2: Integration by Model Extension

Instead of creating a completely new model by transforming the use case model into
a state hierarchy model, we can adopt the principal ideas behind statistical usage pro-
files and create an extended use case model, complemented with event statistics. If
we can create well defined semantics for how test cases can be generated directly out
of the use case model, we will save the effort of making two different models. The
model extension approach is illustrated in Figure 16.

Use Case Model Stochastic Use Case Model
use case model complemented with:
Actors
Services Number of users
Use Cases H Prob. of service invocations
Episodes = Model Extension > Prob. of use case invocations

Stimuli
Responses
System Actions

Figure 16. Extending a use case model with additional information needed
for test case generation.

The basic idea behind the model extension is to complement every part of the use
case model where there are non-deterministic choices with the probabilities of the
different choices.

Environment level. On the environment level, we have to extend the use case model
with information on the number of instances of each actor and the probabilities for
each actor to generate stimuli to the system. Furthermore, it has to be analysed if
there are variants of actors with respect to their usage profile.

22

In our example, there are 7 instances of the subscriber actor and 1 instance of the
operator actor. There are two variants of the subscribers, with respect to their usage
frequency, subscry; and subscr,. This information and the fictitous usage profile is

summarized in Table 8.

Table 8. Added information to the use case model on the environment level.

Actor Variants Use Cases
<0.95> | Subscriber | <0.55> | Subscr, | <0.7> Normal Call
(7 (5) <0.05> | Activate CFU

<0.05> | Deactivate CFU
<0.2> CFU Call
<0.45> | Subscry; | <0.6> Normal Call

(2) <0.05> | Activate CFU
<0.05> | Deactivate CFU
<0.3> CFU Call
<0.05> | Operator none <0.7> Read Markings
Q) <0.3> Reset Markings

Structure level. On the structure level we have to add profile information to the sce-
narios. To each branch in the HMSC flow (see Figure 4), a probability is attached.
The resulting use case with profile information for the scenarios in the use case Nor-
mal Call with Charging is presented in Figure 17.

Event level. On the event level, probabilities are attached to each choice in the
model. For example, the alternative operator introduces a non-deterministic choice
between two or more alternatives. If we decorate the alternative operator, as shown in
Figure 18, with probabilities, we can draw random numbers to decide which alterna-
tive is chosen during test case generation. This way we can construct stochastic
semantics for each operator that determines how to generate scenarios. The scenarios
are then used as test cases.

Caller.state=id[

[T N4 T 1
<0.55> <0.25> <0.15> <0.03> <0.02>

A I TR

[Reply | [Busy | [NoReply|| NonExis}(Timeout

Figure 17. MSC for the use case NCC extended with profile information.

23

alt

A Probability of A is pp

B Probability of B is pg (=1-p,)
rep/ c Probability of continuing the repetition is py

Probability of leaving the repetition is py

Figure 18. Operators extended with probabilities.

For each actor-service combination an invocation probability can be given to
reflect how likely it is for this service to be selected for a given actor. As many users
may interact simultaneously with the system, we need to specify the likelihood of the
next event belonging to the same service invocation. To model this, we introduce for
each possible actor-service combination a continuation probability that states the
probability that the next event is within the same service invocation.

5.3 Discussion

Both the presented approaches to integration of use case modelling and statistical
usage testing have shown to be feasible in a pilot study conducted on a PBX system,
but there is a need for further investigation. This paper presents some examples from
the pilot study, together with some preliminary observations and findings, but exten-
sive case studies are needed to evaluate the two approaches, before deciding on
which approach is preferable in which situation.

The transformation approach has the advantage of being based on two relatively
mature disciplines which ends up in two models, each specifically defined for its pur-
pose. The transformation rules support the modelling activities. The major disadvan-
tage of this approach is the necessity of dealing with two different conceptual
frameworks and, and having to perform the transformation between the models.

The extension approach has the advantage of not needing a second model, as it,
instead, extends the modelling power of use cases with stochastic semantics. We can
stick to the same conceptual framework for our requirements level usage model and
decorate the model with probabilities of usage to enable reliability certification.
Thus, the event based semantics does not need to be transformed into state based
semantics.

24

6. Conclusions and Further Research

There remains many challenges in both requirements engineering and requirements-
based system validation, and we believe that usage modelling will play an important
role in both disciplines. Reliability certification is still in the cradle, but quantifica-
tion of software quality will be a competition factor in the future, hence usage-based
testing and a user perspective on the software are important. Use cases provide the
means for communication between users and developers in the requirements phase,
and usage-based testing allows for user evaluation prior to releasing the software.
The presented work addresses conceptual issues related to usage modelling and its
application to both requirements engineering and testing. The objective is to integrate
use case modelling and usage-based testing to form a comprehensive user-centred
framework that enables both functional requirements specification and reliability cer-
tification. The presented results include a conceptual study of use case modelling and
statistical usage testing based on the state hierarchy model. Both modelling tech-
nigues rely on similar concepts, which suggests that an integration is feasible. Two
integration approaches are identified. The first approach aims at establishing transfor-
mations rules that allow use case models to be transformed into state hierarchy mod-
els. The second approach aims at extending use case models with stochastic
semantics to allow test case generation directly from use case models. We believe
that both approaches are feasible, but further research is needed to fully assess the
virtues of each approach. Some of the areas where further research is needed are:

n Validation of rules for transformation of event-based use case models to state-
based test models.

n Stochastic semantics of use case models for test case generation.

n Introduction of time in stochastic use case models.

n Empirical studies of an integrated usage modelling approach.
Acknowledgements. The authors would like to thank our colleague, Anders Wesslén
for giving valuable comments on the paper. This work was financially supported by

the National Board for Industrial and Technical Development, (NUTEK), Sweden,
Reference P10505-1.

7. References

Booch, G., Object-Oriented Analysis and Design with Applications, Second Edition,
Benjamin/Cummings Publ., 1994.

Bubenko, J. A., “Challenges in Requirements Engineering”, Proceedings of Second
International Symposium on Requirements Engineering, pp. 160-164, York,
UK, March 1995.

25

Buhr, R. J. A, Casselman, R. S., Use Case Maps for Object-Oriented Systems, Pren-
tice Hall, 1996.

Coleman, D., Arnold, P., Bodoff, S., Dollin, C., Gilchrist, H., Object-Oriented Devel-
opment - The Fusion Method, Prentice Hall, 1994.

Dardenne, A., van Lamsweerde, A., Fickas, S., “Goal-directed Requirements Acqui-
sition”, Science of Computer Programming, Vol. 20, pp. 3-50, 1993.

Fowler, M., Scott, K., UML Distilled: Applying the Standard Object Modelling Lan-
guage, Addison Wesley, 1997.

Graham, D. R., “Testing”, Software Engineering Encyclopedia, (J. J. Marciniak, ed.),
Vol. 2, pp. 1330-1353, John Wiley & Sons, 1994.

ITU-T Recommendation Z.120, Message Sequence Chart (MSC), International Tele-
communication Union, 1996.

Jacobson, I., Christerson, M., Jonsson, P., Overgarrd, G., Object-Oriented Software
Engineering - A Use Case Driven Approach, Addison-Wesley, 1992.

Jacobson, 1., “A Growing Consensus on Use Cases”, Journal of Object-Oriented Pro-
gramming, pp. 15-19, March-April 1995.

Jarke, M., Pohl, K., Haumer, P., Weidenhaupt, K., Dubois, E., Heymans, P., Rolland,
C., Ben Achour, C., Cauvet, C., Ralyté, J., Sutcliffe, A., Maiden, N. A. M.,
Minocha, S., “Scenario Use in European Software Organisations - Results
from Site Visits and Questionnaires”, Report of ESPRIT Project CREWS, no.
97-10, 1997.

Available via e-mail: crewsrep@informatik.rwt-aachen.de.

Karlsson, J., Wohlin, C., Regnell, B., “An Evaluation of Methods for Prioritizing
Software Requirements”, Information And Software Technology, (39) 14-15,
pp. 939-947, 1998.

Kimbler, K., Wohlin, C., “A Statistical Approach to Feature Interaction”, In Proceed-
ings of TINA’95, pp. 219-230, Melbourne, Australia, March 1995.

Loucopoulos, P., Karakostas, V., System Requirements Engineering, McGraw-Hill,
UK, 1995.

Mills, H. D., Dyer, M., Linger, R. C., “Cleanroom Software Engineering”, IEEE Soft-
ware, pp. 19-24, September 1987.

Musa, J. D., “Operational Profiles in Software Reliability Engineering”, IEEE Soft-
ware, pp. 14-32, March 1993.

Pohl, K., “The Three Dimensions of Requirements Engineering”, Proceedings of 5th
International Conference on Advanced Information Systems Engineering, pp.
275-292, Springer-Verlag, 1993.

Potts, C., Takahashi, K., Anton, A., “Inquiry-Based Requirements Analysis”, IEEE
Software, pp. 21-32, March 1994,

26

Regnell, B., Kimbler, K., Wesslén, A, “Improving the Use Case Driven Approach to
Requirements Engineering”, Proceedings of Second International Symposium
on Requirements Engineering, pp. 40-47, IEEE Computer Society Press,
March, 1995.

Regnell, B., Hierarchical Use Case Modelling for Requirements Engineering, Tech-
nical Report 120, Dept. of Communication Systems, Lund University, Tech.
Lic. dissertation, 1996.

Regnell, B., Andersson, M., Bergstrand, J., “A Hierarchical Use Case Model with
Graphical Representation”, Proceedings of International Symposium and
Workshop on Engineering Computer-Based Systems, pp. 270-277, IEEE Com-
puter Society Press, March, 1996.

Rolland, C., Ben Achour, C., Cauvet, C., Ralyté, J., Sutcliffe, A., Maiden, N., Jarke,
M., Haumer, P., Pohl, K., Dubois, E., Heymans, P., “A Proposal for a Scenario
Classification Framework”, Requirements Engineering Journal, 3:1, 1998.

Rumbaugh, J., Blaha, M., Lorensen, W., Eddy, F., Premerlani, W., Object-Oriented
Modeling and Design, Prentice Hall, 1991.

Rumbaugh, J.,“Getting Started - Using Use Cases to Capture Requirements”, Journal
of Object-Oriented Programming, pp. 12-23, June 1994,

Runeson, P., Wohlin, C., “Usage Modelling: The Basis for Statistical Quality Con-
trol”, Proceedings 10th Annual Software Reliability Symposium, Denver, Colo-
rado, pp. 77-84, 1992.

Runeson, P., Wohlin, C., “Statistical Usage Testing for Software Reliability Control”,
Informatica, Vol. 19, No. 2, pp. 195-207, 1995.

Runeson, P., Wesslén, A., Brantestam, J., Sjostedt, S., “Statistical Usage Testing
using SDL”, SDL"95 with MSC in CASE, pp. 323-336, edited by R. Braek and
A. Sarma, Elsevier Science B. V., 1995.

Runeson, P., Wohlin, C., “A Dynamic Usage Modelling Approach to Software Relia-
bility Engineering”, In Models for Estimation of Software Faults and Failures
in Inspection and Test, pp. 119-146, PhD thesis, Department of Communica-
tion Systems, Lund University, Lund, Sweden, 1998.

Selic, B., Gullekson, G., Ward, P. T., Real-Time Object-Oriented Modeling. Wiley &
Sons, 1994,

Weidenhaupt, K., Pohl, K., Jarke, M., Haumer, P., “Scenario Usage in System Devel-
opment: A Report on Current Practice”, IEEE Software, March, 1998.

Wesslén, A., Wohlin, C., “Modelling and Generation of Software Usage”, Proceed-
ings Fifth International Conference on Software Quality, pp. 147-159, Austin,
Texas, USA, 1995.

Whittaker, J. A., Thomason, M. G., “A Markov Chain Model for Statistical Software
Testing”, IEEE Transactions on Software Engineering, Vol. 20, No. 10, pp.
812-824, 1994.

27

Wohlin, C., Runeson, P., “Certification of Software Components”, IEEE Transac-
tions on Software Engineering, Vol. 20, No. 6, pp. 494-499, 1994,

Wohlin, C., Regnell, B., Wesslén, A., Cosmo, H., “User-Centred Software Engineer-
ing - A Comprehensive View of Software Development”, Proceedings of Nor-
dic Seminar on Dependable Computing Systems, Denmark, August 1994.

28

