
Software Component Decision-making: In-house, OSS, COTS or Outsourcing - A
Systematic Literature Review

Deepika Badampudia, Claes Wohlina, Kai Petersen∗,a

aBlekinge Institute of Technology, Karlskrona, Sweden

Abstract

Context: Component-based software systems require decisions on component origins for acquiring components. A component
origin is an alternative of where to get a component from.

Objective: To identify factors that could influence the decision to choose among different component origins and solutions for
decision-making (For example, optimization) in the literature.

Method: A systematic review study of peer-reviewed literature has been conducted.
Results: In total we included 24 primary studies. The component origins compared were mainly focused on in-house vs. COTS

and COTS vs. OSS. We identified 11 factors affecting or influencing the decision to select a component origin. When component
origins were compared, there was little evidence on the relative (either positive or negative) effect of a component origin on the
factor. Most of the solutions were proposed for in-house vs. COTS selection and time, cost and reliability were the most considered
factors in the solutions. Optimization models were the most commonly proposed technique used in the solutions.

Conclusion: The topic of choosing component origins is a green field for research, and in great need of empirical comparisons
between the component origins, as well of how to decide between different combinations of them.

Key words:
OSS, COTS, In-house development, Outsourcing, Decision-making, Component-based software engineering

1. Introduction

Component-based software development usually involves as-
sembling and developing reusable components [32]. In this
study a component is referred to as an asset, which when in-
corporated into a system adds value (functional and/or non-
functional) to the end customer. Hence assembling or develop-
ing operating systems components or databases components are
out of the scope of this study. Each component can be obtained
from a different source, we refer to the sources as component
origins in this study.

Four of the widely used component origins are considered in
this study as follows:

1. In-house developed components: Components are devel-
oped within the company.

2. Components off-the-shelf (COTS): Commercial compo-
nents are externally bought from another company/vendor.

3. Open Source Software (OSS): Open source components
are externally obtained from the OSS community.

4. Outsourced components: The development of components
is outsourced (or subcontracted).

∗Corresponding author
Email addresses: deepika.badampudi@bth.se (Deepika Badampudi),

claes.wohlin@bth.se (Claes Wohlin), kai.petersen@bth.se (Kai
Petersen)

URL: http://www.bth.se/ (Deepika Badampudi)

These component origins have been chosen as they are well-
defined options related to developing with components (see for
example [2], [11] and [12]).

Depending on the goal, the decision-maker might decide to
use one of the component origins. For example, if reducing
the overall cost of the project is the goal, the decision-maker
might select a component origin which is cost effective. How-
ever, this decision is not easy due to the uncertainties involved
in software projects. In addition, there is often more than one
goal that needs to be considered in such decisions. In order to
make an informed decision, the decision-maker should consider
all the factors and their trade-offs that could influence a decision
to select a component origin. Factors are project attributes (for
example, time and cost), project activities/processes (for exam-
ple, maintenance and integration) and non-technical factors (for
example, technical support and source code availability). The
objective of this paper is to identify the factors that influence the
decision to select a component origin and the solutions on how
to make a choice based on the factors (for example, through an
optimization model).

The strategic decision of where to get components from is
a complex one, and has major implications that may not be
overseen immediately. For example, on the decision level to
choose component origin we may begin with a make-or-buy
decision, which is to build in-house or to get components ex-
ternally. Then when deciding to get components externally, ad-
ditional implications may play into the decision. For example,

Preprint submitted to Journal of Systems and Software July 12, 2016

*Manuscript
Click here to view linked References

http://ees.elsevier.com/jss/viewRCResults.aspx?pdf=1&docID=11617&rev=2&fileID=265007&msid={D3ADAC50-6DCD-421C-ADC6-14A4D5A2FCFC}

when outsourcing development to another company located, for
example, in a different country, as we are customers, we can still
influence the development processes, and have control over the
evolution of components. When deciding to get COTS com-
ponents, then we have less influence, but not the challenge of
transferring knowledge, learning, etc. that may occur in out-
sourcing. This indicates that, from a long-term strategic per-
spective the decision of where to get components from may
have important implications, on for example, effort. Practition-
ers can benefit from knowing the factors that could influence
the decision to choose among different component origins and
possible solutions that support decision-making process.

The individual component origins (COTS, OSS, in-house de-
veloped components and outsourced components) have already
been well explored in a number of existing literature reviews.
Hauge et al. [30], for example, conducted a systematic litera-
ture review on OSS, and Maras et al. [31] conducted a review
on developing software with components such as COTS. The
selection of actual components may take place on multiple de-
cision levels, namely choosing the component origin, choosing
the provider, and choosing the actual component. Secondary
studies on component provider selection [3] and component se-
lection [21] exist. No systematic literature review addressing
decision-making with regard to component origins was iden-
tified, highlighting the need for such a review of the literature.
Hence, the inclusion and exclusion criteria focus on the compo-
nent origin, the decisions on different levels are not independent
as is shown in the Figure 1. As there is no synthesis on the com-
ponent origin decision level, this study focuses on component
origin selection. The decisions on how to select and integrate
component (after the component origin is chosen) are not con-
sidered within the scope of this study.

Systematic review studies are a means to aggregate evidence
through a scientific and repeatable process. A systematic liter-
ature review was used as the research method to find the fac-
tors and solutions in the literature using the guidelines in [13]
and [18]. The guidelines in [34], [33], [19] and [15] are used
for quality assessment, data analysis, classification of research
types and validation of the study respectively. Systematic re-
view studies are a means to aggregate evidence through a scien-
tific and repeatable process. The specific contributions achieved
through the systematic review are the identification of:

• C1: the research types and methods used to evaluate the
factors and solutions.

• C2: the factors considered in comparing two or more com-
ponent origins in a way that facilitates decision-making.

• C3: the solutions to decision-making (for example, opti-
mization).

• C4: the research gaps and future directions.

The remainder of this paper is structured as follows: Section
2 presents related work on existing literature reviews closely
related to our study. Section 3 presents the research method.
The results are presented in Section 4 and discussed in Section
5. Section 6 concludes the paper.

2. Related Work

Three different levels of decisions are recognized as shown in
Figure 1. The light grey block represents the decision level. The
white block represents the decision space where the different
options (dark gray) are traded-off. The arrows represent the de-
cision control flow. As seen in Figure 1 the decision is not taken
on the same level, the control shifts across different levels. For
example, once the component origin is chosen, the provider is
selected followed by the actual component selection. However,
while evaluating components, the decision-maker might want
to consider alternative provider or even an alternative compo-
nent origin. This indicates that once a decision is taken at a
decision level, it can be revised by the activities in the next de-
cision level. The decision on each decision level is a research
study in itself.

The focus is delimited to decision-making choosing between
the four component origins: OSS, COTS, developing compo-
nents in-house, and outsourcing the development of compo-
nents.

Figure 1: Decision levels

Secondary studies on decision level for provider [3] and com-
ponent selection [21] have been conducted. No systematic lit-
erature review on the topic of component origin selection while
using a systematic approach for study identification (snowball
sampling [17] and database search [16]) was identified. Primary
studies to select component origins exist, although the research
problem to select component origin is not among the frequently
researched topics [20]. In the study [20] different research top-
ics on component-based software engineering from its incep-
tion were reviewed. The results in [20] indicate that none of the
most researched topics is based on decision-making to select
the component origin. However, industrial research partners
have corroborated that it is an area where improvements can be
made. Based on the industry interest and the limited number
of studies in the area, we conclude that it is an area worthy of
further research.

Secondary and primary studies have considered the decision
to select the provider and to select components after the com-
ponent origin is chosen. Examples of secondary and primary

2

studies outside our scope, but still related to decision-making
are listed in Tables 1 and 2. The secondary and primary studies
related to the provider and component selection decision levels
are presented in Table 1. Primary studies in Table 1 are a subset
of existing studies related to the provider and component selec-
tion. While, Table 2 provides a list of secondary studies related
to the different topics with respect to the individual component
origins. The primary studies that compare the component ori-
gins are included in the result of the review study and are men-
tioned in the result section.

Table 1: Secondary and primary studies related to the provider and component
selection decision levels

Decision Level Secondary studies Primary studies
Provider selection Supplier selection [3] Vendor selection [4],

community selection
[5]

Component selection OSS component se-
lection [21]

COTS selection [6, 7,
8], OSS selection [9,
10]

Table 2: Systematic reviews related to individual component origins
Component origins Secondary studies
Open source Software evolution [22, 29], software quality (re-

liability, interoperability) [23], development pro-
cesses [24], software quality (maintainability)
[25], OSS in commercial development [26, 30],
challenges on integrating open and inner source
[27], empirical methods used in OSS research [28]

COTS –
In-house Synthesis of research on component based soft-

ware engineering [31]
Outsourcing –

As seen from Table 2 no secondary studies on COTS and
outsourcing were conducted. Using the selection of relevant
keywords of each comparison origin in Scopus, in combination
with the research method of systematic literature review and
systematic mapping studies, COTS and outsourcing of compo-
nents did not yield any results. As the focus of this study is on
decision-making in choosing the component origin, no deeper
analysis of the studies is provided.

3. Method

3.1. Need for the review

While we could not find any existing review on decision-
making to choose a component origin, practitioners would
greatly benefit from being aware of possible solutions and rele-
vant factors for choosing between the component origins. This
review is conducted to explore the factors that are considered in
decisions to choose a component origin and also to understand
the existing solutions available to guide the decision-making
process. The following research questions were used to drive
the review study:

• RQ1: What are the research types, methods and quality
of the contributions? Through this research question, the

identified papers are classified according to the six types
of research defined by Wieringa [19]: evaluation research,
validation research, solution proposal, philosophical pa-
pers, opinion papers, and experience reports. In addition,
the research methods, rigor and relevance used by the pri-
mary studies to obtain the results are discussed (see contri-
bution C1). The answer to RQ1 research question allows
determining the strength of evidence of the existing litera-
ture.

• RQ2: What are the different factors that influence the de-
cision to choose among different component origins? Four
component origins are of particular interest in this study.
In order to choose between component origins, compar-
isons may be carried out. The goal of this research ques-
tion is to identify the different factors that are compared
to evaluate the different component origins. The list of
factors considered in the decision to choose a component
origin and the evidence supporting the results can be used
by decision-makers in their decisions, in particular they
provide a list of potential component origins to consider
when making such a decision (see contributions C2).

• RQ3: What solutions have been proposed to choose the
component origin? With the influencing factor as input,
different solutions might be proposed to make a deci-
sion. For example, prioritization based approaches mak-
ing trade-offs, or models that optimize with regard to a
specific criterion under given constraints. The available
solutions provide an inventory of solutions to help prac-
titioners choose a solution for themselves when making a
trade-off among component origins. The limitation of the
solutions will point the direction of future work in propos-
ing new solutions (see contributions C3 and C4).

3.2. Study identification

For study identification, two approaches were used. First,
the first and second author collaborated on the identification of
studies through snowball sampling. Then the third author, inde-
pendently of the other authors, conducted a database search to
complement the snowball sampling. The research on decision-
making to choose a component origin is relatively new. In addi-
tion, the terminology is not yet established or consistently used
in the research papers. Hence, snowball sampling is chosen
as the main method instead of database search. That is, the
snowball sampling is conducted first and then database search
is conducted to validate the snowballing process and to ensure
the coverage of the primary studies. As suggested in [13] all pa-
pers for a search could be identified only using snowball search,
though to add confidence to the study identification process,
also a database search was conducted. We evaluated the prelim-
inary search results from snowballing sampling and database
search [14] and conclude that the implemented search strategy
was efficient and reliable. However, it was noted that the pri-
mary studies that were identified were not from conferences re-
lated to component-based software engineering. To ensure that
this is not a threat to validity, a manual search of the proceed-
ings for the component-based software engineering conference

3

(CBSE) between 2004-2015 was conducted. No new papers
were found in the manual search.

3.2.1. Inclusion and exclusion criteria
The inclusion and exclusion criteria have been used to focus

this study on the component origin selection. The same inclu-
sion and exclusion criteria have been used for all searches, i.e.
start set in snowballing, backward snowballing, forward snow-
balling, and the database search. These are explained in the
following sections.

In order to include a paper, at least one of the following in-
clusion criteria should be fulfilled:

• Papers discussing the decision-making process for select-
ing a component origin, i.e. answer the question: Why
select the component origin? Not how to select a compo-
nent once the component origin is decided.

• Papers comparing two or more component origins, for ex-
ample, papers discussing cost, time, scope or quality trade-
offs (or proxies of these four aspects) for two or more com-
ponent origins are of particular interest.

• Papers proposing solutions that support the decision-
making process in the selection of the component origin in
relation to other component origins, i.e. answer the ques-
tion: How is it possible to make the decision process for
selecting a component origin more effective and efficient?

• All papers should be peer-reviewed.

Papers are excluded if they fulfill any of the following exclu-
sion criteria:

• Papers that are not related to component-based software
systems.

• Papers discussing architectural aspects of component-
based software systems, such as papers answering ques-
tions: How to integrate the components in the system once
the component origin is decided?

• Papers discussing development solutions (Programming)
for component-based software systems.

• Papers discussing adoption of platforms, technology, IT
services or operating systems.

• Papers discussing end-user adoption of software packages.

• Papers that discuss only one component origin without
contributing to the decision-making process on why a spe-
cific component origin should be used or not.

• Duplicate reports of the same study.

• Grey literature.

• Articles not written in English.

3.2.2. Snowball sampling
The snowball search consisted of the following steps. First,

a start set of papers was established through a search in Google
Scholar and the application of the inclusion and exclusion crite-
ria. Thereafter, backward snowballing (based on reference lists)

and forward snowballing (based on citations) were conducted.
The snowball procedure was conducted jointly by the first two
authors of the paper.

Establish a start set: Since we are interested in looking at
how the different component origins are compared and how the
decisions are made, the following search strings were gener-
ated:

• In-house vs. outsourcing and software

• In-house vs. COTS

• In-house vs. OSS

• COTS vs. OSS

• COTS vs. outsourcing and software

• Outsourcing vs. OSS and software

Papers were retrieved from Google Scholar as an unbiased
start set was wanted, i.e. not papers available in a specific pub-
lisher’s database. A cutoff was chosen to get a start set. The first
10 entries of each search string were considered. Among the 60
entries found, there were many entries that were not software
related, particularly for the following search strings: In-house
vs. outsourcing, Outsourcing vs. OSS and COTS vs. Out-
sourcing. The common keyword in the above search strings
was “outsourcing”. As outsourcing is done in various domains,
“software” was added to the search string to restrict the papers
to the software domain.

In total, the search resulted in 90 entries for which the inclu-
sion and exclusion criteria were applied. The inclusion and ex-
clusion of papers for the start set was carried out in two phases.
The objective was to find at least one paper for each search
string.

Start set - Phase 1: Both authors reviewed the meta-data (ti-
tle, abstract and introduction) independently for all 90 entries.
The decision point was noted while reviewing the papers, where
decision point refers to the point at which the decision of inclu-
sion or exclusion was made, in this case, title, abstract or intro-
duction. The paper was either tentatively accepted for Phase 2
or rejected based on the inclusion/exclusion criteria. Both au-
thors performed the inclusion and exclusion independently and
once the authors completed this phase a review meeting was
held to compare the review results. The decision rules shown
in Table 3 are defined for inclusion and exclusion according to
the outcome of the review process conducted by the first two
authors. An inclusive approach has been adopted, i.e. when
in doubt the paper has been included for further evaluation in
Phase 2.

Table 3: Inclusion and exclusion decision rules
Case Action
Both authors accept a paper Include the paper for next step
Both authors reject a paper Exclude the paper
Either one of the authors accepts a
paper

Include the paper for next step

Start set - Phase 2: Often the title, abstract, and introduc-
tion are insufficient to get a full and comprehensive picture of

4

the articles, and hence a final decision was reached by further
reading the papers. The papers were reviewed and a summary
of the papers was reported along with the final decision made.
The decision was either to include the paper in the start set or
exclude it. This process was conducted by the first author and
the second author reviewed the report and either agreed or dis-
agreed to the decisions made. At the end of this step, the papers
were finally included in the start set when both authors agreed
to include the paper. If one of the authors disagreed for a par-
ticular paper, the paper was discussed until the authors reached
a consensus. After completing Phase 2, a total of five papers
were included, which were used to conduct backward as well
as forward snowballing (cf. [13]).

Backward snowballing: Backward snowballing is the pro-
cess of reviewing the references of a relevant paper. Backward
snowballing started by randomly selecting a paper from the start
set. The process and order of reviewing the references was as
follows:

1. Title of the referenced paper.
2. The reference context of the paper. The reference context

refers to the text surrounding the reference citation within
the primary study.

3. Abstract of the referenced paper.

Phases 1 and 2 were repeated on the references of the start
set papers and decision points (title, abstract or full text) were
noted. The first two authors performed this step independently.
At the end of the reviewing process, a second review meeting
was conducted to compare the results. Again the same steps
were followed as in Table 3 and the same inclusion and
exclusion criteria were applied.

Forward snowballing: Forward snowballing is the process
of reviewing the citations of a relevant paper. The starting point
of forward snowballing was the randomly selected paper from
the start set. For each paper citing the paper in the start set, the
following was reviewed:

1. Title of the paper citing.
2. Abstract of the paper citing.
3. The reference context to the paper being cited.

Phases 1 and 2 were conducted for the paper citing the pa-
pers in the start set and decision points (title, abstract or full
text) were also noted. The first two authors performed this step
independently. And at the end of this process, a third review
meeting was conducted to compare the results. Again the same
steps were followed as in Table 3. Backward and forward snow-
balling were performed for all papers in the start set. The papers
accepted in backward and forward snowballing were added to
the final set of papers to be included in the review. Backward
and forward snowballing were repeated for each newly added
paper in the final set of papers until no new papers were found.

Initially, the backward and forward snowballing was done
independently by both first and second author. As the review-
ing continued the decisions (accept/reject) made by the authors
were the same, i.e. the authors accepted/rejected the same pa-
pers. From there onwards only the first author conducted the

snowballing and the second author reviewed the snowballing
process reported by the first author.

Figure 2 shows the number of papers retrieved at each stage
through the snowball sampling process.

Applying Google
Scholar search

Initial set = 90

Apply inclusion/
exclusion

(phase 1 and 2)
-83

Start-set = 5

Forward/
backward

snowballing
+1164

Apply inclusion/
exclusion

(phase 1 and 2)

Result = 1164

-1149

Result = 20

Figure 2: Snowball search process

3.2.3. Database search
The main purpose of the database search was to increase the

confidence in the selection of papers. Thus, the database search
is conducted as a complementary search to the snowballing pro-
cedure.

The search terms were divided into population, interven-
tion, comparison, and outcome (PICO). The population was re-
stricted by searching for “software (X)” and “component (Y)”.

The intervention relates to making trade-offs, decisions, or
selecting a component origin, search keywords are: “trade-off

(I1)”, “decision (I2)”, and “selection (I3)”
Outcome for the following component origins:

• A: (COTS OR “components off the shelf” OR “component
off the shelf”)

• B: (In-house OR inhouse)

• C: (open-source OR “open source” OR OSS)

• D: (outsource OR out-source OR outsourcing OR “third-
party”)

Comparison relates to the different component origin combi-
nations. Given that different combinations of component ori-
gins are of interest, the following strings are constructed:

• E: A AND (B OR C OR D)

• F: B AND (C OR D)

• G: C AND D

This resulted in the following search strings:

• Search 1: (X OR Y) AND (I1 OR I2 OR I3) AND E

• Search 2: (X OR Y) AND (I1 OR I2 OR I3) AND F

• Search 3: (X OR Y) AND (I1 OR I2 OR I3) AND G

The databases searched were Scopus and In-
spec/Compendex, i.e. three index databases were used

5

that encompass publications from Elsevier, IEEE, ACM, etc.
The number of search results per search string and database
is shown in Table 4 and Figure 3 depicts the database search
process.

Table 4: Number of hits for database search
Database Search Hits
Scopus Search 1 60
Scopus Search 2 101
Scopus Search 3 51
Inspec/Compendex Search 1 71
Inspec/Compendex Search 2 110
Inspec/Compendex Search 3 38

Applying search
on databases Results = 448

Removal of
duplicates Results = 261

Apply inclusion/
exclusion

criteira
Results = 21

Excl./Inc. based
on second rev. Results = 13

-8

-240

-187

Figure 3: Database search process

Applying the inclusion and exclusion criteria: The inclu-
sion and exclusion criteria were applied by the third author in-
dependently. The results of the database search were reviewed
by the first author. In cases of disagreements, the authors dis-
cussed the papers until the disagreements were resolved.

3.2.4. Combined results
In total (snowballing + database search), 24 unique papers

were identified. The number of included papers unique to snow-
balling, database search as well as the papers found by both
approaches are shown in Table 5.

Table 5: Search type and number of relevant papers
Search type Number of papers
Snowball sampling Number of papers 11
Database search Number of papers 4
Both Number of papers 9

3.3. Data extraction and classification
A data extraction form was designed to extract the data in an

explicit and consistent way. Which data to extract was driven by
the research questions. Table 6 provides an overview of the data
extracted, and how the data fields link to the research questions.

The research type was classified according to Wieringa et al.
[19]; Six types (evaluation research, validation research, solu-
tion proposal, philosophical papers, opinion papers, and expe-
rience reports) were distinguished. Only evaluation and valida-
tion research are of empirical nature, where evaluation research

Table 6: Data extraction form
Information Description RQs
Meta-information Paper ID –
Study focus and methods
Research facet Classification of research type based on

Wieringa et al. [19]
RQ1

Topic specific information
Factors Factors considered for decision-

making and comparison (emerging)
RQ2

Solution Description of the solution to make a
decision (emerging)

RQ3

is rooted in practice, and validation research is conducted in lab-
oratory settings. Hence, the classification shows the strength of
evidence by illustrating the ratio between the research types.

The first author designed the extraction form, and it was re-
viewed by both the second and third author prior to extraction.
In addition, as mentioned in Section 3.2 full text of the papers
was read, this gave an overview of the depth and breadth of the
available data. Thereafter, the first and third authors divided the
papers and extracted the information from the primary studies.
The first author extracted data from 18 papers, and the third au-
thor extracted data from 6 papers. The extraction was done by
identifying the text segments that were related to the research
questions. In total 96 text segments were extracted. The text of
each text segment was recorded in data extraction form. In most
cases, the exact text was recorded with the exception of para-
phrasing the text that contained other irrelevant information.

3.4. Quality assessment
The quality of the empirical studies is assessed by evaluating

the rigor and relevance. Rigor and relevance are considered as
the two main criteria for evaluating the study quality [34]. The
guidelines proposed by Ivarsson and Gorschek [34] have been
used to score the rigor and relevance of empirical studies. The
details of the rubrics used to evaluate are presented in Sections
3.4.1 and 3.4.2. It is to be noted that not all primary studies
included in this study are empirical, hence the quality of only a
subset of primary studies is evaluated.

3.4.1. Rigor
The rigor is assessed by determining the degree to which the

study context (C) validity threats (V), and research design (R)
are described in the primary studies. The rigor aspects are rated
as strong (1), medium (0.5) or weak (0).
Strong description (1): The rigor aspect is rated as strong
when the following conditions are fulfilled:

1. Context (C) - C equals to 1 if the context describes suf-
ficient details of context such as the size of the com-
pany/organization, the profile, size, and domain of the
projects investigated.

2. Validity threats (V) - C equals to 1 if all the applicable
validity treats are considered, and appropriate actions are
taken to mitigate the threats.

3. Research design (RD) - The research design is rated as 1
when the research methodology is executed following the
best practices. In addition, it should report details such

6

as data collection, sampling, analysis, treatments, and out-
come variables.

Medium description (0.5): The rigor aspect is rated as medium
(0.5) if any one of the descriptions mentioned as strong descrip-
tion is missing.
Weak description (0): The rigor aspect is rated as low (0) if
no descriptions that are mentioned as strong descriptions are
provided.

3.4.2. Relevance
Relevance evaluation consists of evaluating the realism of the

environment in which the results are obtained. Evaluating the
subjects/users (S), context (C) and scale (S) determines the rel-
evance. In addition, the suitability of the research method (R)
used to obtain the results is evaluated. The relevance aspects
are rated as either high (1) or low (0).

1. Subjects/users (SU) - Contribute to relevance (1): S
equates to high (1) when the subjects/users used in the
evaluation are representative of the intended users of the
process, i.e. industrial practitioners.
Do not contribute to relevance (0): S equates to low (0)
when the subjects/users used in the evaluation are not rep-
resentative of the intended users of the process, i.e. stu-
dents, researchers or subjects are not mentioned.

2. Context (C) Contribute to relevance (1): C equates to
high (1) when the context in which the results are obtained
is representative of the intended usage context, i.e. indus-
trial context/setting.
Do not contribute to relevance (0): C equates to low (0)
when the context in which the results are obtained is not
representative of the intended usage context, i.e. labora-
tory setting or other simulations.

3. Scale (S) Contribute to relevance (1): S equates to high
(1) when the scale of application used in evaluation is of
realistic size, i.e. projects investigated are of an indus-
trial scale or the number of interviews in the case study, or
number respondents of the survey are of realistic size.
Do not contribute to relevance (0): S equates to low (0)
when the evaluation is performed using applications of un-
realistic size, i.e. down-scaled or toy example.

4. Research Method (RM) Contribute to relevance (1): RM
equates to high (1) when the research method used allows
to investigate real situations, and that is relevant for prac-
titioners, i.e. industrial survey or case study.
Do not contribute to relevance (0): RM equates to low
(0) when the research method used does not lead itself to
investigate real situations or if no research method is used,
i.e. laboratory experiment (software or human subjects).

The results of the quality assessment of the empirical papers
are provided in Section 4.1.3.

3.5. Analysis
Thematic analysis is used for analyzing the data extracted

from the primary studies. The thematic analysis identifies, anal-
yses and reports patterns (themes) within data [33]. After the

text segments are extracted, they are coded into themes by the
first and the third author independently using the coding rules
defined in Table 7. Some text segments can be assigned to more
than one theme, for example, if the text compares the integra-
tion effort for COTS and OSS and also discusses integration ef-
fort as an influencing, the text segment is coded into the theme
called “effort” and “integration”. The themes that include only
one text segment are not considered since the analysis aims to
identify recurring themes.

Table 7: Rules defining the themes
Themes Rules Example of Text Segment
Time Description of the

time in terms of the
duration

“Time to market was the com-
mon project profiles which was
most emphasized” [35]

Cost Any costs in terms of
the money involved
in a project

“Relying on OSS helped the
project to overcome budget re-
lated issues” [45]

Effort Estimation of effort
in terms of man-
hours to perform an
activity

“Unsatisfactory integration ef-
fort estimation is a common risk
of OTS components” [35]

Quality Discussing qual-
ity attributes such
as reliability and
security

“Consumers make product qual-
ity inferences based on cues
such as brand and store name
through a process called affect-
referral.” [42]

Market Trend The ability of the
component to evolve
based on the needs of
the market place

“Market rules force COTS ven-
dors to release a new version of
their products even if they know
they are not fully working.” [36]

Source Code
Availability

Text describing the
availability of source
code

“Open access to source code al-
lows greater opportunities for
customizing OSS software to
the specific needs” [50]

Technical
Support

Discussions on the
support provided
or available for
fixing bugs and
required changes in
functionality

“As soon as the attack the OSS
community fixes or counter-
measures are devised quickly”
[44]

License Text describing
the license agree-
ment, obligations or
restrictions

“License requires that modified
versions of the software also
be open (often referred to as a
copyleft provision)” [42]

Integration Text describing the
integration activity

“Required integration work is
used in evaluation criteria” [38]

Requirement Discussion on re-
quirements as a
phase and nature
of requirements
(complex or unique)

“Recommended changes to a
customer’s requirement when
we felt that by doing so we
could satisfy it with an OSS
component.” [45]

Maintenance Related to upgrading
the system and main-
taining system stabil-
ity

“The OSS user is not obliged to
upgrade.” [36]

The coding rules for assigning text segments to the themes
were commonly defined by the first and the third author. Such
rules reduce the threat of bias and mistakes during the data ex-
traction. The text segments from the primary studies are sum-
marized and coded into existing themes, new themes are added
and defined whenever necessary in an inductive manner. The
text segments coded into the themes is compared within and
across the themes to compare and contrast the properties of dif-

7

ferent themes. In order to keep the traceability between the data
and the primary studies, the text relevant for the extraction (text
segments) within primary studies is highlighted, and tagged by
a comment linking it to the themes using Adobe reader. This
helps in checking the reliability and revising the extraction if
needed.

In total 11 themes were identified which were the factors that
could influence the decision to choose a component origin.

3.6. Validity threats
Petersen and Gencel [15] proposed to discuss five types of

validity threats, namely descriptive validity, theoretical validity,
generalizability, interpretive validity, and reliability in software
engineering research in general.

3.6.1. Descriptive validity
Descriptive validity concerns threats to the ability to accu-

rately capture and describe observations made.
This threat is mainly relevant in the data extraction activ-

ity. To reduce the threat, a data extraction form was designed,
which was then reviewed by two experienced researchers hav-
ing conducted a number of systematic literature reviews (au-
thors two and three). Furthermore, it helped to keep the trace-
ability between the original text of the papers and the data ex-
tracted by highlighting and tagging the text within the docu-
ment. That way it was always possible to return to the source
when in doubt. Hence, this threat is well controlled.

3.6.2. Theoretical validity
Theoretical validity threats may lead to a lack of ability to

capture what is intended to be captured, for example, due to
confounding factors that the researcher may not be aware of.

Study identification and sampling: In this study, differ-
ent search strategies were utilized, i.e. snowball sampling and
database search to increase the reliability of the study identifi-
cation. Furthermore, multiple researchers have been involved in
the selection of studies. As the complementary database search
only yielded a small set of additional papers, the confidence
in the sample is increased. The database search added papers
in the component origins comparison category for which there
was no paper found through the snowballing process.

Researcher bias: In the data extraction as well as study se-
lection researcher bias is a threat. To reduce bias, more than
one researcher was involved in each step. The snowball sam-
pling procedure was conducted by two authors. The result of
the database search was checked by the first author. In addition,
during the data extraction when in doubt both researchers were
in the same room during the extraction to immediately discuss
the doubt. Hence, the threat due to the extraction not being
reviewed is reduced.

3.6.3. Generalizability
The generalizability is concerned with generalizing within

groups (i.e. the same community or organization) and between
groups (i.e. between different communities and groups).

Internal generalizability: The ability to generalize within
the group (decision-making for choosing a component origin)

is highly dependent on the studies published (for example, the
different contexts studied). Hence, internal validity is limited
to the research contexts of the studies. In this case, limited
information is available on the context reported, hence it is im-
possible to make a judgment regarding this. Furthermore, the
total number of primary studies is low. Per category (compari-
son of component origins), only a small number of papers was
identified. In particular, in-house vs. OSS and in-house vs. out-
sourcing are only represented by two papers each.

External generalizability: To determine whether the same
approaches are also applicable when having a different compo-
nent origin to choose from is a subject for further investigation
and cannot be determined here.

3.6.4. Interpretive validity
Interpretive validity is concerned with threats related to the

ability to draw objective and valid conclusions based on the
data collected, i.e. this threat is relevant when interpreting the
findings. Coding rules were defined and regular meetings were
conducted during the data analysis to ensure that the data is in-
terpreted in the same way by all authors. Hence, the threat was
mitigated by involving multiple researchers in the interpretation
and discussion of the findings.

3.6.5. Reliability
In order to achieve reliability, the research steps must be re-

peatable. Repeatability is the ability of other researchers repli-
cating the results. The detailed steps taken in the searches are
reported. For example, the search strings used, databases used
and inclusion/exclusion criteria are documented, hence reliabil-
ity is increased. Repeatability of the data extraction is impor-
tant. The relevant text segments were highlighted and tagged
with appropriate codes within the document. This facilitates
traceability and repeatability of the data extraction process.

4. Results

The answers to the research questions are provided in this
section. The contribution of the primary studies with respect to
the comparison categories is shown in Table 8.

Table 8: Total number of Primary studies per comparison category
Component origin Count References
OI-OC 8 [39, 40, 43, 48, 49,

51, 53, 54]
OC-OS 6 [35, 36, 37, 41, 44,

50]
OS 5 [42, 46, 47, 52, 57]
OI-OS 1 [58]
OI-OO 2 [55, 56]
OI-OC-OS 2 [38, 45]
OI-OC: In-house vs. COTS, OC-OS: COTS vs. OSS, OS: Only OSS ,

OI-OS: In-house vs. OSS, OI-OO: In-house vs. outsource,
OI-OC-OS: In-house vs. COTS vs OSS.

We assigned identifiers to the component origins as follows:
OI - In-house development, OC - COTS, OS - OSS and OO -

8

Outsourcing, where O stands for origin. Hence, Ox-Oy repre-
sents the decision between component origins.

In the snowball sampling and database search, we found pa-
pers comparing or discussing influencing factors for all of the
component origin comparisons listed above. In addition, new
comparisons (OS and OI-OC-OS) also emerged where studies
discussed more than two component origins and some papers
discussed the factors influencing the adoption of a specific com-
ponent origin. It is important to note that no primary studies
discussing COTS vs. Outsourcing and OSS vs. Outsourcing
were found, whether or not such discussion are considered in
practice is a topic for further research.

4.1. Research types, methods and quality (RQ1)
In this section we discuss the research types, the research

methods and the quality of the primary studies. Section 4.1.1
describes the research types, Section 4.1.2 describes the re-
search methods and Section 4.1.3 describes the results of qual-
ity assessment of the primary studies.

4.1.1. Research types
Identifying the research types gives a good overview on the

strength of evidence of the primary studies. Table 9 provides
an overview of the research types of the primary studies based
on Wieringa et al.’s classification [19]. Evaluation research is
an investigation of a problem in practice or implementation of
a technique in practice. Solution papers are papers proposing
solutions and arguing its relevance. Philosophical papers are
papers that sketch a new way of looking at things. Validation
research investigates the properties of a solution proposal that
has not been implemented in practice and opinion papers are
papers that contain opinions of the authors. The most common
type is “Evaluation research”, which indicates that the data col-
lected is originating from the software engineering practice and
is empirical. Validation research also represents empirical stud-
ies, indicating that 9 out of 24 studies are empirical. In addition,
8 out of 24 papers are neither empirical studies nor solutions
papers.

Table 9: Research types
Research types Count References
Evaluation research 8 [35, 37, 38, 40, 42,

43, 47, 58]
Solution proposal 7 [39, 48, 49, 51, 53,

54, 56]
Philosophical papers 4 [44, 46, 50, 52]
Validation research 1 [55]
Opinion papers 2 [36, 41]
Experience papers 2 [45, 57]

Table 10 shows how the primary studies are distributed in re-
lation to the comparison of component origins. Even though the
highest number of studies is classified as evaluation research,
the evaluation research studies are distributed among “In-house
vs. COTS” to “ In-house vs. COTS vs. OSS”, which means
that in each category only a few studies are rooted in practice.
Of the solutions proposed for “In-house vs. COTS”, only two
are evaluated in practice [49] and [54].

It is also interesting that, even though contributing with fewer
studies, all research types proposed by Wieringa et al. [19]
could be identified in the set of primary studies.

Table 10: Research types and studied combinations of component origins

Research
type

OI-OC OC-OS OS OI-OS OI-OO OI-OC-
OS

Evaluation
research

2 2 2 1 1

Solution
proposal

6 1

Philosophical
papers

2 2

Valdation
research

1

Opinion pa-
pers

2

Experience
papers

1 1

OI-OC: In-house vs. COTS, OI-OS: Inhouse vs. OSS, OC-OS: COTS vs. OSS
OI-OO: In.house vs. Outsourcing, OS: Only OSS
OI-OC-OS: In-house vs. COTS vs OSS

4.1.2. Research methods
Research methods for the evaluation and validation research

studies (see Table 9) have been studied. Table 11 provides an
overview of the research methods of the primary studies. The

Table 11: Research methods
Research methods Count References
Survey (practitioners) 4 [35, 37, 42, 47]
Interview study 2 [38, 43]
Case study 2 [40, 58]
Case study (academic) 1 [55]

most common method is “Survey”, which indicates that the re-
sults are generalized across different domains. Table 12 shows
the distribution of research methods in relation to the compari-
son categories studied. The surveys address “COTS vs. OSS”
(OC-OS) and “OSS” (OS) adoption decisions. The compari-
son category “In-house vs. COTS” (OI-OC) has a mix of case
study and interview study methods. However, for the remain-
ing comparison categories primary studies with same research
methods are addressing them. The number of primary studies
using the same research method per comparison category is also
low (maximum two per category).

Table 12: Research methods and studied combinations of component origins

Research
method

OI-OC OC-OS OS OI-OS OI-OO OI-OC-
OS

Survey 2 2
Interview study 1 1
Case study 1 1
Case study
(academic)

1

OI-OC: In-house vs. COTS, OI-OS: Inhouse vs. OSS, OC-OS: COTS vs. OSS
OI-OO: In.house vs. Outsourcing, OS: Only OSS
OI-OC-OS: In-house vs. COTS vs OSS

9

Among the four surveys conducted as shown in Table 11,
only two primary studies have reported domain details [35] and
[37]. The domains covered by the two surveys is provided in
Table 13. Among the interview studies and case studies, only
one study each [43] and [40] respectively provides domains de-
tails which is also provided in Table 13.

Table 13: Domains of the primary studies
References Telecom Finance ICT sector Military
[35] 3 3 3
[37] 3 3 3
[43] 3 3 3
[40] 3

The primary studies [35] and [37] belong to “COTS vs. OSS”
comparison category and the primary studies [40] and [43] be-
long to “In-house vs. COTS” comparison category. From the
results in Table 13 we can see that the results for “In-house vs.
COTS” and “COTS vs. OSS” comparison categories are from
different domains. Hence, the results are generalized with re-
spect to the domains.

4.1.3. Quality assessment results
Table 14 shows the results of quality assessment. The em-

Table 14: Rigor and relevance scores of the empirical studies

Ref. Rigor Relevance
C V RD Total

Rigor
SU C S RM Total

Rele-
vance

[35] 0.5 1 1 High
(2.5)

1 1 1 1 High
(4)

[37] 0.5 1 0.5 High
(2)

1 1 1 1 High
(4)

[38] 0.5 0 0.5 Low
(1)

1 1 1 1 High
(4)

[40] 0.5 0 0.5 Low
(1)

1 1 1 1 High
(4)

[42] 0 0 1 Low
(1)

1 1 1 1 High
(4)

[43] 1 1 1 High
(3)

1 1 1 1 High
(4)

[47] 0.5 0.5 1 High
(2.5)

1 1 1 1 High
(4)

[55] 0.5 0 0 Low
(0.5)

0 0 0 0 Low(0)

[58] 0 0 1 Low
(1)

1 1 1 1 High
(4)

C - Context, V - Validity threats, RD - Research design,
SU - Subjects/users, S- Scale, RM - Research Method

pirical studies are evaluated with respect to rigor and relevance
based on the rubrics discussed in Section 3.4. Note, the strength
of evidence of empirical studies is only assessed, as the results
of non-empirical papers such as opinion and philosophical pa-
pers are not based on any evidence. The total rigor and rele-

vance is a sum of the scores assigned to each rigor and rele-
vance aspect. If the total score of rigor is 1.5 or greater, the
rigor is said to be high. And if the sum is less that 1.5, rigor is
low. Similarly when the sum of the score of relevance is 2 or
above, the relevance is high, and when the sum is below 2 the
relevance is low.

Overall most of the empirical studies included in this study
have high relevance. Except for the empirical study [55], which
is performed in an academic context. Four out of nine stud-
ies are evaluated as having high rigor. Five out of nine studies
are low in rigor. Most of the studies do not report any valid-
ity threats that might be taken into account. The context de-
scriptions are not completely described. For example, in stud-
ies [47] and [55] only the company size is discussed, the size
or domains of the projects are not mentioned. In addition, the
research design descriptions are not completely reported in pri-
mary studies. For example, the study presented in [38] men-
tions that semi-structured interviews are conducted. However,
the domain and the sampling of the interviewees are not men-
tioned and in the study presented in [40] the number of inter-
views and the roles interviewed are missing.

4.2. Influencing factors (RQ2)
The primary studies that discuss factors are mapped to the

component origin comparisons as shown in Table 15. The
“count” column indicates the number of studies specifically an-
swering RQ2 out of the total number of primary studies found
in this review study.

Table 15: Primary studies discussing influencing factors for component origin
(RQ2)

Component origin Count References
OI-OC 2/8 [40, 43]
OC-OS 6/6 [35, 36, 37, 41, 44, 50]
OS 5/5 [42, 46, 47, 52, 57]
OI-OS 1/1 [58]
OI-OO 0/2 •

OI-OC-OS 2/2 [38, 45]
OI-OC: In-house vs. COTS, OC-OS: COTS vs. OSS, OS: Only OSS ,
OI-OS: In-house vs. OSS, OI-OO: In-house vs. outsource,
OI-OC-OS: In-house vs. COTS vs OSS.

The majority of primary studies considered OSS, followed
by COTS, and In-house. Although OSS is discussed in most
studies, only one study considers the comparison between in-
house and OSS. The most researched combination of compo-
nent origins is “OC-OS: COTS vs. OSS”. There were no papers
identified for the comparisons “OI-OO: In-house vs. Outsourc-
ing”. It is important to note that, the primary studies reported
in Table 15 only discuss factors that are used in evaluation to
choose a component origin (RQ2). They do not however dis-
cuss how the decision should be made or what decision-making
process to follow (RQ3), this is discussed in Section 4.3. There-
fore even though there are no papers discussing the comparison
of in-house and outsourcing, the solutions to choose either in-
house or outsourcing exists which are discussed in 4.3. Hence
outsourcing is not discussed in Section 4.2.

The relevant text segments from the primary studies describ-
ing the influencing factors were coded into themes as shown in

10

Table 16: High-level themes, themes and codes
High-

level themes Themes/factors Text segments

Project
metrics factors

Time Time to test and integrate
Time to market

Cost

Cost of components
Total cost of ownership
Cost of replacing components
Maintenance cost

Effort Selection and integration effort
Development effort

Quality Quality in general

External
factors

Market trend Component evolution
Source code
availability

Access and use of source code
Source code documentation

Technical
support

Response time
Support availability
Code customization
Changes in requirements

License License fee
License obligations

Software
development

activity factors

Integration Ease of integration

Requirements

Task complexity
Task uniqueness
Requirement uncertainty
Requirements negotiations
Requirements suitability

Maintenance Ease of maintenance

Table 16. The themes are then grouped into higher-level themes
which are also shown in Table 16.

The project metrics factors can be quantitatively measured
and estimated. These factors can be estimated using estimation
models. The external factors are those that are dependent on
the provider (COTS vendor or OSS community). These factors
usually define the access and control agreement. The software
development activities that affect the decision are grouped into
software development activity factors.

Sections 4.2.1, 4.2.2 and 4.2.3 provide the description of the
factors (bold) and text segments (italics). Tables (17, 19 and
22) indicate the primary studies addressing the factors for each
comparison category. Tables (18, 20 and 21) represent the sum-
mary of the description is terms of the effect the factors have
on the component origin. It also indicates the level of evidence
supporting the effect.

4.2.1. Project metrics factors
The project metrics factors extracted from primary studies

with respect to the comparison categories (columns 2-5) are
presented in Table 17, along with the count (C) of the primary
studies reporting the factor and the number of primary studies
that are empirical (E). The project metrics factors are discussed
for COTS, OSS and In-house decisions. Among the primary
studies in Table 17, most of the primary studies are discussing
“OC-OS: COTS vs. OSS” (6) and “OI-OC-OS: In-house vs.
COTS vs. OSS” (5) comparison category. Cost is the most dis-
cussed factor and has the most number of empirical studying
reporting it as factor. This indicates that cost is an important
project metric factor that influences the decision.

Time: The inclusion of COTS components causes delays as
testing and integrating components (COTS) takes longer than

Table 17: Project metrics factors
Factors OI-

OC
OC-
OS

OS OI-
OS

OI-
OC-
OS

C E

Time - [35] - - [38] 2 2/2
Cost [40,

43]
[35,
36]

[42,
47]

- [38,
45]

8 6/8

Effort - [35] - - [38] 2 2/2
Quality - [35,

50]
[42,
46]

[58] [45] 6 3/6

OI-OC: In-house vs. COTS, OC-OS: COTS vs. OSS,
OS: Only OSS, OI-OS: In-house vs. OSS,
OI-OC-OS: In-house vs. COTS vs OSS.
C: no.of primary studies, E: no.of empirical studies

in-house developed components [38]. However, when time to
market in critical, COTS and OSS are preferred [35].

Cost: Cost of component is a motivating factor for adopting
OSS as it is available for free [35], [42], [47]. However, it was
not necessarily a disadvantage for COTS component users as
some projects preferred COTS because it is paid, therefore, as-
sume it to have better quality [35]. In spite of the differences
in the price of a component, the total cost of ownership, which
includes the cost to integrate, test and maintain the components
can end up to be the same for OSS and COTS components [36].
When the cost of replacing components is considered, there are
no budget related issues as there was no investment involved in
buying the component [45]. However, replacing COTS compo-
nents based on customers’ requirements was not cost effective
[35]. Maintenance cost is used as a decision criterion in in-
house vs. COTS decisions [38], [43]. The maintenance cost
of externally acquired components like COTS and OSS can be
really high in comparison to in-house components [38], [40].

Effort: The reduced development effort is the common mo-
tivation for selecting either COTS or OSS [35]. However, esti-
mating the selection and integration effort for COTS and OSS
components has been identified as a challenge [35]. The com-
ponent selection is on a different decision level than the decision
to select component origin (see Figure 1). However, the effort to
select component is considered in the decision to choose com-
ponent origin. The actual process of selecting the right compo-
nents by considering all the risks is part of component selection
decision level. Integrating external components requires con-
siderable effort and if the component is small and requires more
integration effort than development effort then, it is not the best
option to acquire components externally [38].

Quality: OSS components might have better quality than
COTS components however, it depends on various factors such
as compensation, software demand, number of programmers,
reward systems, programmer’s cost of effort, and coordination
of programmers [50]. In addition, it highly depends on the field
testing and post-delivery fault reporting [58]. Quality has been
regarded as an motivation factor for adopting OSS [35], [42],
[46]. The quality of OSS components has been compared with
COTS and in-house components [45], [50]. In some cases the
quality of OSS was better than COTS and in-house components,
as a hastily developed in-house component might not match the
quality of an OSS component which has been widely used by

11

Table 18: Positive and negative influences of project metrics factors

Project Metrics Factors
COTS OSS In-house

H.H L.H N.E H.H L.H N.E H.H L.H N.E

Time
Time to test and integrate - +

Time to market + + -

Cost

Cost of components + + +

Total cost of ownership = =

Cost of replacing components - +

Maintenance cost - - +

Effort
Selection and integration effort - - - -
Development effort + + -

Quality Quality in general - + + -
H.H = High Rigor and High Relevance, L.H = Low Rigor and High Relevance, N.E = No evidence

many OSS users [45].
Table 18 provides a summary of project metric factors with

respect to the quality of the primary studies.
Though the results for time and effort factors are provided

by only two studies respectively, the evidence supporting these
factors is from empirical studies (see Table 17). The results
for cost and quality are provided by empirical studies (H.H and
L.H) and non-empirical studies (N.E). The empirical and non-
empirical studies have different contribution towards the cost
factors. For example cost factors such as cost of buying com-
ponent, cost of replacing components and maintenance cost for
COTS come from empirical studies. Where as, the cost factors
from non-empirical studies are discussing total cost of own-
ership. Therefore, providing more information related to cost
factors. In addition, the evidence and non-evidence studies al-
low comparisons. For example, according to empirical studies
COTS has negative impact due to the cost of replacing com-
ponent and the results from non-empirical studies indicate that
OSS has positive impact. This allows us to compare how COTS
and OSS are affected by cost when the results from both empiri-
cal and non-empirical studies are considered. Therefore, the re-
sults from empirical and non-empirical studies are complemen-
tary and there are no conflicts in results. OSS has more num-
ber of positive results except for maintenance cost and selection
and integration effort factors. Which indicates that, when time,
cost, effort and quality are important then OSS can be a suitable
option.

4.2.2. External factors
The external factors extracted from primary studies with re-

spect to the comparison categories are presented in Table 19
along with the count (C) of the primary studies reporting the
factor and the number of primary studies that are empirical (E).
These factors depend on external provider (COTS vendor and
OSS community) and market.

The external factors are discussed for COTS, OSS and In-
house development decisions. Among the primary studies in
Table 19, most of the primary studies are discussing “OC-OS:
COTS vs. OSS” (16) and “OS: Only OSS” (9) comparison cat-
egory. Source code availability and technical support are the
most discussed factors in the primary studies. However less
than half of these studies are empirical as shown in column E.

Market trend: (Component evolution) Features that are
novel today may become commodity tomorrow, and hence the

Table 19: External factors
Factors OI-

OC
OC-
OS

OS OI-
OS

OI-
OC-
OS

C E

Market
trend

[40,
43]

[35,
36, 41]

- - - 5 3/5

Source code
availability

- [35,
36, 37,
41, 44]

[42,
46,
47,
57]

- [38,
45]

11 5/11

Technical
support

[40] [35,
36, 37,
41, 44,
50]

[46] - [45] 10 4/10

License [40,
43]

[35,
36]

[42,
46,
47,
57]

- [45] 8 4/8

OI-OC: In-house vs. COTS, OC-OS: COTS vs. OSS,
OS: Only OSS, OI-OS: In-house vs. OSS,
OI-OC-OS: In-house vs. COTS vs OSS.
C: no.of primary studies, E: no.of empirical studies

market trend in terms of features affects which components
that are suitable to, for example, develop in-house or use open
source. Market trends are the needs of market place [40]. OSS
development might evolve due to the market trends, however,
the evolution might also be due to political or social reasons
within the OSS community [35] or OSS developer ideas [41],
which might not be necessarily align with the needs of market
place. COTS is preferred over in-house development when fol-
lowing market trends and the need to include the newest tech-
nology is a priority [40] and [43]. The market pressure can
however negatively affect the development of COTS compo-
nents [36]. The market pressure can force the COTS vendor to
release the products before they are fully developed or tested.
Hence, following market trend can have positive as well as neg-
ative effect on COTS adoption.

Source code availability: Access to the source code has
been stated as one of the advantages of using OSS components
[35] and unavailability of the source code is stated as one of the
biggest disadvantages of using COTS components [36]. The
existing literature explores the usefulness of source code. Code
visibility allows the integrators to make necessary changes in
the component [41]. However, a survey indicates that source
code has been read to some extent but seldom changed [37].

12

Table 20: Positive and negative influences of external factors

External Factors
COTS OSS

H.H L.H N.E H.H L.H N.E
Market trend Component evolution + - - -

Source code availibility
Access and use of source code - + + +,-
Source code documentation - +,-

Techical support

Response time + - - +

Support availability - +

Code customization - - +

Changes in requirements + - -

License
License fee +

License obligations - -
H.H = High Rigor and High Relevance, L.H = Low Rigor and High Relevance, N.E = No evidence

Hence, if no such need arises to change the code, the availabil-
ity of the source code does not seem important.

During the testing and maintenance phase, source code
makes it easier to locate and fix errors as an integrator has ac-
cess to the source code [38]. The integrators can learn and
understand the OSS components and thereby save consulting
costs [47]. Although source code is initially not available for
COTS components, a survey [37] indicates that 33 percent of
the COTS vendors opened their source code. The availability
of the OSS source code can also be a disadvantage with re-
spect to trust related issues [44]. It becomes easier to correlate
all the information and plan an attack. Hence, the availability
of source code can make the system vulnerable to such attacks
[44]. Reviewing the source code written by someone else can
be a laborious task [57]. Hence, the availability of source code
can be an advantage, however the vulnerability to attacks can
make it a disadvantage.

It can be difficult to understand the OSS source code docu-
mentation [41], [42] particularly, by inexperienced developers
[46]. However, in one particular instance the documentation
of the OSS code was better than the source code of a COTS
component that was acquired at an additional cost [45]. The
differences in results might be due to the dependencies on de-
veloper skills [46] and project profile [45]. The discussions on
dependencies in continued in Section 5 and depicted in Figure
5.

Technical support: (Response time of the ven-
dor/community) Prompt response of COTS vendor support has
been reported to be good [35]. However, delayed response
from COTS vendor are also reported [45]. Similarly the
responsiveness of OSS community is reported to be good [45]
and [44]. However, not having enough support from OSS
community is also reported [35]. Support availability: The
COTS vendors might refuse to provide support, if the users do
not have the latest version and if there are not enough users that
are affected. The support provided by OSS community does
not pose such limitations [36], [46]. OSS users widely practice
customization of the code and COTS vendors who open their
source code do not support such changes and proclaim that
any modification will result in loss of support [50]. However,
conflicting results indicating that OSS community might not
extend their support if the code is customized is reported [35].

It is also possible to get the required changes from the COTS
vendors [37]. However, smaller organizations adopting COTS

and OSS components have little influence on the component
evolution [41]. Developing and maintaining an effective rela-
tionship with vendors is a new activity, which is not needed in
in-house development [40]. The results related to technical sup-
port are conflicting and it is uncertain how the COTS vendors
or OSS communities react to changes in the source code. How-
ever, it highly depends on the profile of the vendor/community
[50], size of the organization adopting COTS and/or OSS [41]
and number of users [36], [46]. The discussions on dependen-
cies in continued in Section 5 and depicted in Figures 4 and
5.

License: License includes the terms, conditions, and costs
for a given product for use by an organization over a particular
period of time [40]. It also covers the vendor relationship in-
cluding integration support [40]. Low cost of licenses has been
a motivation for adopting OSS components [35], [47]. How-
ever, the license obligations such as the general public license
are considered too restrictive as, any modifications made to the
source code should also be open which is referred to as copyleft
[36], [42]. In addition, all applications linked to the code must
also be made available [42], [45]. In order to avoid this and due
to intellectual property (IP) concerns, the components with less
restrictive licenses are preferred [47]. In addition, obtaining
such a non-restrictive license has been regarded as a daunting
process for a mission critical applications [45]. Hence, the li-
cense obligations must be thoroughly evaluated before adopting
OSS components [43], [57].

Table 20 provides a summary of external factors with respect
to the quality assessment of the primary studies.

As Table 20 is summarizing external factors, these factors
do not have an impact on in-house development. Hence, in-
house option is not mentioned in the table. The results are from
empirical studies (H.H, L.H) as well as non-empirical studies
(N.E). The results from empirical studies are contradicting re-
sults from non-empirical studies. The evidence from empirical
study indicates that COTS is preferred when following market
trend is important. However the results of non-empirical studies
state that the market pressure can have negative impact as dis-
cussed earlier in this section. The conflicts in source code avail-
ability and technical support factors are due to the dependencies
mentioned earlier, these dependencies are also discussed in Sec-
tion 5 (see Figures 4 and 5). From the Table 20, we can see that
overall OSS is preferred when external factors are considered.

13

4.2.3. Software development process factors
The software development process factors extracted from pri-

mary studies with respect to the comparison categories are pre-
sented in Table 22 along with the count (C) of the primary stud-
ies reporting the factor and the number of primary studies that
are empirical (E).

Table 22: Software development process factors
Factors OI-

OC
OC-
OS

OS OI-
OS

OI-
OC-
OS

C E

Integration - [35,
36, 41]

- - [38] 4 2/4

Requirements [40,
43]

[35] [46,
52]

- [38,
45]

7 4/7

Maintenance [40] [35,
36, 41]

- - [38] 5 3/5

OI-OC: In-house vs. COTS, OC-OS: COTS vs. OSS,
OS: Only OSS, OI-OS: In-house vs. OSS,
OI-OC-OS: In-house vs. COTS vs OSS.
C: no.of primary studies, E: no.of empirical studies

The software development process factors are discussed for
COTS, OSS and In-house development decisions. Among the
primary studies in Table 22, most of the primary studies are
discussing “OC-OS: COTS vs. OSS”(7) and “OI-OC-OS: In-
house vs. COTS vs. OSS”(4) comparison category. Require-
ments factor is the most discussed factor and has the most num-
ber of empirical studying reporting it as factor. This indicates
that the decision to choose the component should be taken as
early as the requirements phase.

Integration: (Ease of integration) OSS integration and
COTS integration is similar if the source code is not exploited
[36]. It is difficult to identify if the defects are inside or out-
side the COTS or OSS components, even if the source code is
available for OSS most users usually do not look at the code
[35]. However, without the source code it is difficult to under-
stand the working of the component (COTS) in particular when
there are issues such as environmental differences, deviations
from supported protocols, etc. Consequently making it difficult
to integrate COTS components [41]. The difficulty level of in-
tegrating COTS components is considered in the in-house vs.
COTS decisions [38].

Requirements: (Task complexity and uniqueness) The de-
cision to choose between in-house, COTS and OSS is mostly
taken in the requirements phase [43], [46]. The developers pre-
fer to use pre-built components such as OSS libraries when the

task complexity is high to improve productivity [46]. However
when unique development efforts (developing innovative func-
tionality) are required to fulfil a requirement, OSS is unlikely
to be used [46]. In addition, when there is requirement uncer-
tainty, the tendency to adopt existing OSS components is high
[52]. In-house development starts with a specific set of sys-
tem requirements and builds a system that meets those require-
ments. However, the COTS based system development starts
with a generic set of requirements and then the market place is
explored to see how closely they match the needs of the system
[40]. Though this does not apply to all COTS based systems.

The requirements should be carefully analyzed before the de-
cision to acquire external components such as COTS is made
[38]. The requirement negotiations and evaluations of external
components are too long. During the negotiations and evalu-
ations the technical requirements might change and the com-
ponent might no longer be needed [38]. The available OSS or
COTS component might not perfectly match the requirements
and therefore, might not be suitable to use. The customers
might agree to the requirements changes that are necessary to
utilize OSS component [45]. However, not adapting sufficiently
to the customers’ requirements and not having the possibility to
negotiate customer requirements has been perceived as a com-
mon risk for COTS and OSS components [35]. This could be
the reason why OSS or COTS components may not be preferred
when the requirements require unique development effort and
are not very flexible to changes.

Maintenance: One of the challenges in COTS deployment
and maintenance is to strike a balance between system stabil-
ity and being up to date with the market place [35, 40]. The
COTS vendor usually decides the rate at which the component
changes and the organization that acquires the COTS compo-
nent should decide if they want to upgrade or lose the support
for the component they are currently using [41]. Maintenance
policies related to updates from provider can force the com-
ponent to be upgraded to a newer version so that the techni-
cal support provided from the vendors can be retained. There-
fore, maintenance policies are used as an evaluation criterion in
the in-house vs. COTS decisions [38]. The OSS users are not
obliged to change whenever there is any upgrade [36].

Table 21 provides a summary of software development pro-
cess factors with respect to the quality of the primary studies.

The results are supported by empirical (H.H, L.H) and non-
empirical (N.E) studies. The results from empirical studies
are supporting non-empirical studies and there are no conflicts

Table 21: Positive and negative influences of software development process factors

Software development process Factors
COTS OSS In-house

H.H L.H N.E H.H L.H N.E H.H L.H N.E
Integration Ease of integration - - +

Requirements

Task complexity + -
Task uniqueness - +

Requirement uncertainty +

Requirements negotiations -
Requirements suitability - -

Maintenance Ease of maintenance - - - + +

H.H = High Rigor and High Relevance, L.H = Low Rigor and High Relevance, N.E = No evidence

14

in results. OSS and in-house development component ori-
gins have more number of positive results compared to COTS.
Which indicates that, when integration and maintenance are im-
portant then either OSS or in-house development can be a suit-
able option.

4.3. Solutions (RQ3)

The primary studies that discuss solutions to choose a com-
ponent origin (RQ3) for the software components are listed in
Table 23. The “Count” column indicates the number of studies
specifically answering RQ3 out of the total number of studies
found in this review study.

Table 23: Primary studies proposing solutions for choosing a component origin
(RQ3)

Component origin Count References
OI-OC 6/8 [39, 48, 49, 51, 53, 54]
OC-OS 0/6 •

OS 0/5 •

OI-OS 0/1 •

OI-OO 2/2 [55, 56]
OI-OC-OS 0/2 •

OI-OC: In-house vs. COTS, OC-OS: COTS vs. OSS, OS: Only OSS ,
OI-OS: In-house vs. OSS, OI-OO: In-house vs. outsource,
OI-OC-OS: In-house vs. COTS vs OSS.

4.3.1. OI-OC: In-house vs. COTS
For the “OI-OC: In-house vs. COTS” decisions six studies

provided solutions. The solutions [39], [48], [49], [51], [53]
and [54] define optimization models.

Papers [39] and [51] help to select the component that should
be developed in-house and the components that should be
bought. An optimization model is proposed which minimizes
cost under reliability and delivery time constraints by select-
ing the right origin (in-house development or COTS) of com-
ponents. It also considers the amount of testing required to de-
velop the component in-house into the decision-making. The
selection of component origin is done after the software design
is available. For COTS components, the time is measured in
terms of the time taken by the vendor to provide the compo-
nent and the time taken to adapt the component. For the in-
house component, the time taken to develop the component and
to achieve the desired level of reliability is measured. Cost is
measured in terms of the cost required to buy and adapt the
COTS components, similarly the cost for developing in-house
components is also estimated.

The paper [48] is an extension of the solution proposed in
[39], suggesting an optimization model by taking into account
the reliability, delivery time and cost. The addition to the model
is the ability to take the decision as soon as the requirements are
available.

A multi-objective approach for an optimal “OI-OC: In-house
vs. COTS” decision for a fault tolerant system was formulated
by [49]. The two objectives in decision-making are maximiz-
ing system reliability and minimizing the system cost under the
constraint of delivery time. In addition, it also considers com-
patibility between available alternative components.

The solution in the paper [53] proposes an architecture op-
timization approach based on a meta-heuristic swarm intelli-
gence algorithm to decide the origin (In-house or COTS) of the
components. The algorithm considers delivery time, cost and
reliability constraints. It also considers the number of test cases
for in-house developed components.

The paper [54] presents a solution to maximize the intra-
module coupling density under a number of constraints such
as delivery time, cost, reliability, compatibility, cohesion, cou-
pling, requirements fit and test success.

4.3.2. OI-OO: In-house vs. Outsourcing
The solution in paper [55] proposes a methodology and tool

support to decide the components that need to be outsourced
and which ones should be developed internally. The tool clas-
sifies the projects’ software components by means of a graph
based model of the components’ requirements and their corre-
sponding clustering with respect to requirements dependencies
and priorities.

The paper [56] proposes a solution that determines the
outsourcing potential (if it is high the component should be
outsourced), input is knowledge specificity (based on busi-
ness, functional and technical), and interdependencies (prior-
ity, between software components and communication intensity
among developers). A decision is made with the help of deci-
sion tables.

5. Discussion

From the high-level themes discussed in Sections 4.2.1, 4.2.2
and 4.2.3, we can see that OSS has more positive influence on
the decision when project metrics and external factors are con-
sidered. In-house development and OSS have more positive
influence when software development process factors are con-
sidered. However, when the individual factors/themes are con-
sidered each component origin has some advantage over some
other component origins. The results indicate that some trade-
offs between factors and dependencies on the context need to
be considered which is discussed in this section along with the
advantage and disadvantages of the component origins.

The advantages are discussed in Table 24. The advantages
of outsourcing are not discussed as none of the primary stud-
ies have mentioned them. The information presented in Table
24 can be used as an initial set of factors to be considered by
practitioners in the decision-making.

In addition, there are some trade-offs that need to be consid-
ered along with the advantages. Figures 4, 5 and 6 illustrate
the trade-offs between the different factors. The trafe-offs that
should be considered along with advantages of COTS over OSS
are depicted in Figure 4 and discussed in Section 5.1. The trafe-
offs that should be considered along with advantages of OSS
over COTS are depicted in Figure 5 and discussed in Section
5.2. Whereas, Figure 6 discusses trade-offs that are related to
the advantages of in-house development over COTS and OSS,
which is discussed in Section 5.3. Section 5.4 discusses the
advantages of COTS and OSS over in-house development, no

15

Table 24: Advantages of component origins
Component origin Advantages
COTS over OSS Market Trend [35]
OSS over COTS Low cost of replacing component [35, 45],

Source code available [35, 38, 41, 47, 50],
Low licensing cost [35, 47],
Ease of debugging integration defects [41],
Ease of maintaining system stability [36],
Better quality [35, 42, 46, 50]

In-house over COTS & OSS Ability to add unique functionality [46],
Reduced maintenance cost [38, 40],
Easy integration [35, 41],
Reduced testing time [38]

COTS & OSS over In-house Reduced time to market [35],
Reduced development effort [35],
Ability to add complex functionality [46]

trade-offs were mentioned for the advantages discussed in Sec-
tion 5.4 in the primary studies. The trade-offs and dependencies
depicted in Figures 4, 5 and 6 are aggregated from different pri-
mary studies. The “↔” arrow represents the trade-off between
different factors and “→” arrow represents the dependencies on
the context that affects the factors. Depending on the context,
the factors have positive or negative impact.

5.1. COTS over OSS
If following the market trend is important, practitioners

might choose COTS components as COTS components are
more likely to follow the market trend. One should also con-
sider the trade-off between the following factors: market trend,
maintenance and technical support as shown in Figure 4.

Figure 4: Trade-offs and dependencies for advantages of COTS over OSS

Keeping up with the market trend can mean that components
must be frequently upgraded [35], [36], [40]. Frequent up-
grades might hinder the system stability. In addition, if com-
ponents are not updated to the latest version, there is a risk
of losing technical support offered by the COTS vendor [41].
Hence, the trade-off between market trend, maintainability and
technical support should be considered. Technical support of-
fered depends on the license agreements and context informa-
tion such as size of the organization [41] (large-scale organiza-
tion have better chances with license negotiations) and profile
of the vendor or community [50] (depends on how flexible the
vendor/community providing the component).

5.2. OSS over COTS
OSS is preferred over COTS when there is a possibility for

lot of requirement changes, as there is no impact on the budget
[35], [45]. If OSS components are chosen because the source
code is available, the trade-off between source code availability,

technical support and license must be considered as shown in
Figure 5.

Source code
availability

License Technical Support

Size of organisation,
Profile of vendor or community,
Number of component users

Resource skill/experience,
Project profile

Figure 5: Trade-offs and dependencies for advantages of OSS over COTS

The source code can help to identify defects during integra-
tion, although it depends on the developers’ skill or experience
in finding the defects in source code [46]. In high-risk projects,
the source code might need to be reviewed [45]. However, in
low-risk projects, such reviews might not be necessary. Hence,
if the project has a high-risk profile and the developers or in-
tegrators are skilled and experienced, the availability of source
code is beneficial. On the other hand, if the project does not
have a high-risk profile and the developers or integrators do not
have the required skill or experience, the availability of source
code is not of any benefit to the practitioners.

Another benefit of source code being available is the pos-
sibility to change the code. However, the trade-off between
technical support and license needs to be considered. Some
OSS communities might refuse to support if the component is
customized, although it highly depends on the profile of the
vendor of community [50], size of the organization using the
component [41] and number of users using the component [36],
[46]. In addition, OSS communities might impose a restrictive
license, any changed code must be given back to the OSS com-
munity [35].

5.3. In-house over OSS and COTS
One of the advantages of COTS and OSS is reduced devel-

opment effort [35]. However, integrating COTS and OSS is
time consuming [35]. Hence, the trade-off between develop-
ment effort and integration effort must be considered as shown
in Figure 6.

Development Effort Integration Effort

Figure 6: Trade-offs and dependencies for in-house, COTS and OSS factors

If integrating COTS or OSS components might take longer
than developing components, then they should be developed in-
house rather than acquired externally. The development time
might vary based on the size of the component. In addition,
some studies [38] and [40] report that maintenance cost of in-
house developed components is lower than COTS and OSS
components.

16

5.4. COTS and OSS over In-house

The pressure to develop faster due to market competitive-
ness is identified as a challenge in in-house development [1].
COTS and OSS are known to be viable options when time to
market is a criterion [35]. Constant requirements changes re-
sulted in a lot of wasted development effort [1], which can be
avoided when external components are used: In particular, for
OSS there are no additional costs involved in buying the com-
ponent [35]. Note, the effort is referred to man-hours and not
calendar time. Challenges related to understanding complex re-
quirements were identified [1]. The developers prefer to use
pre-built components such as OSS libraries when the task com-
plexity is high to improve productivity [46].

5.5. Research gaps

The purpose of this systematic review is also to identify re-
search gaps and directions for future studies. Overall, only a
few studies have been found in the area researched. Thus, very
specific research gaps could be identified looking at the existing
literature.

As shown in Table 23 the majority of solutions has been pro-
posed for “OI-OC: In-house vs. COTS”. The solutions that have
been proposed were optimization models using different factors
such as time, cost and quality (reliability in specific). Other
component origins have no solutions, or very few (at most two
studies). Given that solutions are often dependent on the con-
text in which they are applied, more evaluations of them are
needed, and a wider array of new solutions may be needed to
address the complex decision problem of choosing a component
origin.

The factors that influence the decision to choose a component
origin (Sections 4.2.1, 4.2.2 and 4.2.3) and the factors that are
used in solutions proposals (Section 4.3) are mapped in Table
25.

Table 25: Mapping of factors influencing the decision and factors considered in
the solutions

Factors influencing the decision
to choose a component origin

Factors considered in solutions

Project metric factors
Time to market and time to test and
integrate

COTS - Time taken by the vendor to
provide components and the adap-
tation time.
In-house - Time taken to develop
components.

Cost of buying, replacing and main-
taining components

Cost of buying and adapting COTS
components

Selection, development and integra-
tion effort

Not considered

Quality Reliability
External factors
Market trend Not considered
Source code availability Not considered
Technical support Not considered
License Not considered
Software development activity
factors
Integration Not considered
Requirements Not considered
Maintenance Not considered

As seen in Table 25, the solutions only consider project met-
ric factors (cost, time and quality) excluding effort. The ex-
ternal factors and software development activity factors are not
considered by any of the solutions. In addition, the costs con-
sidered are for buying and adapting COTS components. How-
ever, some of the primary studies also discuss the influencing
cost factors that need to consider cost of buying [35], [42],
[47], replacing [42] and maintaining components [38], [40],
[43]. Also even though time to obtain and adapt components
are considered, time to market is not considered by any of the
solutions. Reliability is considered in almost all proposed solu-
tions, although it did not emerge as a most important factor in
the studies that compared the different component origin. Un-
like the solutions, non-technical aspects such as vendors’ pro-
file are used to evaluate quality [42]. The integration effort has
not been considered by any of the solutions, even though it is
mentioned as an influencing factor in the in-house vs. COTS
and OSS decisions [35], [36], [38], [41]. In addition, an impor-
tant trade-off between integration effort and development effort
has been identified as shown in Figure 6. One possible reason
for not including integration effort may be because it is difficult
to estimate the effort required to integrate external components
such as COTS and OSS.

Among the solutions provided for “OI-OC: In-house vs.
COTS” and “OI-OO: in-house vs. outsourcing”, in-house is the
common component origin, although the solutions provided do
not have any common factors that are considered in the solu-
tions.

Considering the above remarks, it can be said that the pro-
posed solutions have not necessarily considered the most im-
portant factors that are needed in the decision to choose a com-
ponent origin. This means that we may say that solutions do
not consider factors that are from a practical perspective poten-
tially relevant, this is a disadvantage as the solutions focus on
too few factors, i.e. when looking at practice they may not be
fully applicable, not reflect the reality.

Few studies (maximum 6, see Table 15) per combination of
component origins were identified. Thus, it is hard to judge
whether the component origins discussed are the most relevant
ones for the decision to be made. One study [57] highlighted,
according to what the authors believed, the most important fac-
tors that need to be considered while selecting OSS compo-
nents. The relative importance of factors for the different com-
binations of component origins is unknown and hence based
on the existing studies it is impossible to suggest the ones that
are most important. In addition, the order in which the factors
should be considered is not known. Though, the findings can
serve as an initial inventory of factors to be considered. If a
factor is mentioned for one of the component origins, but not
for another, also does not necessarily mean that it is irrelevant
for that component origin.

Conflicting statements with regard to external factors were
found, but not for all other combinations. This may be due to
the low number of studies and indicates that to make a reliable
statement with regard to a positive or negative effect in relation
to different factors, it is not possible to provide reliable guid-
ance to practitioners in their decision-making. In particular, to

17

have good decision support it is important to understand the
strengths and weaknesses of the alternatives with regard to the
factors and outcomes empirically. With this understanding, in
combination with knowledge about the importance of the fac-
tors, more informed decisions can be made. With the current
solutions, insufficient data is available to do so.

6. Conclusion

A systematic review of the factors affecting the decision to
choose a component origin has been conducted. A component
origin is a source to get the components from (here in-house
development, open-source, COTS and outsourcing). Three re-
search questions were asked:

RQ1: What are the research types, methods and quality of
the contributions? All the research types classified by Wieringa
[19] were identified. Hence, the primary studies consisted of a
good mix of empirical and non-empirical results. This distribu-
tion of the research types allowed to identify conflicting results
based on context dependencies. The most common research
type is evaluation research indicating that the research is empir-
ical and rooted in industrial practice, which is a positive result.
The most common research method is survey indicating that
the results are not specific to a particular context. However the
context is not described sufficiently in the primary studies. The
results of quality assessment indicate the lack of rigor in the pri-
mary studies in terms of reporting the context, validity threats
and research design.

RQ2: What are the different factors that influence the de-
cision to choose among different component origins? In total
eleven factors grouped into three high-level themes that influ-
ence the decision to choose a component origin were identified.
The project metrics factors are: time, cost, effort and quality.
External factors such as market trend, source code availability,
technical support and license were identified. In addition, the
software development activity factors such as integration, re-
quirements, and maintenance activities that have an impact on
the decision were identified. The results from empirical are sup-
porting and complementing results from non-empirical studies.
However in some cases, conflicts are identified (see for example
Table 20). The conflicts are due to the context dependencies.

The project metrics and external factors positively affect the
adoption of OSS components. However, the trade-off between
development effort and integration effort needs to be consid-
ered when choosing between in-house and OSS components
(see Figure 6). Whereas, when external factors are considered,
the context dependencies on the source code availability and
technical support factors need to be considered (see Figure 5).
The software development activity factors positively affect the
decision to adopt OSS components and in-house development.
Overall COTS has a negative impact on adoption however, it
is preferred over OSS and in-house when following the market
trend is important.

RQ3: What solutions have been proposed to choose the com-
ponent origin? The solutions were mainly focused on choos-
ing between in-house development and COTS and were mainly
based on optimization models.

The overall implication is that there are too few studies, and
hence too few contexts investigated to provide recommenda-
tions for practitioners on how to make decisions between the
component origins. That being said, the initial set of studies
identified may serve as a basis for future studies.

Three decision levels are shown in Figure 1. The factors in-
fluencing provider selection are different from component ori-
gin selection [3]. The factors influencing component selection
are similar to the factors influencing component origin selection
[21]. For example, the component integration effort is consid-
ered in component selection. However, the comparison with
development effort is not considered. The decision to select the
component origin must be taken first before selecting the com-
ponent. While there are secondary studies on provider selection
[3] and component selection [21] level, this systematic litera-
ture review is the first secondary study on selecting component
origin. The research field of choosing between component ori-
gins is in great need of future studies to provide comprehensive
approaches to support decision-making. This is true in terms
of the number of solutions proposed, and the extent to which
empirical evaluations have been conducted.

As a consequence, future work has to focus on (a) deter-
mining the order of importance and magnitude of the factors;
(b) providing empirical evidence on comparisons of component
origins with regard to the factors; and (c) proposal of novel so-
lutions taking (a) and (b) into consideration.

7. Acknowledgement

The work is partially supported by a research grant for
the ORION project (reference number 20140218) from The
Knowledge Foundation in Sweden.

References

[1] D. Badampudi, S. A. Fricker, A. M. Moreno, Perspectives on produc-
tivity and delays in large-scale agile projects, in: Proceedings of the 14th
International Conference on Agile Processes in Software Engineering and
Extreme Programming (XP 2013), Springer Berlin Heidelberg, 2013, pp.
180–194.

[2] M. Morisio, M. Torchiano, Definition and classification of cots: a pro-
posal, in: COTS-Based Software Systems, Springer, 2002, pp. 165–175.

[3] S. U. Khan, M. Niazi, R. Ahmad, Factors influencing clients in the selec-
tion of offshore software outsourcing vendors: An exploratory study us-
ing a systematic literature review, Journal of systems and software 84 (4)
(2011) 686–699.

[4] T. Helokunnas, M. Nyby, Collaboration between a cots integrator and
vendors, in: Software QualityECSQ 2002, Springer, 2002, pp. 267–273.

[5] J. Xu, Y. Gao, S. Christley, G. Madey, A topological analysis of the
open souce software development community, in: System Sciences, 2005.
HICSS’05. Proceedings of the 38th Annual Hawaii International Confer-
ence on, IEEE, 2005, pp. 198a–198a.

[6] R. Land, L. Blankers, M. Chaudron, I. Crnković, Cots selection best prac-
tices in literature and in industry, in: High Confidence Software Reuse in
Large Systems, Springer, 2008, pp. 100–111.

[7] T. Wanyama, B. Far, An empirical study to compare three methods for
selecting cots software components, International Journal of Computing
and ICT Research 2 (1) (2008) 34–46.

[8] C. Ayala, X. Franch, A goal-oriented strategy for supporting commercial
off-the-shelf components selection, in: Reuse of Off-the-Shelf Compo-
nents, Springer, 2006, pp. 1–15.

18

[9] V. Maxville, J. Armarego, C. P. Lam, Applying a reusable framework for
software selection, Software, IET 3 (5) (2009) 369–380.

[10] N. D. Anh, D. S. Cruzes, R. Conradi, M. Höst, X. Franch, C. Ayala,
Collaborative resolution of requirements mismatches when adopting open
source components, in: Requirements Engineering: Foundation for Soft-
ware Quality, Springer, 2012, pp. 77–93.

[11] D. J. Carney, F. Long, What do you mean by cots? finally, a useful answer,
IEEE Software 17 (2) (2000) 83–86.

[12] C. Gacek, B. Arief, The many meanings of open source, Software, IEEE
21 (1) (2004) 34–40.

[13] C. Wohlin, Guidelines for snowballing in systematic literature studies and
a replication in software engineering, in: 8th International Conference on
Evaluation and Assessment in Software Engineering (EASE 2014), ACM,
2014, pp. 321–330.

[14] D. Badampudi, C. Wohlin, K. Petersen, Experiences from using snow-
balling and database searches in systematic literature studies, in: Proceed-
ings of the 19th International Conference on Evaluation and Assessment
in Software Engineering, ACM, 2015, p. 17.

[15] K. Petersen, C. Gencel, Worldviews, research methods, and their relation-
ship to validity in empirical software engineering research, in: Software
Measurement and the 2013 Eighth International Conference on Software
Process and Product Measurement (IWSM-MENSURA), 2013 Joint Con-
ference of the 23rd International Workshop on, IEEE, 2013, pp. 81–89.

[16] H. Zhang, M. A. Babar, P. Tell, Identifying relevant studies in software
engineering, Information & Software Technology 53 (6) (2011) 625–637.

[17] S. Jalali, C. Wohlin, Systematic literature studies: database searches vs.
backward snowballing, in: Proceedings of the ACM-IEEE international
symposium on Empirical software engineering and measurement, ACM,
2012, pp. 29–38.

[18] B. Kitchenham, O. P. Brereton, D. Budgen, M. Turner, J. Bailey,
S. Linkman, Systematic literature reviews in software engineering–a sys-
tematic literature review, Information and software technology 51 (1)
(2009) 7–15.

[19] R. Wieringa, N. A. M. Maiden, N. R. Mead, C. Rolland, Requirements
engineering paper classification and evaluation criteria: a proposal and a
discussion, Requir. Eng. 11 (1) (2006) 102–107.

[20] T. Vale, I. Crnkovic, E. S. de Almeida, P. A. d. M. S. Neto, Y. C. Cav-
alcanti, S. R. de Lemos Meira, Twenty-eight years of component-based
software engineering, Journal of Systems and Software 111 (2016) 128–
148.

[21] M. Morandini, A. Siena, A. Susi, Risk awareness in open source com-
ponent selection, in: Business Information Systems, Springer, 2014, pp.
241–252.

[22] M. Syeed, I. Hammouda, T. Syatä, Evolution of open source software
projects: A systematic literature review, Journal of Software 8 (11) (2013)
2815–2829.

[23] M. Sultan, A. Bakar, A. Diwani Bakar, H. Zulzalil, J. Din, Systematic
literature review: the important factors in assessing the trustworthiness
of oss., International Journal on Communication Antenna & Propagation
(IRECAP) 3 (1) (2013) 56–60.

[24] S. T. Acuña, J. W. Castro, O. Dieste, N. Juristo, A systematic mapping
study on the open source software development process, in: Evaluation
& Assessment in Software Engineering (EASE 2012), 16th International
Conference on, IET, 2012, pp. 42–46.

[25] A. B. M. Sultan, A. D. Bakar, H. Zulzalil, J. Din, Systematic literature
review in open source software maintainability., International Review on
Computers & Software 7 (5).

[26] M. Höst, A. Oručević-Alagić, A systematic review of research on open
source software in commercial software product development, Informa-
tion and Software Technology 53 (6) (2011) 616–624.

[27] K.-J. Stol, M. A. Babar, P. Avgeriou, B. Fitzgerald, A comparative study
of challenges in integrating open source software and inner source soft-
ware, Information and Software Technology 53 (12) (2011) 1319–1336.

[28] K.-J. Stol, M. A. Babar, B. Russo, B. Fitzgerald, The use of empirical
methods in open source software research: Facts, trends and future direc-
tions, in: Proceedings of the 2009 ICSE Workshop on Emerging Trends
in Free/Libre/Open Source Software Research and Development, IEEE
Computer Society, 2009, pp. 19–24.

[29] H. P. Breivold, M. A. Chauhan, M. A. Babar, A systematic review of
studies of open source software evolution, in: Software Engineering Con-
ference (APSEC), 2010 17th Asia Pacific, IEEE, 2010, pp. 356–365.

[30] Ø. Hauge, C. Ayala, R. Conradi, Adoption of open source software in
software-intensive organizations–a systematic literature review, Informa-
tion and Software Technology 52 (11) (2010) 1133–1154.

[31] J. Maras, L. Lednicki, I. Crnkovic, 15 years of cbse symposium: impact
on the research community, in: Proceedings of the 15th ACM SIGSOFT
symposium on Component Based Software Engineering, ACM, 2012, pp.
61–70.

[32] I. Crnkovic, Component-based software engineeringnew challenges in
software development, Software Focus 2 (4) (2001) 127–133.

[33] D. S. Cruzes, T. Dybå, Recommended steps for thematic synthesis in soft-
ware engineering, in: Empirical Software Engineering and Measurement
(ESEM), 2011 International Symposium on, IEEE, 2011, pp. 275–284.

[34] M. Ivarsson, T. Gorschek, A method for evaluating rigor and indus-
trial relevance of technology evaluations, Empirical Software Engineer-
ing 16 (3) (2011) 365–395.

Systematic Review Study

[35] J. Li, R. Conradi, O. P. N. Slyngstad, C. Bunse, M. Torchiano, M. Mori-
sio, An empirical study on decision making in off-the-shelf component-
based development, in: Proceedings of the 28th international conference
on Software engineering, ACM, 2006, pp. 897–900.

[36] P. Di Giacomo, Cots and open source software components: are they
really different on the battlefield?, in: COTS-Based Software Systems,
Springer, 2005, pp. 301–310.

[37] J. Li, R. Conradi, O. P. N. Slyngstad, C. Bunse, U. Khan, M. Torchiano,
M. Morisio, Validation of new theses on off-the-shelf component based
development, in: Software Metrics, 2005. 11th IEEE International Sym-
posium, IEEE, 2005, pp. 26–26.

[38] T. Helokunnas, The dimensions of embedded cots and oss software com-
ponent integration, in: Product Focused Software Process Improvement,
Springer, 2002, pp. 509–518.

[39] V. Cortellessa, F. Marinelli, P. Potena, Automated selection of software
components based on cost/reliability tradeoff, in: Software Architecture,
Springer, 2006, pp. 66–81.

[40] L. Brownsword, T. Oberndorf, C. A. Sledge, Developing new processes
for cots-based systems, IEEE Software 17 (4) (2000) 48–55.

[41] S. A. Hissam, C. B. Weinstock, Open source software: The other com-
mercial software, in: 1st Workshop on Open Source Software at ICSE,
2001.

[42] K. J. Stewart, A. P. Ammeter, L. M. Maruping, A preliminary analysis of
the influences of licensing and organizational sponsorship on success in
open source projects, in: System Sciences, 2005. HICSS’05. Proceedings
of the 38th Annual Hawaii International Conference on, IEEE, 2005, pp.
197c–197c.

[43] J. Li, F. O. Bjørnson, R. Conradi, V. B. Kampenes, An empirical study of
variations in cots-based software development processes in the norwegian
it industry, Empirical Software Engineering 11 (3) (2006) 433–461.

[44] S. A. Hissam, D. Plakosh, C. Weinstock, Trust and vulnerability in open
source software, IEE Proceedings-Software 149 (1) (2002) 47–51.

[45] J. S. Norris, Mission-critical development with open source software:
Lessons learned, Software, IEEE 21 (1) (2004) 42–49.

[46] R. Torres, Developer-led adoption of open source software libraries: A
conceptual model, in: 18th Americas Conference on Information Sys-
tems, 2012, pp. 583–586.

[47] W. Chen, J. Li, J. Ma, R. Conradi, J. Ji, C. Liu, An empirical study on
software development with open source components in the chinese soft-
ware industry, Software Process: Improvement and Practice 13 (1) (2008)
89–100.

[48] P. Potena, Composition and tradeoff of non-functional attributes in soft-
ware systems: research directions, in: The 6th Joint Meeting on European
software engineering conference and the ACM SIGSOFT symposium on
the foundations of software engineering: companion papers, ACM, 2007,
pp. 583–586.

[49] P. Jha, S. Bali, U. D. Kumar, H. Pham, Fuzzy optimization approach to
component selection of fault-tolerant software system, Memetic Comput-
ing 6 (1) (2014) 49–59.

[50] B. Mishra, A. Prasad, S. Raghunathan, Quality and profits under open
source versus closed source, ICIS 2002 Proceedings (2002) 32.

19

[51] V. Cortellessa, F. Marinelli, P. Potena, An optimization framework for
build-or-buy decisions in software architecture, Computers & Operations
Research 35 (10) (2008) 3090–3106.

[52] S. Koch, Open source as a sourcing strategy for corporations, Interna-
tional Journal of Business Innovation and Research 5 (1) (2010) 1–16.

[53] A. A. Ssaed, W. Kadir, S. Z. M. Hashim, Metaheuristic search approach
based on in-house/out-sourced strategy to solve redundancy allocation
problem in component-based software systems, International Journal of
Software Engineering and Its Applications 6 (4) (2012) 143–154.

[54] P. Jha, V. Bali, S. Narula, M. Kalra, Optimal component selection based
on cohesion & coupling for component based software system under
build-or-buy scheme, Journal of Computational Science 5 (2) (2014) 233–
242.

[55] T. Kramer, M. Eschweiler, Outsourcing location selection with soda: a

requirements based decision support methodology and tool, in: Advanced
Information Systems Engineering, Springer, 2013, pp. 530–545.

[56] T. Kramer, A. Heinzl, K. Spohrer, Should this software component be
developed inside or outside our firm?-a design science perspective on
the sourcing of application systems, in: New Studies in Global IT and
Business Service Outsourcing- 5th Global Sourcing Workshop 2011,
Courchevel, France, March 14-17, 2011, Springer, 2011, pp. 115–132.

[57] J. Rudzki, K. Kiviluoma, T. Poikonen, I. Hammouda, Evaluating quality
of open source components for reuse-intensive commercial solutions, in:
Software Engineering and Advanced Applications, 2009. SEAA’09. 35th
Euromicro Conference on, IEEE, 2009, pp. 11–19.

[58] S. M. Syed-Mohamad, T. McBride, A comparison of the reliability
growth of open source and in-house software, in: 15th Asia-Pacific Soft-
ware Engineering Conference (APSEC 2008), 2008, pp. 229–236.

20

Deepika Badampudi is a PhD student at Blekinge Institute of Technology. Her
research interests are component-based software engineering, agile software
development, and evidence-based software engineering.

Claes Wohlin is a professor of software engineering and dean for the Faculty of
Computing at Blekinge Institute of Technology, Sweden. He has previously held
professor chairs at the universities in Lund and Linkoping. His research interests
include empirical methods in software engineering, software metrics, software
quality, and requirements engineering. Wohlin received a PhD in communication
systems from Lund University. He is Editor-in-Chief of Information and Software
Technology. Claes Wohlin was the recipient of Telenor’s Nordic Research Prize in
2004 for his achievements in software engineering and improvement of
reliability for telecommunication systems. He is a member of the Royal Swedish
Academy of Engineering Sciences.

Kai Petersen is a professor at Blekinge Institute of Technology (BTH), Sweden.
He received his PhD from BTH in 2010. His research focuses on software
processes, software metrics, Lean and agile software development, quality
assurance, and software security in close collaboration with industry partners.
Kai has authored over 70 research works in international journals and
conferences.

*Biography

Manuscript submitted to JSS

Title: Software component decision-making: In-house, OSS, COTS, or Outsourcing
– A Systematic Literature Review

Authors:

Deepika Badampudi
Blekinge Institute of Technology
Campus Gräsvik
Deepika.badampudi@bth.se

Claes Wohlin
Blekinge Institute of Technology
Campus Gräsvik
claes.wohlin@bth.se

Kai Petersen
Blekinge Institute of Technology
Campus Gräsvik
Kai.petersen@bth.se

*Title page with author details

mailto:Deepika.badampudi@bth.se
mailto:Deepika.badampudi@bth.se
mailto:Kai.petersen@bth.se

LaTeX Source Files
Click here to download LaTeX Source Files: Latex Source Files.zip

http://ees.elsevier.com/jss/download.aspx?id=265008&guid=3231f34f-c1d2-4f25-83b6-97d3fb2018e0&scheme=1

