

J. Karlsson, C. Wohlin and B. Regnell, "An Evaluation of Methods for Prioritizing
Software Requirements", Information and Software Technology, Vol. 39, No. 14-15,

pp. 939-947, 1997-98.

An evaluation of methods for prioritizing software requirements

Joachim Karlssona,b,*, Claes Wohlinb, Björn Regnellc

aFocal Point AB, Teknikringen 1E, SE-583 30 Linko¨ping, Sweden
bDepartment of Computer and Information Science, Linko¨ping University, SE-581 83 Linko¨ping, Sweden

cDepartment of Communication Systems, Lund University, SE-221 00 Lund, Sweden

Received 7 February 1997; revised 5 November 1997; accepted 13 November 1997

Abstract

This article describes an evaluation of six different methods for prioritizing software requirements. Based on the quality requirements for a
telephony system, the authors individually used all six methods on separate occasions to prioritize the requirements. The methods were then
characterized according to a number of criteria from a user’s perspective. We found the analytic hierarchy process to be the most promising
method, although it may be problematic to scale-up. In an industrial follow-up study we used the analytic hierarchy process to further
investigate its applicability. We found that the process is demanding but worth the effort because of its ability to provide reliable results,
promote knowledge transfer and create consensus among project members.q 1998 Elsevier Science B.V.

Keywords:Requirements, engineering; Requirements, prioritising; Experimental evaluation

1. Introduction

In commercial software systems development there is an
increasing need for methods capable of prioritizing candi-
date requirements. Reasons for this include that not all
requirements can usually be met with available time and
resource constraints, that the customers to a larger extent
are demanding systems with the most bang for the buck, or
that requirements must be allocated to different releases.
Efficient and trustworthy methods for prioritizing require-
ments are therefore strongly demanded by practitioners. A
promising framework for this purpose is the cost–value
approach [1]. In using this approach, decision makers
are provided with guidelines on how to prioritize the
requirements based on their relationships of value to cost
of implementation.

This paper provides an investigation of six candidate
methods for prioritizing requirements: analytic hierarchy
process (AHP), hierarchy AHP, spanning tree matrix,
bubble sort, binary search tree and priority groups. These
methods can either be used as stand-alone utilities or be
utilized within the cost–value approach. To study these
methods, we systematically applied all methods to prioritize
13 well-defined quality requirements on a small telephony
system. We then categorized the methods from a user’s

perspective according to a number of criteria such as ease
of use, required completion time and reliability of results.

Despite its problems of scaling-up, we found the analytic
hierarchy process to be the most promising method for
prioritizing requirements. To further verify this conclusion,
we used the method in an industrial case-study. The practi-
tioners were highly inspired by the strength of the method
and confirmed its industrial applicability.

This paper is organized as follows. Section 2 motivates
this work, and the paper continues in Section 3 by outlining
the six different prioritizing methods. Section 4 describes
the evaluation framework and Section 5 presents experience
from the industrial application. Section 6 concludes the paper
with a discussion and provides some recommendations.

2. Motivation

There is a growing acknowledgment in industrial soft-
ware development that requirements are of varying impor-
tance. Yet there has been little progress to date, either
theoretical or practical, on the mechanisms for prioritizing
software requirements [2]. In a review of the state of the
practice in requirements engineering, Lubars et al. [3] found
that many organizations believe that it is important to assign
priorities to requirements and to make decisions about them
according to rational, quantitative data. Still it appeared that
no company really knew how to assign priorities or how to

0950-5849/98/$19.00q 1998 Elsevier Science B.V. All rights reserved
PII S0950-5849(97)00053-0

* Corresponding author. Tel.: +46 13 213705; fax: +46 13 213725; e-mail:
Joachim.Karlsson@focalpoint.se

Information and Software Technology 39 (1998) 939–947

communicate these priorities effectively to project
members.

A sound basis for prioritizing software requirements is
the approach provided by the analytic hierarchy process,
AHP [4]. In AHP, decision makers pair-wise compare the
requirements to determine which of the two is more impor-
tant, and to what extent. In industrial projects, this approach
has been experienced as being effective, accurate and also to
yield informative and trustworthy results [5]. Probably even
more important, having used the approach in several com-
mercial projects, we have experienced that practitioners are
very attracted by the approach, and continue to use it in
other projects. Despite such positive experience, AHP has
a fundamental drawback which impedes its industrial insti-
tutionalization. Since all unique pairs of requirements are to
be compared, the required effort can be substantial. In
small-scale development projects this growth rate may be
acceptable, but in large-scale development projects the
required effort is most likely to be overwhelming.

To our knowledge, AHP has only been used in few appli-
cations in the software industry. Finnie et al. [6], for exam-
ple, used AHP to prioritize software development factors.
They found AHP to be relatively easy to apply, but do not
elaborate on the problems arising if the number of prioritiz-
ing objects grows. Other applications of AHP include a
telecommunications quality study performed by Douligeris
and Pereira [7], and software requirements prioritizing in a
commercial development project by Karlsson [8]. In these
cases the number of prioritizing objects was very low and
the required number of pair-wise comparisons did not
consequently cause unmanageable problems in the process.

Since AHP may be problematic for large-scale projects,
we have identified five complementary approaches to chal-
lenge AHP. All of these method involve pair-wise compar-
isons, since previous studies indicate that making relative
judgments tends to be faster and still yield more reliable
results than making absolute judgments [5]. We have
focused on methods which may reduce the required effort,
but are still able to produce high-quality results which are
considered trustworthy by its users.

3. Prioritizing methods

Prioritizing methods guide decision makers in their task
of analyzing requirements in order to assign them numbers
or symbols reflecting their importance. A prioritizing ses-
sion may consist of three consecutive stages:

(1) Thepreparationstage where a person structures the
requirements according to the principle of the prioritizing
methods to be used. A team and a team leader for the session
is selected and provided all necessary information.

(2) Theexecutionstage where the decision makers do the
actual prioritizing of the requirements using the information
they were provided with in the previous stage. The evalua-
tion criteria must be agreed upon by the team before the
execution stage is initiated.

(3) Thepresentationstage where the results of the execu-
tion are presented for those involved. Some prioritizing
methods involve different kinds of calculations that must
be carried out before the results can be presented.

3.1. The analytic hierarchy process (AHP)

The analytic hierarchy process (AHP) is a decision-mak-
ing method [4]. Using AHP to prioritize software require-
ments involves comparing all unique pairs of requirements
to determine which of the two is of higher priority, and to
what extent. In a software project comprisingn require-
ments,n·(n ¹ 1)/2 pair-wise comparisons are consequently
required by a decision maker. On the one hand AHP is a
demanding method due to the dramatically increasing num-
ber of required pair-wise comparisons when the number of
requirements grows. On the other hand AHP is very trust-
worthy since the huge amount of redundancy in the pair-
wise comparisons makes the process fairly insensitive to
judgmental errors. Another advantage is that the resulting
priorities are relative and based on a ratio scale, which
allows for useful assessments of requirements.

Prioritizing software requirements using AHP involves
all three stages of a prioritizing session (for a comprehen-
sive description of AHP, see Ref. [4]):

(1) As preparation, outline all unique pairs of
requirements.

(2) As execution, compare all outlined pairs of
requirements using the scale in Table 1.

(3) As presentation, use the ‘averaging over normalized
columns’ method (based on the pair-wise comparisons) to
estimate the relative priority of each requirement. Calculate
the consistency ratio of the pair-wise comparisons using
methods provided by AHP. The consistency ratio is an indi-
cator of the reliability of the resulting priorities, and thus
also an estimate of the judgmental errors in the pair-wise
comparisons.

3.2. Hierarchy AHP

In large-scale development projects the requirements are
often structured in a hierarchy of interrelated requirements

Table 1
Fundamental scale used for pair-wise comparisons in AHP [4]

Intensity of importance Description

1 Of equal importance
3 Moderate difference in importance
5 Essential difference in importance
7 Major difference in importance
9 Extreme difference in importance
Reciprocals If requirementi has one of the above

numbers assigned to it when
compared with requirementj, thenj
has the reciprocal value when
compared withi

940 J. Karlsson et al./Information and Software Technology 39 (1998) 939–947

[9]. The most generalized requirements are placed at the top
of the hierarchy and the more specific requirements on
levels below. Hierarchies are a common structure in daily
use of AHP. But, to separate this hierarchical requirements
structure from the flat requirements structure outlined
previously, we use the namehierarchyAHP in this paper.

Using hierarchy AHP also involve all three stages of a
prioritizing session:

(1) As preparation, outline all unique pairs of require-
ments at thesamelevel in the hierarchy. Note that not all
requirements are pair-wise compared to each other, but only
those at the same level.

(2) As execution, compare all outlined pairs of require-
ments using the scale in Table 1.

(3) As presentation, do the same as for AHP at each level
of the hierarchy. The priorities are then propagated down the
hierarchy.

Hierarchy AHP possesses similar characteristics to AHP.
Using a hierarchical structure reduces the required number
of decisions, but also the amount of redundancy. Thus it is
more sensitive to judgmental errors than AHP.

3.3. Minimal spanning tree

The pair-wise comparisons in AHP provide interesting
relationships to each other. For example, if requirement A
is determined to be of higher priority than requirement B,
and requirement B is determined to be of higher priority
than requirement C, then requirement B should be of higher
priority when compared to requirement C. Despite this,
AHP lets the decision maker perform the last comparison.
Because of this redundancy AHP can indicate inconsistent
judgments (such as claiming B to be of higher priority than
C in this example).

If decision makers were perfectly consistent, the redun-
dancy of the comparisons would be unnecessary. In such a
case onlyn ¹ 1 comparisons would be enough to calculate
the relative intensity of the remaining comparisons. This
implies that the least effort required by a decision maker
is to create aminimal spanning treein a directed graph
(i.e. the graph is at least minimally connected). In the
directed graph which can be constructed by the comparison
provided, there is at least one path between the requirements
not pair-wise compared.

Using the minimal spanning tree approach involves all
three stages of a prioritizing session:

(1) As preparation, outlinen ¹ 1 unique pairs of require-
ments so that a minimal spanning tree can be constructed.

(2) As execution, compare all outlined pairs of require-
ments using the scale in Table 1.

(3) As presentation, compute the missing intensities of
importance by taking the geometric mean of the existing
intensities of all possible ways in which they are connected.
Then use AHP as usual.

The minimal spanning tree approach is very fast due to
the dramatically reduced number of pair-wise comparisons.

On the other hand, it is more sensitive to judgmental errors
since all redundancy has been removed.

3.4. Bubblesort

Bubblesortis one of the simplest and most basic methods
for sorting elements with respect to a criterion [10]. It is also
a candidate method for prioritizing software requirements,
since the actual prioritizing process can be viewed as sorting
requirements (i.e. the elements) according to their priorities
(i.e. the criterion).

Interestingly, bubblesort is closely related to AHP. As
with AHP, the required number of pair-wise comparisons
in bubblesort isn·(n ¹ 1)/2. But, the decision maker only
has to determine which of the two requirements is of higher
priority, not to what extent.

Using the bubblesort approach involves the following
stages of a prioritizing session:

(1) As preparation, outline the requirements in a vector.
(2) As execution, start to compare the requirements at the

top with the requirement at the position below the top. If the
requirement in the above position is considered of higher
priority, swap their positions. Continue the comparison until
unique combinations of positions have been compared.

(3) As presentation, outline the sorted vector.
The result of the process is a vector where the original

order of the requirements has changed. The least important
requirement is at the top of the vector, and the most impor-
tant requirement is at the bottom of the vector. The result of
a bubblesort are requirements ranked according to their
priority on an ordinal scale.

3.5. Binary search tree

A binary treeis a tree in which each node has at most two
children. A special case of a binary tree is abinary search
treewhere the nodes are labeled with elements of a set [10].
Consider the elements of the set as the candidate require-
ments. This is of interest for prioritizing purposes since an
important property of a binary search tree is that all require-
ments stored in the left subtree of the nodex are all of lower
priority than the requirement stored atx, and all require-
ments stored in the right subtree ofx are of higher priority
than the requirement stored inx. If the nodes in a binary
search tree are traversed inin order, then the requirements
are listed in sorted order. Consequently creating a
binary search tree with requirements representing the
elements of a set becomes a method for prioritizing software
requirements.

Prioritizing n software requirements using the binary
search tree approach involves constructing a binary search
tree consisting ofn nodes. The first thing to be done is to
create a single node holding one requirement. Then the next
requirement is compared to the top node in the binary search
tree. If it is of lower priority than the node, it is compared to
the node’s left child, and so forth. If it is of higher priority

941J. Karlsson et al./Information and Software Technology 39 (1998) 939–947

than the node, it is compared to the node’s right child, and so
forth. Finally the requirements are inserted into the proper
place and the process continues until all requirements have
been inserted into the binary search tree.

Using the binary search tree approach involves all three
stages of a prioritizing session:

(1) As preparation, outline the candidate requirements.
(2) As execution, select the requirements one at a time

and create a binary search tree.
(3) As presentation, traverse the binary search tree in

inorder and add them to a list. The requirements having
the lowest priority then come first in the list. Print the list.

Since the average path length from the root to a leaf in a
binary search tree isO(log n), inserting a requirement into a
binary search tree takes on the averageO(log n) time. Con-
sequently, inserting alln requirements into a binary search
tree takes on the averageO(n log n) time. In this case, too,
the requirements are ranked on an ordinal scale.

3.6. Priority groups

In some software development projects, one set of
requirements can clearly be of a different kind of impor-
tance than another set. One way to reduce the required effort
is therefore not to compare the requirements in these distinct
sets. Thus another candidate method is to initiate the prior-
itizing process by dividing the requirements into separate
groups based on a rough prioritization. Subsequently, the
groups can be internally ranked either by using a suitable
approach for ordering the requirement, for example, using
AHP or to continue with another grouping of even finer
granularity.

The primary gain is that we do not have to compare high
priority requirements with low priority requirements, since
they are placed in different groups. The actual choice of the
number of groups depends on the situation and the knowl-
edge of the people performing the prioritization. A simple
strategy would be to use three distinct groups: low, medium
and high priority. It may even be the case that the high-
priority requirements must be implemented, and hence
there is no need to prioritize between them. In the same
way the low-priority requirements may perhaps be
postponed to a later release.

Using the priority groups approach involves all three
stages of a prioritizing session. Assume three distinct groups
are used:

(1) As preparation, outline the candidate requirements.
(2) As execution, put each of the requirements into one of

the three groups. In groups with more than one requirement,
create three new subgroups and put the requirements into
these groups. Continue to apply this process recursively to
all groups.

(3) As presentation, just read the requirements from left to
right.

A potential additional action, to ensure that the correct
ordering of the requirements is obtained, is to compare the

lowest ranked requirement in one group with the highest
ranked requirement in the next group. This could be done
to ensure that the tail of one group should have higher
priority than the head of the following group. This compar-
ison between tail and head in the groups must continue until
the requirements are in the correct order. This is one way of
minimizing the risk of ending up with the requirements in
the wrong order.

The priority grouping approach can hence be divided into
two possible approaches: grouping without tail-head
comparison and grouping with tail-head comparison.

4. Evaluation framework

4.1. Introduction

The objective is to evaluate the prioritizing methods pre-
sented in the previous section. This section outlines the
framework of the evaluation which has been carried out in
the form of an experiment. The framework is highly influ-
enced by the experimental approach outlined in Ref. [11].
The evaluation criteria presented here are based on inherent
characteristics, objective measures of the methods and sub-
jective measures by the authors. Inherent characteristics are
attributes of the method itself, objective measures are
observed during the evaluation, and subjective measures
are grades jointly assigned on an ordinal scale after the
study by the authors.

4.2. Evaluation definition

With the motivation of gaining a better understanding of
requirements prioritizing, we performed a single project
study [11] with the aim of characterizing and evaluating
the six candidate prioritizing methods from the perspective
of users and project managers. The methods were studied by
each of the authors by applying them to the 13 quality
requirements [13] outlined in Fig. 1 for a small telephony
system.

To carefully and systematically evaluate and characterize
the prioritizing methods the authors initiated a minor experi-
ment. This experiment was carried out by a single team (the
authors). The overall objectives of the experiment are two-
fold: (a) to illustrate the prioritizing methods; (b) to evaluate
and characterize the prioritizing methods.

4.3. Evaluation criteria

4.3.1. Inherent characteristics
Two inherent characteristics of the prioritizing methods

were identified:
(1) Consistency indication: this characteristic indicates

whether the prioritizing method is able to indicate consis-
tency in the decision maker’s judgment. This ability
requires redundancy in the judgments.

942 J. Karlsson et al./Information and Software Technology 39 (1998) 939–947

(2) Scale of measurement: this characteristic describes the
scale on which the resulting requirements priorities are
based. The scale used for ranking the requirements is an
important attribute of goodness. The more powerful the
scale, the more useful the assessments of the requirements
can be carried out. These measurement scales in increasing
order of strength are: nominal, ordinal, interval, and ratio
scales [12].

4.3.2. Objective measures
The following objective measures were assessed during

the evaluation sessions:
(1) Required number of decisions: for the first four meth-

ods the number of decisions is pre-defined, but for the two
last methods the number is based on how the specific session
was carried out. This measure refers to the number of pair-
wise comparisons required by a decision maker to complete
all stages of the method.

(2) Total time consumption: this is an objective measure
of the average time required by a decision maker to com-
plete all stages of the method. This measure is different from
the measure of required number of decisions, since compar-
isons are of a different nature and can thus take different
times to accomplish. When it comes to the cost of using a
prioritizing method, this measure can serve as a rough
estimation.

(3) Time consumption per decision: this is an objective
measure of the time consumption required per decision.

4.3.3. Subjective measures
After the evaluation, it was decided that it was essential to

judge some aspects of the prioritizing methods based on the

experience gained by using the methods. Initially, the objec-
tive was to grade the methods on an ordinal scale from 1 to
5, but after experiencing some difficulties it was determined
to rank the methods from 1 to 6, where 1 is the best method
for that particular criterion. The following features were
judged by the authors after the evaluation:

(1) Ease of use: this measure describes how easy it is to
use the prioritizing method.

(2) Reliability of results: this measure describes how
reliable the results are judged to be.

(3) Fault tolerance: this measure describes how
insensitive the method is to judgmental errors.

4.4. Evaluation operation

4.4.1. Preparation
The preparation, in terms of learning the methods for

prioritization, was performed as follows. One of the authors,
knowledgeable in all the methods, informed and explained
the methods to the other two authors in a similar way to how
we could expect the methods to be explained for potential
users in practice. In total about 4 h were needed to become
familiar with the methods in order to use them for
prioritizing requirements.

The experiment was carried out by the three authors,
using the quality requirements proposed by Keller et al.
[13], which are depicted in Fig. 1. The requirements are
prioritized for a telephony system. The system is a private
branch exchange (PABX) for a small company with about
50 employees. The company is a consultancy firm in soft-
ware and computer engineering, and is currently about to
purchase a PABX. Thus, the company is keen to evaluate

Fig. 1. Quality requirements subject to prioritizing [13].

943J. Karlsson et al./Information and Software Technology 39 (1998) 939–947

different available PABX systems based on their quality
characteristics.

The PABX will offer ordinary telephony, together with
facsimile and computer communication. Additional opera-
tor services are required for managing local numbers and
secretarial functions. Common services, such as call for-
warding and conferencing, are also required. The system
must be easy to extend with more subscribers and new ser-
vices. The PABX will be used for communication within the
company and with the customers. The system is thus a vital
tool for the company’s ability to perform its aims.

We will not go into further detail about the configuration
of the PABX, and assume that the reader is familiar with the
usage of and demands on such a system.

4.4.2. Execution
The experiment was divided into two phases:
(1) In phase 1 the requirements were prioritized by the

three persons independently, and to the best of their knowl-
edge. The quality requirements were prioritized without
taking the cost of achieving the requirements into account.
That is, only the importance for the customers was consid-
ered. Moreover, the requirements were considered ortho-
gonally, i.e. the importance of one requirement is not
interdependent on another. The methods were drawn in ran-
dom order for each of the three persons, which meant that
one person may use method A first and then method B, and a
second person may start with method C and then method B.
Phase 1 generated the objective measures.

(2) In phase 2, the authors sat down jointly and discussed
the results of the evaluation and the methods were judged
subjectively. Each person ordered the methods according to
the subjective measures, and based on the individual order-
ing, a joint order was agreed on. The individual orders given
by the different persons were mostly very close to each
other, and hence it was very easy to come to agreement
on the ranking of the methods. Thus, phase 2 provided the
subjective measures.

To minimize the risk of the persons remembering their
own ordering in phase 1, only one method was studied each
week. This was done to further minimize the influence of the
order of the methods, and to reduce the influence of the
persons remembering the priorities of the requirements
using the previous methods.

In phase 1, the methods were evaluated in the order out-
lined in Table 2. For example, this implied that person A

usedminimal spanning treein the first week, andpriority
groupsin week 2. After 6 weeks all six methods had been
used by the three persons, and they then met to perform
phase 2, and to analyze the data collected.

4.5. Threats to validity

The overall objective of the evaluation was to illustrate
the methods and to make a first comparison and evaluation.
We will not argue that the results obtained in this evaluation
can be generalized and used by any user in any environment
for any application. Rather, we want to illustrate the prior-
itizing methods and to gain a better understanding of them.
In addition, choosing a prioritizing method must be based on
goals and application area. This evaluation does, however,
provide useful insights into advantages and disadvantages of
the different methods.

The following threats have been identified:

4.5.1. Requirements are interdependent
In practice, the interdependence between the require-

ments must be taken into account. In particular, the trade-
offs between different requirements must be dealt with.
None of the prioritizing methods described in this article
provides means for handling interdependence, hence this
limitation of the experiment is not believed to influence
the actual evaluation of the different methods.

4.5.2. Few persons involved in the experiment
The significance of the results is limited since only three

persons have been involved in the experimentation. It is,
however, not regarded to be overly critical as the authors
were very much in agreement when it came to the subjective
measures. The results from the objective measures are more
inconclusive, and hence can be regarded as a partial threat to
the evaluation.

4.5.3. Only quality requirements considered
The study presented is only concerned with quality

requirements, hence focusing on non-functional require-
ments. This limitation is, however, not believed to be a
major threat to the results from the experiment.

4.5.4. Off-line evaluation
The evaluation was carried out independently from a soft-

ware project. This is always considered a potential problem
in experimentation. It is, however, not regarded as being a
major threat as the main objective is to perform a first
experiment to gain understanding and illustrate a number
of potential methods for prioritizing requirements.

It is always important to identify threats in an experiment
in order to allow for determining both the internal and
external validity of the results attained. Thus, the above
potential threats should be kept in mind when analyzing
the results.

Table 2
Method evaluation order

Method Person A Person B Person C

AHP 6 4 1
Hierarchy AHP 4 3 6
Minimal spanning tree 1 2 2
Bubblesort 3 5 5
Binary search tree 5 6 4
Priority groups 2 1 3

944 J. Karlsson et al./Information and Software Technology 39 (1998) 939–947

4.6. Evaluation analysis

Table 3 shows that the first three methods provide a more
powerful scale. Methods based on AHP also allow the
possibility of checking the consistency of the priorities.
The conclusion from the inherent properties is thus that
AHP and hierarchy AHP are most powerful.

The objective measures in Table 4 show that AHP and
bubblesort require the highest number of decisions (around
80) and spanning tree requires the fewest (around 10). The
number of decisions required for binary search and priority
groups depend on the decisions taken during method execu-
tion, hence the three different values for each evaluator.
Binary search, priority groups and hierarchy AHP all
required around 30 decisions.

The total time consumption and the time consumption per
decision are presented on an ordinal scale, as here we are
only interested in the ranking of the methods. The results
from the evaluation showed that AHP and binary search
need the longest time to execute, while hierarchy AHP and
spanning tree were the fastest methods. If we divide the total
time by the number of decisions, we see that binary search and
spanning tree required most time per decision, while AHP and
bubblesort were, on average, fastest per decision.

Our subjective evaluation, as reported in Table 5, resulted
in good marks for AHP and bubblesort, with respect to ease
of use, reliability of results and fault tolerance. Priority
groups were given the lowest ranking.

5. Industrial application

The results from our evaluation of prioritizing methods

indicate that AHP is both useful and trustworthy but may be
problematic to scale up. In order to gain more understanding
about the industrial applicability of AHP and how to make
the best use of it, we applied the method to an early phase of
the development of industrial software system. Since a
cross-functional team was involved in the project, we also
had the opportunity to investigate the effects of letting the
team perform the prioritizing together, rather than letting the
developers carry out the prioritizing individually.

Prior to the prioritizing session, the cross-functional team
gathered and brainstormed all options to be prioritized.
After analyzing and reviewing the options, the team finally
settled for 11 options. Since time and resources did not
allow full utilization of all options, the prioritizing session
was considered of high importance. The prioritizing session
of 55 pair-wise comparisons required a total effort of 52 min
for the cross-functional team. The resulting priority distri-
bution of the options is shown in Fig. 2. Notice the
useful feature of AHP that the priorities always add up to
100%.

Table 3
Inherent characteristics of the prioritizing methods

Evaluation criteria AHP Hierarchy AHP Spanning tree Bubblesort Binary search Priority groups

Consistency index (yes/no) Yes Yes No No No No
Scale of measurement Ratio Ratio Ratio Ordinal Ordinal Ordinal

Table 4
Objective measures during the evaluations

Evaluation criteria AHP Hierarchy AHP Spanning tree Bubblesort Binary search Priority groups

Required number of decisions 78 26 12 78 29,33,38 34,35,36
Total time consumption
(ordinal scale 1–6)

6 2 1 3 5 4

Time consumption per decision
(ordinal scale 1–6)

2 4 5 1 6 3

Table 5
Subjective measures after the evaluations

Evaluation criteria AHP Hierarchy AHP Spanning tree Bubblesort Binary search Priority groups

Ease of use 3 4 2 1 5 6
Reliability of results 1 3 6 2 4 5
Fault tolerance 1 3 6 2 4 5

Fig. 2. Relative priority of the 11 options.

945J. Karlsson et al./Information and Software Technology 39 (1998) 939–947

Such diagrams provide a graphical illustration on which
developers can reason, for example, about how to best
utilize the scarce resources in software development. In
this project, we divided the options into logical categories
according to their priorities. Relatively, options C, D and J
are of high priority, options A, B, E and H of medium
priority, and options F, G, I and K of low priority.

On the average one pair-wise comparison took the
cross-functional team about 1 min to perform. The time
distribution of the pair-wise comparisons is outlined in
Fig. 3.

The diagram in Fig. 3 indicates that the execution stage of
a prioritizing session goes through two separate parts. The
first part, from the first comparison to about comparison
number 15, is aknowledge transferpart. During this part
the participants have thorough discussions about each
option and gain a deeper understanding of each of them.
They also acquaint themselves with the notion of pair-
wise comparisons. We experienced the knowledge trans-
fer between the members of the cross-functional team as
being very obvious. An explanation for this can be that
knowledge transfer is more likely to be effective when
the participants know they are going to need the knowl-
edge involved [14]. This was certainly the case in this
project. When the cross-functional team have reached a
reasonably even level of knowledge about the options, the
session enters afulfilmentpart. During this part the required
time for the pair-wise comparisons decreases dramatically
due of the knowledge transfer in the previous part. The
average time for a pair-wise comparison was reduced by
one half during this stage.

In using AHP and the resulting diagram, the notion of
consensus becomes very tangible. When reviewing the
diagram all participants directly agreed that the result
mirrored their exact views based on the knowledge gained
from the discussion. Interestingly, no participant
believed he would have reached the same quality in the
result by using any other method known to them. More-
over, making decisions based on consensus is generally
advantageous since the often tedious discussions on
details are left out.

6. Discussion and recommendation

Methods for establishing priorities are of great impor-
tance in software development, since the developers’ best
effort can more easily be focused on the issues which matter
most for the success of the system. Therefore we have eval-
uated and characterized six different methods to establish
priorities. In our evaluation as well as in a practical evalua-
tion we have found AHP to be the most promising approach.
It yields the most trustworthy results which are based on a
ratio scale, it is fault-tolerant and it includes a consistency
check. Other promising approaches, such as bubblesort, lack
these important attributes. In using AHP, the priority dis-
tance between requirements becomes very tangible, the
other methods only providing the correct order. The consis-
tency check is very important since human judgment is far
from perfect. The absence of a consistency index may make
the process unreliable since nobody can assess the potential
judgmental errors being made. On the other hand AHP may
be problematic to scale up for larger projects (the same is
true for bubblesort). Therefore, tools supporting the process
as outlined in Ref. [15] are needed. In that process the
required number of pair-wise comparisons in AHP can be
reduced to more manageable numbers.

Of course, the methods could be combined in many dif-
ferent ways to provide a more efficient approach to prior-
itizing requirements. For example, the requirements could
be grouped into three different groups (cf. the priority
groups method) and then AHP could be applied to the
three groups. In such an approach the required number of
comparisons could be reduced in an efficient manner.

Using prioritization in industrial projects, we have found
the idea very important and useful for better utilizing scarce
resources. Interestingly, we have also found that establish-
ing priorities in group sessions to be a means for both com-
municating knowledge, achieving consensus and for
identifying potential problems in the requirements. Using
a group rather than individuals to prioritize forces the parti-
cipants to bring out their particular knowledge on which
they judge the requirements. Consequently, the other parti-
cipants learn as the process proceeds. Moreover, as the
results were made visible to the group, they immediately
felt that the results reflected their judgments.

By performing the pair-wise comparisons, misjudged,
incorrect and ambiguous requirements were identified by
the participants. We believe the idea of pair-wise comparisons
forces the participants to analyze the requirements from a view
not being used in traditional reviews, and thus finding comple-
mentary problems. Such positive side effects of prioritizing
sessions were highly appreciated by the practitioners.

Acknowledgements

Ivan Rankin, Kevin Ryan and Kristian Sandahl provided
valuable comments on a draft of this paper.

Fig. 3. Required time for pair-wise comparisons.

946 J. Karlsson et al./Information and Software Technology 39 (1998) 939–947

References

[1] J. Karlsson, K. Ryan, Prioritizing requirements using a cost-value
approach, IEEE Software 14 (5) (1997) 67–74.

[2] J. Siddiqi, M.C. Shekaran, Requirements engineering: the emerging
wisdom, IEEE Software 13 (2) (1996) 15–19.

[3] M. Lubars, C. Potts, C. Richter, A review of the state of the practice in
requirements modeling, in: Proc. of the IEEE Int. Symp. on Require-
ments Eng. (1993) pp. 2–14.

[4] T.L. Saaty, The Analytic Hierarchy Process, McGraw-Hill, Inc.
(1980).

[5] J. Karlsson, Software requirements prioritizing, in: Proc. of 2nd IEEE
Int. Conf. on Requirements Eng. (1996) pp. 110–116.

[6] G.R. Finnie, G.E. Wittig, D.I. Petkov, Prioritizing software develop-
ment productivity factors using the analytic hierarchy process,
J. Systems Software 22 (2) (1993) 129–139.

[7] C. Douligeris, I.J. Pereira, A telecommunications quality study using
the analytic hierarchy process, IEEE J. Selected Areas Commun. 12
(2) (1994) 241–250.

[8] J. Karlsson, Towards a strategy for software requirements selection.
Licentiate thesis 513, Department of Computer and Information
Science, Linko¨ping University, 1995.

[9] A. Davis, Software Requirements: Objects, Functions and States.
Prentice-Hall International, Englewood Cliffs, New Jersey, 1993.

[10] A.V. Aho, J.E. Hopcroft, J.D. Ullman, Data Structures and
Algorithms. Addison-Wesley, Reading, MA, 1983.

[11] V.R. Basili, R.W. Selby, D.H. Hutchens, Experimentation in software
engineering, IEEE Trans. Soft. Eng. 12 (7) (1986) 733–743.

[12] S.S. Stevens, On the theory of scales of measurement, Science 103
(2684) (1946) 677–680.

[13] S.E. Keller, L.G. Kahn, R.B. Panara, Specifying software quality
requirements with metrics, in: R.H. Thayer and M. Dorfman (Eds.),
System and Software Requirements Engineering, 1990, pp. 145–163.

[14] D.A. Garvin, Building a learning organization, Harvard Business
Review, July–August, 1993, pp. 78–91.

[15] J. Karlsson, S. Olsson, K. Ryan, Improved practical support for large-
scale requirements prioritizing, Requirements Eng. J. 2 (1) (1997)
51–60.

947J. Karlsson et al./Information and Software Technology 39 (1998) 939–947

