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Abstract
Software systems evolve over time and it is often difficult 

to maintain them. One reason for this is often that it is hard 
to understand the previous release. Further, even if 
architecture and design models are available and up to date, 
they primarily represent the functional behaviour of the 
system. To evaluate whether it is possible to also represent 
some non-functional aspects, an experiment has been 
conducted. The objective of the experiment is to evaluate the 
cognitive suitability of some visual representations that can 
be used to represent a control relation, software component 
size and component external and internal complexity. Ten 
different representations are evaluated in a controlled 
environment using 35 subjects. The results from the 
experiment show that it is possible to also represent some 
non-functional aspects. It is concluded that the 
incorporation of these representations in architecture and 
design descriptions is both easy and probably worthwhile. 
The incorporation of the representations should enhance the 
understanding of previous releases and hence help software 
developers in evolving and maintaining complex software 
systems.

1. Introduction
Software systems grow continuously, i.e. new versions of 

the software are released either to enhance, improve or 
correct its behaviour. Few software products are released 
once and then never updated. The evolution of software 
systems calls for an understanding of previous versions and 
releases of the software system. Moreover, it is not possible 
to rely solely on the understanding of the code. The code is 
important, but other descriptions are needed to support the 
understanding of software, for example, architecture and 
design descriptions. The latter descriptions provide valuable 
tools on a higher abstraction level than the code. Software 
architecture has gained an increased interest in the last few 
years. The value of architecture models has been highlighted 
among others by [5, 16, 24], and several types and views of 
these models have been suggested, along with some UML 
models, e.g. [1].

The architecture and design models are, however, 
primarily formulated to be used during development. This 
conjecture is based on the fact that no models, to the best of 
our knowledge, include information regarding issues that 
only can be gained after having developed the system. In 
other words, the models have no means of incorporating 
experiences from previous releases, for example, in terms of 

quality aspects. The models are developed to form a basis for 
the continuation of the implementation within a project and 
not between successive projects. We believe, however, that 
there are simple ways of including quality aspects in 
architecture and design descriptions. In particular, it should 
be possible to add information to the descriptions in the 
coding and testing phase of one release to help in the 
understanding as new versions of the software are to be 
developed.

Code decay and identification of fault-proneness between 
releases have gained an increasing interest, for example, 
[19, 22]. These are important areas to help guide 
development activities in future releases or identify 
candidates for reengineering efforts. A problem encountered 
in these studies is that the information about non-functional 
aspects of the software has to be found by archival analysis 
of the software, testing records and problem reports. Four 
major reasons for fault-proneness are size, relationships, and 
internal and external complexity. See e.g. [4, 21].

The intention of this paper is to study whether these 
aspects easily can be included in architecture and design 
descriptions, and hence help in the understanding of some 
non-functional aspects between releases. A model is of little 
value unless it is understood. Once semantics and syntax 
have been established, there is a ground for understanding a 
model. Is this enough or can we increase the intuitive 
understanding of a model, i.e. can we organize a model in 
such a way that our cognitive processes shaped by prior 
experience and knowledge help us interpret the model more 
easily? This is basically the approach taken in the pattern 
community with respect to functional behaviour. Pattern 
efforts, e.g. [7, 12] help us traverse the path from the 
problem domain to the solution domain. All of the pattern 
approaches require prior knowledge of the patterns to be 
truly effective in terms of how easily a particular pattern is 
recognized in models of source code or in the source itself.

The objective of this paper is also to take a cognitive 
approach based on previous experience and knowledge. The 
focus is, however, on some quality-related aspects rather 
than on functional aspects. This paper presents an 
experiment where the intuitive understanding various 
representations for size, relationships, internal and external 
complexity is evaluated. The basic hypothesis of the study is 
that it is possible to decorate or extend existing architecture 
and design description techniques fairly easily to include 
these four aspects related to quality. By decorating models 
instead of creating new models, we adhere to Baker’s and 



Eick’s proposition that a visualization should adhere to the 
structure of the software [2], which in this case is 
represented by an existing architecture model of the 
software.

In the experiment different ways of representing four 
aspects are presented to subjects and the intuitive 
understanding of the representation is evaluated. From the 
experiment, it can be concluded that different individuals 
have the same intuitive understanding of the representations 
evaluated. This shows that it should be possible to include 
intuitive representation for these four aspects to help in the 
understanding of software systems between new versions of 
the software. This is feasible since it is easy to add 
information about these aspects as the software is being 
released. The information provides then valuable input to 
forthcoming versions of the software.

This paper is organized as follows. Section 2 defines 
research questions, variables and hypothesis. Section 3
discusses the methods used to conduct the experiment. 
Section 4 presents an analysis of collected data. Section 5
shows some possible applications of the results. Finally, 
section 6 summarizes the paper.

2. Experiment definition
In this experiment, it is analysed how software 

developers can be supported during evolution of a software 
system. The objective of the experiment is to evaluate 
whether some relationships and quality related issues can be 
represented easily and intuitively in software architecture or 
design description. Inspired by e.g. [10, 11], it is believed 
that different two-dimensional visual representations better 
express some software engineering concepts in terms of 
how intuitive the mapping between the representation and 
the concept is. The representation that is the most intuitive 
representation of a software engineering concept is said to 
have the minimum accessibility weight. For example, in 
Figure 1 there are two symbols, that both represent that 
smoking is not allowed. The left symbol is a more intuitive 
representation of the concept. Out of the two symbols, the 
left symbol can be said to have the minimum accessibility 
weight - no previous training or information is needed to 
understand what the symbol represents. By ensuring 
minimum accessibility weight in models, the need for 
training and manuals is minimized.

Four research questions are formulated:

RQ1 How do we best show that component A con-
trols the operation of a component B? That a component 
controls another component is referred to as the ‘CC’ rela-
tionship.

RQ2 How do we best show that it is more complex 
to modify the internals of component A than it is to modify 
the internals of component B? This is referred to as the 
internal complexity relationship (‘IC’).

RQ3 How do we best show that the externally visi-
ble interface of component A is more complex than the 
externally visible interface of component B? This is referred 
to as the external complexity relationship (‘EC’).

RQ4 How do best show that the size of 
component A is larger than the size of component B? This is 
referred to as the component size relationship (‘CS’).

All of the research questions refer to an intuitive 
mapping between a concept used within software 
engineering and a visual representation. There are a large 
number of classes of spatial concepts used for visual 
representation, e.g. [13] lists 51 spatial concepts and 
indicates that there are many more. This experiment 
investigates only a few visual representations, that have 
been chosen because they share three properties: i) They are 
suitable both for paper and screen representation, ii) They 
can be combined with many existing architecture and design 
diagrams and iii) The concepts can be used concurrently to 
decorate an existing diagram with several new properties. 
The entities studied for the different relationships are shown 
in Figure 2. Representations 1 to 4 are assessed as good 
candidates for the CC relationship, i.e. possible indications 
of that component A controls component B. 
Representations 5 to 10 are assessed for the EC, IC and CS 
relationships. For example, it is possible to evaluate whether 
representation 6 is a better indicator of that component A is 
larger (CS relationship) than component B, than, for 
example, representation 9.

From the research questions, a number of hypotheses are 
derived. These are described in Table 1. The hypotheses all 
indicate that we believe that there is a representation that is 
better than the other ones.

Fig. 1. Two symbols that represent 
the concept of no smoking.

Fig. 2. Objects studied
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3. Method

3.1 Introduction
The strategy used to answer the research questions is an 

experiment in a laboratory environment [26]. For data 
collection, questionnaires have been used. The method used 
for data collection and analysis is summarized in Figure 3
and described further below.

3.2 Sampling and generalization
From [18] it is known that entry-level programmers work 

differently from more experienced programmers. In 
particular, experienced programmers are able to 
concurrently draw on more sources of information such as 
different models. In this experiment, it is studied how entry-
level programmers and non full-time programmers can be 
aided. There have been 35 participants in the experiment. 26 
of them are university computer science and electronics 
master students, and 9 of them are Ph.D.s or Ph.D. students. 
ANOVA tests comparing the two types of participants show 
no significant difference in the results from the two types of 
participants. Therefore, all participants are treated as one 
homogeneous group, despite that the participants have 

different exposure to various tools, technologies and 
methodologies. All participants have had some exposure to 
object-oriented methods prior to the experiment. We believe 
that the way the objects studied are perceived is not changed 
much by the increased time pressure and competitiveness 
that may exist in industry as compared to a student/
university environment. Given the background of the 
participants, it should be possible to generalize to at least 
entry level programmers due to the student participants, and 
probably also to somewhat more experienced designers as 
there is no significant difference in the results from students 
and Ph.D.s/Ph.D. students. 

3.3 Data collection
Data collection has taken place in a laboratory setting. 

Data collection took place at three different occasions. The 
same introduction to the experiment was given to all 
participants. This introduction made sure that all 
participants knew how to fill in the questionnaires. It was 
also made sure that all participants knew that they were not 
to think more than 15 seconds for each question. This was to 
ensure that the initial understanding of each question was 
captured. No hypotheses regarding the outcome of the 
experiment were presented to the participants.

Table 1. Hypotheses. All hypotheses are assessed at the  significance level. , , 
, 

RQ Name Definition
RQ1 HCC,1  There is some representation that has minimum accessibility weight in terms of 

how well it represents that software component A controls software component B.
HCC,0  Null hypothesis: There is no statistical difference between the representations 

that may represents that software component A controls software component B. Explanation of variables: 
The average weight assigned to representation n regarding how well it represents the “A controls B” rela-
tionship (CC) is equal to the average weight assigned to representation m for the same relationship.

RQ2 HIC,1  There is some representation that has minimum accessibility weight in terms of 
how well it represents that software component A is internally more complex than software component B. 
Null hypothesis: HIC,0.

RQ3 HEC,1  There is some representation that has minimum accessibility weight in terms of 
how well it represents that software component A is internally more complex than software component B. 
Null hypothesis: HEC,0.

RQ4 HCS,1  There is some representation that has minimum accessibility weight in terms of 
how well it represents that software component A is larger than software component B. Null hypothesis: 
HCS,0.

p 0,05= m n, 1 2 3 4, , ,{ }∈ m n≠
p q, 5 6 7 8 9 10, , , , ,{ }∈ p q≠

AvgCC Repr n, AvgCC Repr m,≠

AvgCC Repr n, AvgCC Repr m,=

AvgIC Repr p, AvgIC Repr q,≠

AvgEC Repr p, AvgEC Repr q,≠

AvgCS Repr p, AvgCS Repr q,≠

Fig. 3. Data collection and analysis
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Four different questionnaires have been used. Each of the 
questionnaires addressed only one research question. For 
each of these four questionnaires, there have been three 
different versions. The ordering of questions in each version 
has been different, but the set of questions has been equal 
across all versions. Participants were assigned one of each 
questionnaire in random order. The version used of each 
questionnaire was also randomly assigned. Thus, the order 
of questions answered is random for each participant.

3.4 Analysis
The main statistical analysis method applied to the 

quantitative data collected through the questionnaires is the 
Analytical Hierarchical Process (AHP) [15, 23]. The AHP 
was developed to improve decision-making through giving 
priority to items pair-wise, rather than prioritizing all items 
at once. Thus the method simplifies complex decision-
making. The output from an AHP analysis is a value 
denoting the relative weight of items compared. In this 
paper, the AHP is used to compute the relative accessibility 
weight of items denoted objects. A number of tests have 
been used1 on the output of the AHP, notably the Kruskal-
Wallis tests [17], Analysis of Variance (ANOVA) [20] and 
Protected Least Significant Difference tests (PLSD) [20]. 
The Kruskal-Wallis test is non-parametric and does not 
make any assumptions of the distribution or variance of data 
collected. This test is used to initially get a picture of the 
data analysed. The ANOVA makes two assumptions: The 
variance in the groups being compared must be equal, and 
the data must be distributed according to a normal 
distribution. If both a Kruskal-Wallis test and an ANOVA 
show the same result, PLSD tests have been used as it is 
assumed that the preconditions for the ANOVA have been 
met well enough. PLSD tests have been used to identify 
what contributes the most to the results of an ANOVA.

The AHP has an additional feature. Using AHP, it is 
possible to see how consistent answers are. For example, if a 
participant claims that item A is more important than 
item B, and that item B is more important than item C, and 
that both item A and item B is much more important than 
item C, there is high consistency in answers. On the other 
hand, if the participant claims that A is more important 
than B, and that B is more important than C, then answers 
are not consistent if the participant also considers item C to 
be more important than item A. The consistency is 
measured by computing a consistency index (CI) and 
adjusting it according to the number of different items 
compared, to an adjusted index (CR). By looking at the CR, 
it is possible to objectively identify respondents who have 
either not put a lot of thought into the answers, or have not 
understood the questions, or have not enough knowledge to 
compare the items to prioritize. A low CR value is a sign of 
high consistency in answers given. As a rule of thumb, 
answers with a CR > 0.40 are treated as outliers. For details 
in how to compute the relative weight and CI and CR, see 
e.g. [15].

3.5 Threats and validity
The validity of the findings reported depends to a large 

extent on how well threats have been handled. Four types of 
validity threats [9] are analysed: Conclusion validity, 
construct validity, internal validity and external validity. The 
relationship between these is illustrated in Figure 4.

Conclusion validity (marked 1 in Figure 4) concerns the 
relationship between the treatment and the outcome. Care 
has been taken not to violate any assumptions made by the 
statistical tests. The questions used in the questionnaires 
have been easy to answer, and the participants were trained 
in how to answer the questions. Therefore, there is high 
reliability in measures. As the data collection took place at 
three different occasions, there has been a risk that the 
reliability of the implementation of the experiment could be 
degraded. This threat has been addressed by using a highly 
standardized experiment introduction. By collecting data at 
different occasions, random irrelevancies in the 
experimental setting have been accounted for. The set of 
respondent is fairly homogenous, in terms of that there is an 
overlap in previous experiences in courses studied at the 
university. On the other hand, there is no statistically 
significant difference between the student participants and 
the non-student participants. Therefore, the present random 
homogeneity (or heterogeneity) of respondents should not 
affect the conclusion validity much.

Internal validity (2) concerns matters that may affect an 
independent variable’s causality, without the knowledge of 
the researcher. History effects, i.e. how previous events 
affect participants, have been taken into account in several 
ways. First, there is some heterogeneity in the group of 
respondents. This balances long-term history effects. 
Secondly, the data collection has taken place at three 
different occasions. This accounts for effects of recent 
events. Thirdly, respondents answered questions in different 
order by using different versions of four questionnaires 
answered in random order. The latter ensures that history 
effects from the last few questions are accounted for. As 
data collection took no more than an hour, there should be 
no maturation effects. Testing effects have been minimized 
by making sure that there was no gain or loss in how 
questions were answered. No participants left the 
experiment, i.e. there has been no mortality.

Construct validity (3) concerns whether we measure 
what we believe we measure. Constructs used in the 

1. SPSS 8.0 running on Windows NT has been used for all tests 
except the AHP.
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questionnaires have been well defined. The use of the scale 
used to compare objects has been explained to all 
participants. The use of the AHP and using the consistency 
ratio to identify outliers is a way of reducing the mono-
method bias by making each participant compare each 
object studied to all other objects. Thus, the results from 
each respondent are not dependent on a single answer. There 
is always a risk that respondents guess the hypotheses at 
hand. By making sure questions are answered in different 
orders, we balance both the threat of hypotheses guessing as 
well as the threat of interaction between different questions 
and objects.

External validity (4) concerns generalization of the 
findings to other contexts and environments than the one 
studied. All participants have been active at a university, 
either in teaching or studying. The teachers have varying 
degree of industrial background. First, there is no 
statistically significant difference between the teachers and 
the students. Secondly, which may be more important for 
the external validity: Students leave the university for 
industry. Student participants are close to the end of their 
university education (M.Sc. level). It is believed that 
possible change in competitiveness and time pressure that 
may be different in industry and a university setting does not 
affect the perception of the objects studied. Therefore, 

results should be valid at least for the first few years in 
industry. Another threat is that the experiments compare the 
objects in Figure 2 in isolation, not in complex 
combinations such as shown in Figure 11. It is possible that 
this affects the outcome, and further studies is needed to 
verify that understanding does not change in complex 
combinations. A threat related to the understanding of 
software, is the wide range of comprehension strategies 
used by different individuals [18, 25]. The objective of this 
paper is not to generate a silver-bullet solution, rather a 
particular set of comprehension issues are investigated. The 
biggest threat to external validity we can think of, is the 
prior exposure by other populations to particular mappings 
between the software engineering concepts and the visual 
representations studied. This could possibly be the case if 
some tools have been used before.

4. Results and analysis
In this section, results from the experiment are presented. 

First, the analysis for the CC relationship is presented in 
some detail, to explain how analysis has taken place. In 
table 2, results for all four relationships are summarized. 
Finally, in Figure 9 all results are graphically summarized.

Fig. 5. Boxplot for the CC relationship
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Fig. 6. Boxplot for the IC relationship

5 6 7 8 9 10
Representation number

0,0

0,2

0,4

0,6

R
es

ul
t

Fig. 7. Boxplot for the EC relationship
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Fig. 8. Boxplot for the CS relationship
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Detailed analysis of the CC relationship
HCC,1 is tested. The participants were asked “Does 

object 1 or object 2 indicate the stronger the fact that 
software component A controls software component B?”. 
The objects referred to are representations 1, 2, 3, and 4 in 
Figure 2. The individual participants’ results and a boxplot 
are shown in Figure 5. From Figure 5, it is seen that 
representation 4 seems to be the best and that the next best is 
representation 1. Thus, the next step is to evaluate if the 
differences seen in Figure 5 are statistically significant. At 
this stage, it is also noted that no participants had a 
CR>0.40, so there are no outliers.

Both a Kruskal-Wallis test and an ANOVA test show that 
there is a statistically significant difference at the 0.005 
level in how designers rank the accessibility-weight of the 
four objects studied.

Repr4 is on average the best representation of the CC 
relationship. Since an PLSD shows that AvgCC, Repr4 is 
statistically different at the 0.005 level from the next best 

representation of the CC relationship, Repr1, HCC,0 can be 
rejected. The conclusion is that Repr4 is the representation 
of those studied that represents the controlling/controlled 
relationship with the smallest accessibility weight. This 
answers RQ1 and addresses the HCC hypotheses.

This analysis and the corresponding analysis for the other 
relationships are summarized in table 2. In addition, box 
plots for the other three hypotheses are shown in Figures 6-
8.

The mappings with the minimum accessibility weight are 
illustrated in Figure 9. There is also an example of how the 
properties can be combined together.

5. Application of results
In order to illustrate how the results can be applied, a 

scenario is presented below. 
A Software Development Team (SDT) is presented with 

a static architecture level diagram at two aggregation 
levels [6] as illustrated in Figure 10. The software illustrated 

Table 2. Summary of analysis for the four relationships studied
CC IC EC CS

Representations compared 1, 2, 3, 4 5, 6, 7, 8, 9, 10 5, 6, 7, 8, 9, 10 5, 6, 7, 8, 9, 10
Boxplots of all data Figure 5 Figure 6 Figure 7 Figure 8
Outliers due to CR>40, participant(s) no. None 2, 20 9 2
Hx rejected by a Kruskal Wallis at a 0.05 signif-
icance level

HCC,0 rejected HIC,0 rejected HEC,0 rejected HCS,0 rejected

Hx rejected by an ANOVA test at a 0.05 signif-
icance level

HCC,0 rejected HIC,0 rejected HEC,0 rejected HCS,0 rejected

Representation with best average minimum 
accessibility weight

Repr 4 Repr 7 Repr 9 Repr 6

Representation with next best minimum acces-
sibility weight

Repr 1 Repr 9 Repr 7 Repr 9

PLSD indicates difference at 0.05 significance 
level between the two best representations

Yes No Yes Yes

Suggested mapping with minimum accessibil-
ity weight

Repr 4 Repr 7a Repr 9 Repr 6

Answers research question RQ1 RQ2 RQ3 RQ4

a. Representation 9 is significantly better at representing the EC relationship than representation 7. Therefore, rep-
resentation 9 is chosen for the EC relationship. There is no statistically significant difference between representa-
tions 7 and 9 for the IC relationship, but since representation 9 already is accounted for, and representation 7 is 
the best on average, it is chosen to represent the IC relationship.

Fig. 9. Results and example of combined use
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is parts of an industrial cruise control system, with the 
ability to simulate the car, the driver and the road. The SDTs 
task is to make the system behave better in very steep uphill 
and downhill conditions. The SDT does not have any 
previous knowledge of the software.

Seeing Figure 10a, the SDT draws a number of 
immediate conclusions: The Simulator should be changed, 
so that higher degrees of road elevation could be handled. 
Also, the CruiseControl should be changed to contain better 
algorithms. The team looks into architecture models at a 
lower aggregation level as illustrate in Figure 10b. There are 
no more fine-grained static models available to the team. 
The team decides that the Road, Calculator and CarControl 
components are likely to be changed. However, without 
experience from cruise-control systems, it can be hard for 
the team to predict for example change effort in each 
component, and where the largest risks for errors are. This is 
important to know, since in some systems, a small number 
of components are likely to account for a large amount of 
externally visible errors [4, 14]. Therefore, the SDT enters 
the understandability mode of their software development 
tool. This is illustrated in Figure 11.

Using the information in Figure 11, the SDT makes a 
number of new decisions: The Road is a small component. 
However, as its internals are hard to understand, ample time 
for understanding the component, as well as reviewing and 
testing the component should be planned for. The Calculator 
component is small and not internally complex. Therefore, 
less time is allocated into understanding that component. 
Finally, the CarControl component is both large and 
complex (internally and externally). Therefore, two 
developers are devoted entirely to this component. By these 

adjustments to the development process and organization, it 
is likely that the fault-prone component types identified 
by [22] are effectively handled. Thus this scenario 
exemplifies how the representations suggested by this 
experiment can aid in making higher quality software.

In this scenario, the visual representation suggested for 
the controlling/controlled relationship is not in use. The 
reason for this is that it is believed that this relationship best 
should be modelled at design-time, by humans, because it 
can be very hard to determine which component controls 
another component from just looking at machine readable 
code. The other properties can possibly be automatically 
computed.

6. Summary
The presented experiment is formulated based on the 

belief that it should be possible to represent some quality 
related aspects clearly in architecture and design models. To 
the best of our knowledge, no architecture or design 
representation include representations to capture control, 
size, external and internal complexity. Thus, the objective of 
the experiment was to evaluate whether it would be possible 
to augment some existing architecture and design models 
with this type of information, in an intuitive way.

Ten different representations have been evaluated, and 
the results from the experiment have shown with statistical 
significance, in most cases, that it is indeed possible to 
represent non-functional aspects in architecture and design 
models. The evaluated representations can easily be 
introduced as an integral part in most graphical architecture 
and design descriptions, which differ from for example [8] 
where qualitative information is displayed as separate 

Fig. 10. Cruise-control without understandability mode. a) is at a high aggregation level, 
b) is a lower aggregation level
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Fig. 11. Cruise-control in understandability mode. a) is at a high aggregation level, b) is 
a lower aggregation level
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models generated from text-oriented code.
The main value of the results are is in software 

evolution. Representations of the evaluated types can 
support architecture and design understanding during 
evolution and maintenance. In addition to the experiment, 
it has been illustrated through an example how tool support 
can be enhanced to include representations of non-
functional aspects. For example, [2, 3] use component area 
to illustrate component size. The findings in this study 
strengthen the idea that this is a sensible representation.

In summary, the experiment indicates that 
representations can be found that can be used when 
software is evolving and we would like to stay in control of 
the evolution. The representations suggested can be viewed 
as warnings signs together with, for example, methods for 
classifying software components. Further work includes 
comparing the representations suggested by this study in 
more complex environments as well as the use in large 
scale software systems.
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