

N. Ohlsson and C. Wohlin, "Experiences of Fault Data in a Large Software System",
Special issue on Lessons Learned About Safety-Critical Systems in the journal of

Failure and Lessons Learned in Information Technology Management: An
International Journal, Vol. 2, No. 4, pp. 163-171, 1998.

Experiences of Fault Data
in a Large Software System

 Niclas Ohlsson and Claes Wohlin
Dept. of Computer and Information Science

Linköping University, S-581 83 Linköping, Sweden
E–mail: (nicoh, clawo, maryh)@ida.liu.se

Abstract

Early identification of fault-prone modules is desirable both from developer and customer per-
spectives since it supports planning and scheduling activities that facilitate cost avoidance and
improved time to market. Large scale software systems are rarely built from scratch, and usu-
ally involve modification and enhancement of existing systems. This suggest that development
planning and software quality could greatly be enhanced, since knowledge about product com-
plexity and quality of previous releases can be taken into account when making improvements
in subsequent projects. In this paper we present results from empirical studies at Ericsson Tele-
com AB which examine the use of metrics to predict fault-prone modules in successive prod-
uct releases. The results show that such prediction appears to be possible and has the potential
to enhance project maintenance.

Tables wrongly numbered and text is missing. See paper copy!

1 Introduction

Failures in telecommunication systems can cause major disruptions and threaten critical serv-
ices in society (Khoshgoftaar and Kalaichelvan, 1995), although telecommunications are not a
normal safety-critical system. The quality of software has a major impact on the overall per-
formance of telecommunication systems. It is well-known that a major part of software devel-
opment cost is spent on maintenance (Henry and Kafura, 1981). It has also been reported that
the cost for handling faults disclosed during testing and operation amount to large costs (Ohls-
son et al., 19961996). In addition, it is well-established that the costs for fault correction grows
with the number of phases between introduction and detection of faults (Boehm, 1981). Shen
et al. (1985) concluded that schedule and/or resource constraints require that techniques which
facilitate early detection are needed. A number of studies have aimed at predicting the most
fault-prone modules at the completion of coding, see for example (Munson and Khoshgoftaar,
1992; Ebert and Liedtke, 1995). As these models can only be used to schedule testing activities
when all modules have been implemented, models that are applicable earlier in the develop-
ment phase are desirable. This is especially critical in projects where modules are completed at
different time points, which appears to be common in most organisations, as existing predic-
tion techniques require available data from all components. While the results from design are
limited, there have been a few documented studies, see for example (Lennselius, 1990; Ohls-
son et al., 1996). Still, even at the completion of design, the impact of the prediction is rela-
tively limited. Such models can only be used to suggest extra inspection of fault-prone design
modules, and to allocate more experienced people and time to those critical components.
Therefore, models are needed that can be applied before the design, at the completion of the
requirements specification process. These models can be based on previous knowledge or

information from the current system.
This paper presents a case study of fault data from two consecutive releases of a large telecom-
munication system (denoted n and n+1). In this context it is important to have clear interpreta-
tions of errors, faults, defects, failures and trouble reports. Thus, we would like to make the
following distinction between them. Errors are made by humans, which may result in faults in
the software. The faults may manifest themselves as defects during testing or failures during
operation. Thus, faults can be interpreted as bugs in the software, defects are detected in testing
and failures are the actual malfunction in an operational environment. In this paper we have
used fault-prone modules to denote the modules with the highest number of bugs disclosed
independent of whether the faults are disclosed during testing or operation. Furthermore,
defect–prone modules denote the modules that account for the highest number of faults dis-
closed during testing, and failure–prone modules is used to denote the modules accounting for
the highest number of faults disclosed during the first office application (site test, i.e. test under
operational conditions) and in operation, see Figure 1. Faults are reported using trouble
reports, and whether it is a defect report or failure report is determined by the actual time of
discovery. It should also be noted that faults are only calculated once, i.e. duplicate trouble
reports have been removed from the data set.

Figure 1. Illustration of defects, failures and faults.

The general objective of the study is to investigate methods of identifying fault–prone software
modules, where failure-prone modules are of particular interest. The objective of this study
was to investigate whether measurement from release n of the switching system could be used
to identify the most fault-prone modules in release (n+1). Furthermore, the study investigated
whether measurements from release n should be combined with those from release n+1 to see
if the prediction models could be improved. Moreover, the goal is to use the knowledge
acquired to improve the software development process in order to improve software quality in
the future.

Some early results using parametric statistics have been reported in (Ohlsson and
Alberg, 1996). The models have since been refined and analysed with non–parametric statis-
tics (Ohlsson et. al., 1996). Identification of fault–prone modules has also been addressed by
other researchers (Khoshgoftaar and Kalaichelvan, 1995) and (Munson and
Khoshgoftaar, 1992). Few, if any, studies have exploited the opportunities to identify not only
fault–prone modules in general, but actually failure–prone modules which are the main con-
cern of the user. There is also a general lack of studies investigating whether identification of
defect–prone modules means that we actually also identify failure–prone modules.

Another important issue is to establish when in the development phase we are able to identify
modules which will be defect-prone and failure–prone. This paper investigates both identifica-
tion of fault-prone modules between two releases and for failure-prone modules three different
times for prediction are studied: history (previous release), the design phase and the test phase.

Test Operation

Defects Failures

Faults

+

One important consideration is to address whether or not defect–prone modules are failure–
prone. If defect–prone does not imply failure–prone, then we may have to improve the test
methods.

The paper is organized as follows. In Section 2, the background to the study is presented. Sec-
tion 3 presents an overview of the study, and Section 4 presents the analysis of the fault data
collected. Section 5 discusses some of the results and experiences gained from the study.
Finally, some conclusions are given in Section 6.

2 Background

2.1 Pareto principle
Quantitative methods for quality control and improvement have successfully been used within
manufacturing for a number of years. Such approaches have also been applied within software
engineering to enable a better understanding of software development and to improve software
product quality. The Pareto principle, which guides improvements efforts towards the vital few
and away from the trivial many, is one example of a quality improvement strategy. There exists
a number of different examples of the Pareto principle applied within software engineering, see
for example (Adams, 1984), (Munson and Khoshgoftaar, 1992), (Zuse, 1991), and (Schul-
meyer and McManus, 1987). We have previously shown that the Pareto principle was sup-
ported by data from Ericsson Telecom AB (Ohlsson et al., 1996). Figure 2 illustrates that 20
percent of the modules in the two systems studied in this report were responsible for approxi-
mately 60 percent of all the faults.

Figure 2. The Pareto diagram is based on data from two succeeding releases of a switch-
ing system developed by Ericsson Telecom AB and shows evidence of a 20-60 rule.

Developing models to predict the vital few fault-prone modules that are applicable early in the
development process enables management to take special measures at an early stage. For
example, more experienced engineers could be directed to support the development of critical
parts, and additional and more extensive inspection and testing may be scheduled. Prediction
of fault-prone modules at an early stage means reduced costs, since corrective maintenance in
early phases are less expensive, and time to delivery may in fact be reduced as less re-work is
required. Furthermore, identification of potential failure-prone modules is also important from
a planning perspective, but even more important from a cost perspective.

Product
Release n

Product
Release n+1

% of Modules

100

80

60

40

20

0
0 22 43 65 87

R
es

u
lt

in
g

 %
 o

f
F

au
lt

s

2.2 Long-term study
This paper is part of a long–term empirical study conducted at Ericsson Telecom AB with the
objective of studying how identification of fault–prone modules can be used to achieve cost–
effective quality improvement. In release n of the system 130 modules have been analysed and
in release n+1 232 modules have been investigated. Fault data have been collected from func-
tional testing, system testing, first office application (i.e. the first 26 weeks and a number of
site tests) and operation. It was possible to trace 69 modules developed for release n that were
modified in release n+1. Release n+1 is a major system revision. Data are currently being col-
lected for release n+2. The modules are of the size of 1000 to 6000 lines of code each.

The objective of our study was to distinguish between fault-prone and non-fault-prone mod-
ules, which suggests that discriminative analysis should be applicable. This was, however, par-
ticularly difficult for fault-prone, as discriminative analysis requires that there exists a
threshold for classifying modules into fault-prone and non-fault-prone modules that is stable
over releases. This turned out not to be the case. Instead we found that the threshold value (the
actual number of faults) differed between the different releases although 20 percent of the
modules were responsible for 60 percent of the faults. After careful examination of (Munson
and Khoshgoftaar, 1992), we have found that this appears to be true for other data sets too. For
failure-prone the threshold was no problem as it was decided to view any module with a failure
as being failure-prone. The threshold was thus quite natural. Thus, in this paper we have used
one failure as threshold for the dependent variable, i.e. modules with one or more failures are
classified as failure–prone. The underlying analysis of design measures is based on ordinal
analysis, as it allows for changing the threshold with regards to what are viewed as being fault–
prone modules (Ohlsson et. al., 1996). Actual threshold–values are not recommendations;
thresholds should be determined in individual projects on the basis of, for example, the level of
criticality of the system and market requirements. The primary objective of the thresholds as
presented in this paper is to illustrate the outcome when applying the methods for identification
of failure–prone modules.

The goodness of different models for identification of fault-prone modules is investigated
using an Alberg diagram, see below and (Ohlsson et. al., 1996). The predictability of the differ-
ent models for identifying failure-prone modules is viewed in contingency tables and the kappa
coefficients are calculated to measure the agreement in classification of the modules (Siegel
and Castellan, 1988). The kappa coefficient is the ratio of the proportion of times that the clas-
sifications is correct to the maximum proportion of times that the classifications could be cor-
rect. If the classifications completely agree, then kappa=1; whereas if there is no agreement
between the classifications, then kappa=0. Kappa will assume -1 if there is a perfect misclassi-
fication.

3 Fault study

3.1 Overview of the study
The study is divided into five parts:

1. Identification of fault-prone modules in release n+1 using measures from release n
The objective of the first part is to build a prediction model using design measures and cor-
relate them to the number of faults disclosed. The intention is to build the model for release
n and then use the model for the following release. The model should be used to identify

fault-prone modules in release n+1, hence the information can be used to plan effort and
improvement activities. In particular, we would like to investigate if models built for one
release can be used successfully to identify fault-prone modules in a consecutive release.

2. Identification of fault-prone modules in release n+1 combining measures from release n
with early measures from release n+1
In order to try to improve the models from the previous part, an approach where metrics
from release n and n+1 are combined is studied. The objective is similar to that in part 1.
The belief is that a combined model would improve the predictability of the models, since it
takes information from the current release better into account.

3. Identification of failure–prone modules using data from a previous release
This part is aimed at investigating whether the information from release n concerning defect
and failure–prone modules is a good predictor of failure–prone modules in release n+1.
More than 90 percent of the modules in release n had one or more faults. Therefore, it is
infeasible to use one fault as a threshold. Thus, when defect–prone modules from release n
is used to predict failure–prone modules in release n+1, a threshold of five defects is used
for the independent variable as an indication of potential failure–prone modules. When fail-
ure–prone modules in release n are used as the independent variable, one failure is used as
threshold.

4. Identification of failure–prone modules using design measures
The initial objective was to build prediction models in release n for identification of failure–
prone modules based on design measures, which then should be validated with data from
release n+1. Due to variation in quality between the two releases this was not possible.
Instead design metrics were only evaluated within release n+1. Only the best design meas-
ure is reported here, as the main objective is to investigate different opportunities to identify
failure–prone modules rather than evaluate which measures are the best predictors. To the
best of our knowledge there exists no empirical evidence that complexity values higher than
a specific threshold would indicate either defect- or failure–prone modules. However, there
are results suggesting a relative stable distribution in line with the Pareto principle (Ohlsson
et al., 1996). Therefore, the threshold is based on the percentage of failure–prone modules
in release n+1. That is, 29 percent of the modules in n+1 had one or more failures. Hence,
this percentage value is used as a threshold for the design measures.

5. Identification of failure–prone modules from defect–prone modules
The objective of this part is to investigate whether the defect–prone modules identified in
release n and n+1 are good indicators of failure–prone modules in the two releases. This
means that fault data from testing are used to predict failure–proneness during operation.
The rationale for selecting thresholds is the same as in part 3.

To summarize, the main differences are the focus on faults respectively failures, and the point
of time when prediction can be made. The three latter parts imply, for example, three different
points of time in a project, namely: project start (part 3), design phase (part 4), and testing
phase (part 5). It is important to remember that the sooner we are able to identify modules
which are likely to be fault-prone, the sooner we can take appropriate measures to deal with
them. For example, we can allocate the best people, intensify inspections or take other special
improvement measures.

3.2 Data collected
The data collected from the two releases (n and n+1) were based on 69 modules, ranging in
size from 1000 to 6000 LOC. The modules constituted a subset of a large system. The metrics
from the different releases were distinguished by adding (n) and (n+1) to each metric name.
The dependent variable, denoted Fault(n+1) (which is derived from the number of trouble
reports), was collected from testing, 26 weeks during a number of site tests and operation. The
actual number of faults considered depends on if defects or failures are studied. Note that the
modules developed communicate with signals, see Turner (1993) for more details.

From release n the following metrics were collected:
• SigFF(n)—the number of new and modified signals (this metric is available after the first

impact analysis conducted before design)
• Dec(n)—the number of decision nodes (this metric is available at the completion of design)
• Cond(n)—the number of condition nodes (this metric is available at the completion of

design)
• FANin(n)—the number of receive-signals (this metric is available at the completion of

design)
• FANout(n)—the number of send-signals (this metric is available at the completion of

design)
• LOC(n)—the number of lines of code (this metric is available at the completion of imple-

mentation)
• Density(n)—the number of faults divided by the number of lines of code.

From release n+1 the following metrics were collected:
• R(n+1)—the number of receive-signals in SigFF.
• S(n+1)—the number of send-signals in SigFF.
• Dec(n+1)
• Cond(n+1)
• LOC(n+1)

The modification degree, denoted Mod(n+1), was also measured by dividing Cond(n) by
Cond(n+1). SigFF is the sum of receive-, send- and transit-signals. Designers pointed out that
transfer-signals never caused problems and were therefore believed to not affect the fault-
proneness of a module. Thus, only receive- and send-signals were collected in release n+1.

4 Data analysis

4.1 Introduction
Our experience from industry indicates that the percentage of modules that management was
willing to spend extra effort on differed from project to project. Therefore it was not possible to
determine a threshold value to distinguish between fault-prone and non-fault-prone modules.
Furthermore, the most relevant statistical methods were determined by permissible transforma-
tions of the data (Fenton, 1991). The type of metrics used in this study have been claimed to be
of ordinal scale (Zuse, 1991), which suggests that non-parametric techniques should be used.
A more detailed explanation of the application of non-parametric techniques for this study can
be found in (Ohlsson et al., 1996). Spearman’s rank-order coefficient (Siegel and Castellan,
1988) was used to assess the variables to rank the predictability of fault-prone modules
(p=0.001). The models for fault-proneness were further evaluated with Alberg diagrams (Ohls-
son et al., 1996), which have the advantage of being graphical and of making different types of

errors visible for all thresholds at once. To evaluate the goodness of the predictions, the predic-
tion errors must be considered. This includes two different types of errors: failing to identify
failure–prone modules and identification of modules as failure–prone when they are not. These
are hereafter referred to as errors of Type I and II respectively. It should be noted that a correct
identification means actually pin–pointing a certain module correctly.

The diagrams also indicate whether the modules indicated as fault-prone, but are non-fault-
prone, are relatively close to the threshold. In other words, if we have a threshold of five faults,
Type II errors identifying modules with zero faults will generate a bigger gap than Type II
errors identifying modules with four faults. The latter Type II error is of course less critical,
especially if the corresponding Type I error excluded a module with five faults. For further dis-
cussion see (Ohlsson et al. 1996; Ohlsson, 1996).

For failure-prone modules, a threshold approach was adopted since it was quite natural to
define failure-prone modules as modules with a failure. Thus, when identifying failure-prone
modules, another approach taken than when identifying fault-prone modules. This is an impor-
tant experience from the study conducted.

4.2 Fault-prone modules from in release n+1 using measures from release n
Spearman’s correlation coefficient was calculated for the correlation between a number of
design metrics from release n and faults from release n+1, i.e. Faults(n+1) is used as the
dependent variable. The result is displayed in Table 1. The analysis indicates that the most
fault-prone modules in release n will also be most fault-prone in the successive release n+1.

To determine whether it would be profitable to combine certain variables into more complex
models the correlation was calculated between pairs of the independent variables. FANin(n)
showed low correlation to Fault(n) and Density(n), and it was therefore assumed to be profita-
ble to combined these. The correlation between the dependent variable and FANin(n)*Fault(n)
as well as the correlation between the dependent variable and FANin(n)*Density(n) was 0.74.

4.3 Identification of fault-prone modules in release n+1 combining measures from
release n with early measures from release n+1

The next step was to determine whether it would be profitable to combine the metrics from
release n and n+1. Spearman’s correlation coefficient was calculated for the metrics from
release n+1, using Fault(n+1) as dependent variable. The correlation values are listed in Table
2, which also includes the Mod(n+1) variable. It should be noted that the correlations are about
the same when using design metrics for release n+1 as when using design metrics from the pre-
vious release. That is, it appears that the design base, or the history of the modules, is impor-
tant when we try to explain the fault-proneness.

Table 4–1.

Fault(n+1) Fault(n+1) Fault(n+1)

Fault(n) 0.6541 Density(n) 0.6053 Dec(n) 0.4792

FANin(n) 0.6328 FDL(n) 0.5767 Cond(n) 0.4738

SigFF(n) 0.6296 FANout(n) 0.5754 LOC(n) 0.3760

To determine which variables could be combined with the variables from release n the correla-
tions between the metrics were calculated. Cond(n+1) was selected to be combined with
FANin(n) and S(n+1) with both FANin(n) and Fault(n). The former had a correlation of 0.7380
and the latter two 0.6511 and 0.7300. This shows that the combined approach may improve the
correlation and hence the predictive ability of the models.

4.4 Evaluation of the best models for predicting fault-prone modules
The evaluation of the prediction models using an Alberg diagram suggested that a threshold of
20 percent could be used to identify modules responsible for 46 percent of the faults based on
release n data. The best predictor available early in release n+1 was Dec(n+1), which identified
55 percent of the faults with a threshold of 20 percent. The Alberg diagram indicated that the
best predictor model, using a 20%-threshold, would result in the identification of 59 percent.
This model was, however, not identified by calculating the correlation values and on this basis
combining the variables into more complete models. Instead the model was identified when
analysing the result from the Alberg diagram, see Figure 3. Although this highlights the need
for better methods for building more complex models based on ordinal data, the actual models
show the applicability of prediction models to identify fault-prone modules: before the project
has started, in the early analysis phases, and at the completion of design.

Figure 3. The Alberg diagram showing some of the best prediction models. The predic-
tion models have a distance of 4% at 20%-threshold, and 10% at 30%-threshold.

4.5 Failure–prone modules from history
For software systems, it is normal practice that a system is regularly upgraded and released in
new versions. This implies that some parts of the system are the same in different releases.

Table 4–2.

Fault(n+1) Fault(n+1) Fault(n+1)

S(n+1) 0.5448 Dec(n+1) 0.5850 Mod(n+1) -0.3410

R(n+1) 0.4608 Cond(n+1) 0.5823

100

80

60

40

20

0
0 14 29 43 58 72 87

Fault(n+1)

Fault(n)

Dec(n+1)

Fault(n)*Dec(n+1)

% of Modules

%
 o

f
F

au
lt

s

This information can be used to apply experience from one release to the next release or fol-
lowing releases. In this empirical study, the hypothesis is that defect- or failure-prone modules
in release n are likely candidates for being failure–prone in release n+1. It was possible to trace
69 modules developed for release n that were modified in release n+1. The data from the his-
torical analysis are shown in Table 3. It should be noted that only four modules were failure–
prone in release n, see analysis A, while 18 modules were failure–prone in release n+1.

Analysis A in Table 3 illustrates that even though the Type I error is as high as 78%, there is no
Type II error. This means that the modules that are failure–prone in release n are all failure–
prone in release n+1. Possible explanations for this are the actual type of failure and late erro-
neous defect correction in test.

For analyses B and C, we have used five defects (Analysis B) or faults (Analysis C) as a
threshold for the independent variable. It has earlier been suggested (Khoshgoftaar and Kalai-
chelvan, 1995) that this should be used as threshold for fault–prone modules. The threshold
could therefore indicate failure–proneness. Using one defect or fault is not reasonable since
this would identify 63 modules as being failure–prone. Even with a threshold of five defects in
analysis B as many as 61 percent (42/69) of the modules are identified in release n as failure–
prone. However, only 78 percent (14/18) of all the failure–prone modules in release n+1 are
identified. Therefore, defect–prone modules in release n are poor predictors of failure–prone
modules in n+1. This is also true for analysis C.

Another possible alternative would be to select a threshold based on the percentage of failure–
prone modules in release n+1, i.e. assuming that this proportion of defect- and failure–prone
modules will be stable over later releases. The number of potential failure–prone modules
would be more realistic using 26 percent (18/69) as a threshold. However, only 28 percent of
the failure–prone modules would be identified. This also holds for analysis C. Therefore, the
two models in analyses B and C are not applicable.

Table 4–3.

Analysis Aa

a. Kappa 0.30

Analysis Bb

b. Kappa 0.16

Analysis Cc

c. Kappa 0.32

Threshold=1 Threshold=5 Threshold=5

Failure(n) Defect(n) Fault(n)

Actual F Not F F Not F F Not F

 Failure-prone(n+1)
(18 observation)

4 14 14 4 15 3

Not Failure-prone(n+1)
(51 observations)

0 51 28 23 28 23

Total observations 4 65 42 27 43 26

Misclassifications
of Type I and II

78% (14/18) 0% (0/51) 28% (4/18) 55% (28/51) 17% (3/18) 55% (28/51)

Overall misclassifications 20% (14/69) 46% (32/69) 45% (31/69)

4.6 Failure–prone modules from design measures
Earlier studies (Ohlsson et al., 1996) have indicated that models built on design metrics are
worthwhile when the number of faults are considered as the dependent variable. Thus, it is rea-
sonable to try this approach for failure–prone modules. In this study, fourteen different design
measures are used to build prediction models for release n+1. Spearman’s correlation coeffi-
cient (Siegel and Castellan, 1988) was used for a first analysis. All potential variables have low
correlation values (below 0.35). There was, however, a rather low correlation among some of
the variables, hence it could be possible to improve the model by combining the variables into
more complex models. Multiplicative aspects of the potential variables will be investigated in
later studies. In this particular case, the best design measure predictor was FANin, which is the
number of input–signals for a module in the design. The result was later compared with lines
of code, which was found to be doing even worse.

It has been suggested that prediction models should first be developed for one release, vali-
dated in the succeeding release, and then applied in the third release. However, the quality of
the two releases varied widely, and it was therefore not possible to do so in this study. From a
modelling point of view, the number of failure–prone modules in release n was too few.
Instead, the explanatory ability of design metrics was evaluated by building the best possible
model based on data in release n+1. The results shown in Table 4 are based on a threshold of
one failure, which corresponds to 29 percent of the modules.

From Table 4, it can be seen that the explanatory ability is unsatisfactory, i.e. the misclassifica-
tion is too high, including a large proportion of both Type I and II errors. This, in combination
with the fact that the quality of the two releases differed, suggests that more complete models
should be investigated, for example including verification effort and quality.

4.7 Failure–prone modules from defect–prone modules
The data from the testing phase can be used for both releases to predict the failure–prone mod-
ules. The problem with choosing relevant thresholds, discussed in respect to part 1, is relevant
for this part, too. The results of the analyses are shown in Table 5, using a threshold of five
defects for the independent variable.

Table 4–4.

Analysisa

a. Kappa 0.18

FANin(n+1)

Actual F Not F

 Failure-prone(n+1)
(67 observation)

28 39

Not Failure-prone(n+1)
(165 observations)

39 126

Total observations 67 165

Misclassifications 58% (39/67) 24% (39/165)

Overall misclassifications 34% (78/232)

The misclassification is also too high in this analysis. This means that modules that are defect–
prone during testing are not failure–prone. A possible explanation is that other types of defects
are discovered in operation, such as performance problems, that are difficult to test. This
explanation is supported by experienced developers from Ericsson. This could also explain the
result in part 3. A possible explanation of the fact that failure–prone modules in n are failure–
prone in n+1 could be that modules which are critical from a capacity perspective in release n,
will remain so in release n+1. The results indicate the need for a better understanding of the
types of faults that result in failures and the types of the failures themselves. The results also
stress the need to identify factors causing the defects which result in failures. Increased under-
standing is essential for quality improvement.

From all three studies regarding failure-prone modules, it can be noted that the kappa value is
rather low. This indicates that it is difficult to find models that identify failure-prone modules
based on solely product measures. Thus, other ways of identifying failure-prone modules must
be sought.

5 Discussion and future work

A majority of the studies aimed at predicting the most fault-prone modules have focused on
building prediction models applicable at the completion of the implementation phase. Such
models may be difficult to use to improve allocation of test efforts as it is common that mod-
ules in real projects are not completed at the same time, which is a prerequisite for building
such models. Therefore we claim that it is important that research resources are spent on trying
to make predictions earlier, before coding has started, or even earlier. This should be worth-
while as such models would not only improve fault detection, e.g. by cost effective inspection
and testing, but also fault avoidance, by improving allocation of implementation resources in
terms of effort and skills. In this paper we looked at how such models can be improved by
including historical data, e.g. fault-proneness in earlier releases and degree of modification.
The results described in this paper indicate that it can be profitable to use data from earlier
releases to predict the most fault-prone modules. The result also suggests that historical data
give an early indication of which modules will be the most critical ones, in particular from a

Table 4–5.

Analysis na

a. Kappa -0.08

Analysis n+1b

b. Kappa 0.06

Defect(n) Defect(n+1)

Actual F Not F Actual F Not F

 Failure-prone(n)
(13 observation)

5 8 Failure-prone(n+1)
(67 observation)

47 20

Not Failure-prone(n)
(117 observations)

77 40 Not Failure-prone(n+1)
(165 observations)

102 63

Total observations 82 48 Total observations 147 83

Misclassifications 62% (8/13) 66% (77/117) Misclassifications 30% (20/67) 62% (102/165)

Overall misclassifications 65% (85/130) Overall misclassifications 53% (122/232)

cost perspective. Based on our experience from building such models we have identified a
number of areas that need more examination. First, there exists no praxis for how variables can
be combined into more complete models without violating the transformations admissible for
ordinal data. Existing techniques, such as principal component analysis (Khoshgoftaar and
Kalaichelvan, 1995), require standardised data, which restrict the transferability of models to
other data sets.

Future work should therefore focus on developing methods for analysing additive and multipli-
cative effects of several variables of ordinal type, as well as how to weight variables differ-
ently. Second, it is difficult to get manageable data sets, without a high risk of excluding the
right data set, using present screening techniques, applicable to ordinal data. Third, the objec-
tive of early identification of fault-prone modules is to enable improved fault detection in
terms of inspection and testing, and fault avoidance in terms of improved allocation of time
and skills. Unless these parameters are included in the prediction model, the models will wear
out. Therefore future work should aim at identify other attributes that should be included in the
models. Fenton et al. (1995) developed a four-layered approach that could be used to develop
such a more realistic and complete model that includes attributes of not only the product, but
also process and resources. Fourth, a number of studies are only based on defect data from test-
ing, omitting the actual performance of the system in usage. Such models will only be good for
predicting the modules for which the test strategy used is likely to find many defects, not the
modules which will be fault-prone or failure-prone, i.e. likely to have many faults associated
that are disclosed during operation. Fifth, little work has been done on evaluating models pre-
dictability by building models for one release or project and then trying to evaluate predictabil-
ity by testing on data from another project. Such validation is crucial to understand model
applicability in a real industrial environment. Finally, surprisingly few studies have reported
failure in achieving their objectives. It is our belief that there exists a significant number of
studies which have not achieved their first stated objectives, and which failures, if published,
would be of benefit to the research field.

6 Conclusions

In this paper we have investigated the opportunity to predict fault–prone modules based on
design, code and fault data from two succeeding releases. The study revealed that failure–
prone modules in release n are failure–prone in n+1. Other suggested independent variables are
poor predictors of failure–proneness. However, this is not the same as saying that they do not
explain any of the variation. It only means that on their own they are poor explanatory factors.
Instead, the study suggests that methods that combine these different independent variables are
needed. The results are, however, promising regarding prediction of fault-prone modules,
although there is still room for improvement.

In this study, we have addressed two consecutive releases of a software system. This is an
important aspect as in most cases it is not possible to both build, validate and use a prediction
model within one release. It is, thus, important to investigate how to build models in one
release, validate the model in the next release and then use the model in the third release. The
transferability of a model between a software system’s releases is crucial to success in the mis-
sion of identifying fault–prone modules prior to the operational phase.

A major problem with predictions is that failures are dynamic, hence it may be difficult to
identify failure–prone modules using static measures. This is an issue which has to be further

studied. One potential solution would be to take the use of modules into account when predict-
ing failure–proneness. This would allow for capturing the dynamic aspects of usage in the
independent variable.

Another important issue which has been addressed here is the point of time when we are able
to identify fault–prone modules. To improve the usefulness of the predictions, they should
preferably be done at an early stage. In this study, we have focused on data from the previous
release, the design and the test phase. The knowledge from the previous release is important in
identifying fault–prone modules, but this is not a feasible approach for new modules. Thus, it
is very important to find early indicators of fault–proneness, since this is the only way to ena-
ble us to address the problem within the same release.

Models which identify fault–prone modules are important not only in enabling prediction dur-
ing the operational phase, but also as a planning and control tool during development. Manag-
ers may use these models to improve the resource allocation for design, both in terms of effort
and experience. Furthermore, knowing which modules are most likely to be failure–prone in
operation suggest that the modules will be tested and inspected differently. Therefore more
attributes need to be considered and incorporated in the models, for example verification effort
and quality, in line with Fenton et al. (Fenton et al., 1995), to explain the variation and to be
able to apply the models in subsequent releases.

Future work should not only aim at building these more complete models, but also aim at
investigating additive and multiplicative aspects of design measures and measures from differ-
ent phases, in order to gain more knowledge about how such a component fits into a more
complete model. The results in this study also suggest that prediction models that are only
based on test data will have limited applicability in real projects aiming at addressing opera-
tional issues.

Acknowledgements

The authors would like to thank Ericsson Telecom AB for supporting this empirical study.

References

Adams, E. (1984). “Optimizing preventive service of software products“. IBM Research Jour-
nal, 28(1):2-14.

Boehm, B. W. (1981). Software Engineering Economics. Prentice-Hall.
Ebert, C. and Liedtke, T. (1995). “An integrated approach to criticality prediction. In Proceed-

ings of The Sixth International Symposium on Software Reliability, pp. 14-23, Toulouse,
France.

Fenton, N., Neil, M., and Ostrolenk, G. (1995). Metrics and models for predicting software de-
fects. Technical Report CSR/10/02, Centre for Software Reliability, City University, UK.

Fenton, N.E. (1991). Software Metrics-a Rigorous Approach. Chapman & Hall, London.
Henry, S. and Kafura, D. (1981). “Software structure metrics based on information flow“. IEEE

Transactions on Software Engineering, 7(5):510-518.
Khoshgoftaar, T. M. and Kalaichelvan, K. S. (1995). “Detection of fault-prone programs mod-

ules in a very large telecommunication system“. In Proceedings of The Sixth International
Symposium on Software Reliability, pp. 24-33, Toulouse, France.

Lennselius, B. (1990). Estimation of software fault content for telecommunication systems.

Technical report 104, Department of Communication Systems, Lund Institute of Technolo-
gy, Lund University, Sweden.

Munson, J. C. and Khoshgoftaar, T. M. (1992). “The detection of fault-prone programs“. IEEE
Transactions on Software Engineering, 18(5):423-433.

Ohlsson, N. (1996). Software Quality Engineering by Early Identification of Fault-prone Mod-
ules, Licentiate Thesis No 575, Dept. of Computer and Information Science, Linköping Uni-
versity, Sweden.

Ohlsson, N. and Alberg, H. (1996). Predicting fault-prone software modules in telephone
switches. IEEE Transactions on Software Engineering, 22(12).

Ohlsson, N., Helander, M., and Wohlin, C. (1996). “Quality improvement by identification of
fault-prone modules using software design metrics“. In Proceedings of the Sixth Internation-
al Conference of Software Quality, pp. 1-13, Ottawa, Canada.

Schulmeyer, G. G. and McManus, J. I., editors (1987) Handbook of Software Quality Assur-
ance. van Nostrand Reinhold Company.

Shen, V. Y., Yu, T.-L., Theabaut, S. M., and Paulsen, L. R. (1985). “Identifying error-prone
software - an empirical study“. IEEE Transactions on Software Engineering, SE-11(4):317-
323.

Siegel, S. and Jr., N. J. C. (1988). Nonparametrics Statistics for the Behavioural Sciences, Mc-
Graw-Hill, second edition.

Turner, K.J., editor (1993). Using Formal Description Techniques - An Introduction to ES-
TELLE, LOTOS and SDL. John Wiley & Sons.

Zuse, H. (1991). Software Complexity-Measures and Methods. Walter de Gruyter.

