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Abstract

As software systems mature, there is the danger that not
only code decays, but software architecture as well. We
adapt a reverse architecting technique to defect reports of a
series of releases. Relationships among system components
are identified based on whether they are involved in the same
defect report, and for how many defect reports this occurs.
There are degrees of fault-coupling between components de-
pending on how often two components are involved in a
defect fix. After these fault-coupling relationships between
components are extracted, they are abstracted to the sub-
system level. The resulting fault architecture figures show
for each release what its most fault-prone relationships are.
Comparing across releases shows whether some relation-
ships between components are repeatedly fault prone, indi-
cating an underlying systemic architecture problem. We il-
lustrate our technique on a large commercial system consist-
ing of over 800 KLOC of C, C++, and microcode.

1. Introduction

As systems change and evolve over a series of releases,
not only the code, but also the architecture can decay. Early
decay identification is desirable so that steps can be taken to
prevent further degradation. The question is how to identify
this decay and what to do to stop it.

Software architecture consists of a description of com-
ponents and their relationships and interactions, both stati-
cally and behaviorally [20]. Thus decay can be spotted via
defects related to relationships and interactions of the com-
ponents. A software architecture decay analysis technique
must identify and highlight problematic components and re-
lationships, and elide component relationships that are not
problematic. Consequently, we must identify fault prone
components and their relationships as well as elide compo-

nents and relationships that are not problematic.
Identifying components and relationships can be done ei-

ther through an existing, up-to-date software architecture
document, or, in its absence, through reverse architecting
techniques such as [4, 6, 7, 10, 12, 16, 24, 25]. This paper
tries to deal with the latter situation: an obsolete or miss-
ing software architecture document and the need for some
reverse architecture effort.

We propose to use the technique by Ohlsson et al. [18]
to identify the most fault prone components across succes-
sive releases. This approach has also been used with simple
coupling measures based on common code fixes as part of
the same defect report [17]. Because the most fault prone
components identified through this method still yielded too
many relationships between components, further elision was
necessary to focus on and highlight the worst architectural
problems. It makes sense to solve those first.

Section 2 reports on existing work related to identifying
(repeatedly) fault-prone components. It also summarizes
existing classes of reverse architecting approaches. Few re-
searchers have tried to combine the two [8, 9]. We preferred
two steps rather than a combination, because we wanted to
use the reverse architecting approach both for building a
fault architecture and a reverse architecture. Section 3 de-
tails our approach. Section 4 reports on its application to
a sizable embedded system across 4 releases. The results
show identifiable persistent problems with a subset of the
components and relationships between them, indicating sys-
temic problems with the underlying architecture. Section 5
draws conclusions and points out further work.

2. Background

2.1. Fault-prone Components

It is important to know which software components are
stable versus those which repeatedly need corrective main-



tenance, because of decay. Decaying components become
worse as they evolve over releases. Software may decay due
to adding new functionality with increasing complexity as a
result of poor documentation of the system. Over time decay
can become very costly. Therefore it is necessary to track the
evolution of systems and to analyze causes for decay.

Ash et al. [2] provide mechanisms to track fault-prone
components across releases. Schneidewind [19], Khosgof-
taar et al. [15] provide methods to predict whether a com-
ponent will be fault-prone. [18, 17] combine prediction of
fault-prone components with analysis of decay indicators.
[17] is more interested in fault-prone component relation-
ships rather than components alone. It ranks components
based on the number of defects in which a component plays
a role. The ranks and changes in ranks are used to classify
components as green, yellow and red (GYR) over a series
of releases. Corrective maintenance measures are analysed
via Principal Components Analysis (PCA) [11]. This helps
to track changes in the components over successive releases.
[17] also uses box plots to visualize the corrective mainte-
nance measures and to identify how they differ between re-
leases.

2.2. Reverse Architecture

Reverse architecting is a specific type of reverse engi-
neering. According to [22], a reverse engineering approach
should consist of the following:

1. Extraction: This phase extracts information from
source code, documentation, and documented system
history (e. g. defect reports, change management data).

2. Abstraction: This phase abstracts the extracted infor-
mation based on the objectives of the reverse engi-
neering activity. Abstraction should distill the possibly
very large amount of extracted information into a man-
ageable set.

3. Presentation: This phase transforms abstracted data
into a representation that is conducive to the user.

Objectives in why code is reverse architected drives what
is extracted, how it is abstracted, and how it is presented. For
example, if the objective is to reverse architect with the as-
sociated goal to re-engineer (let’s say into an object oriented
product), architecture extraction is likely based on identify-
ing and abstracting implicit objects, abstract data types, and
their instances. This is the case with [4, 10, 12, 24]. Alter-
natively, if it can be assumed that the code embodies certain
architectural cliches, an associated reverse architecting ap-
proach would include their recognition. [7] describes an en-
vironment that uses recognizers that know about architec-
tural cliches to produce different architectural views of the
system.

Other ways to look at reverse architecting a system in-
clude using state machine information [9], or release his-
tory [8]. CAESAR [8] uses the release history for a sys-
tem. It tries to capture logical dependencies instead of syn-
tactic dependencies by analyzing common change patterns
for components. This allows identification of dependencies
that would not have been discovered through source code
analysis. It requires data from many releases. This method
could be seen as a combination of identification of problem-
atic components and architectural recovery to identify archi-
tectural problems.

If we are interested in a high level fault architecture of
the system, it is desirable not to extract too much informa-
tion during phase 1, otherwise there is either too much infor-
mation to abstract, or the information becomes overwhelm-
ing for large systems. This makes the simpler approaches
more appealing. In this regard, we found Krikhaar’s ap-
proach particularly attractive [16]. The approach consists of
three steps:

1. defining and analyzing the import relation between
files. [16] defines the import relation via #include state-
ments in the source code. Each file is also assigned to a
subsystem (creating a part-of relation). The import re-
lation at the subsystem level is then derived as follows:
if two files in different subsystems have an import rela-
tionship, the two subsystems to which the files belong
have one as well.

2. analyzing the part-of hierarchy in more general terms
(such as clustering, levels of subsystems). This in-
cludes defining the part-of relations at each level.
These usually will be defined differently for each level.
It also includes further definition of possible import re-
lations and their abstractions.

3. analyzing use relations at the code level. Examples in-
clude call-called by relationships, definition versus use
of global or shared variables, constants and structures.
Analogous to the other steps, Krikhaar [16] also deter-
mines the part-of relation and abstracts use relations to
higher levels of abstraction.

Within this general framework, there are many options to
adapt it to a specific reverse architecting objective [6]. For
example, Bowman et al. [3] also fits into his framework:
the reverse architecting starts with identifying components
as clusters of files. Import relations between components are
defined through common authorship of files in the compo-
nents (ownership relation). Use relationships are defined as
calls-called-by relationships (dependency relation) of func-
tions in components. Bowman et al. [3] also includes an
evaluation of how well ownership and dependency relation-
ships model the conceptual relationship.



We developed our adaptation based on the need to repre-
sent defect relationships between componentes and the abil-
ity to focus on the most problematic parts of the architecture
by quickly filtering out information.

3. Approach

The first step is to identify the most problematic parts of
the system. To identify the problematic components we ap-
ply GYR [18]. This identifies decaying components over
successive releases. A component is considered fault-prone
in a release if it is among the top 25% in terms of defect re-
ports written against the component. This provides a man-
ageable number of problematic components for further anal-
ysis. The threshold can be chosen subjectively based on
available resources, quality, objectives of the analysis (most
problematic versus all components that have problems).

For purposes of the case study we classified a compo-
nent as problematic when it is in the most fault-prone quar-
tile for at least one release. Components are defined as col-
lections of files in the same directory. Thus the directory
structure of the software can be used as the “part-of” rela-
tionship. Fault-prone components are illustrated as leaves
in this fault-filtered directory structure. We denote this as a
Fault Component Directory Structure. Subsystems are de-
fined through the directory structure.

The next step is to develop the Fault Architecture. We
adapted an existing reverse architecting technique [16] to
identify the fault architecture of a system and to highlight
both nature and magnitude of the architectural problem.
Two or more components are related, if their files had to be
changed in the same defect fix (i.e. in order to correct a de-
fect, files in all these components needed to be changed). If
too many relationships are identified it is necessary to set a
threshold on the lowest number of fault relationships to in-
clude. This filter reduces the number of components and re-
lationships to the most important. In our case, we decided
to further investigate components with fault-relationships in
the top 10%. This number could, for example, also be the
top 5% or 25% depending on the objectives of the investi-
gation and the number of relationships.

The fault relationship can be abstracted to the subsystem
and system level: Two subsystems are related, if they con-
tain components that are related. This represents Krikhaar’s
“lift” operation [16]. To indicate the magnitude of the prob-
lem, we also report the number of defect reports associated
with two components or subsystems. Changes in such pat-
terns, or persistent fault relationships between components,
across releases, is an indicator of systemic problems be-
tween components and thus architecture.

The result of this phase is a series of Fault Architecture
Diagrams, one for each release. These results are also used
to update the Fault Component Directory Structure as fol-

lows: components in bold face appear in the Fault Architec-
ture Diagrams. These are components with fault relation-
ships to others in at least one release. Bold components are
also annotated with the release identifiers in which they were
considered relationship fault-prone. Non-bold components
are internally fault-prone in at least one release, but do not
show fault relationships with other components.

To investigate further the nature of continued problems
between components, we also aggregate these diagrams
into a Cumulative Release Diagram. The nodes represent
components that occur in at least one Fault Architecture
Diagram. Two nodes are related (i.e. have an arc be-
tween them), if there is a relationship between correspond-
ing nodes in at least one Fault Architecture Diagram. The
arcs are annotated as follows: if Fault Architecture Dia-
grams for releases n and m show an arc between components
ci and cj , then the Cumulative Release Diagram’s arc be-
tween ci and cj is annotated with Tn;m (for release transi-
tion n to m). This highlights repeatedly problematic rela-
tionships in the Fault Architecture.

4. Case Study

4.1. Environment

We applied this technique to a large embedded mass stor-
age system of about 800 KLOC of C, C++, and microcode in
130 software components. Each component contains a num-
ber of files. We studied four releases. The data is based on
defect/fix reports or source change notices (SCN). Every re-
port indicates a problem that had to be corrected.

4.2. Identification of fault-prone components

To extract a subset of the components we decided to
identify the top 25% of the most fault-prone components
in each release1. This focuses on the fault-prone relation-
ships between components. In case of ties in rank that would
cause more than 25% of the fault-prone components to be in-
cluded, the smaller set was chosen. Table 1 shows to which
degree components were repeatedly fault-prone. For ex-
ample, 68 components were never identified as fault-prone
while 3 were identified as fault-prone in all four releases.
Fault-prone components in at least one release are included
in the Fault Component Directory Structure (see Figure 1).
We refer to a component as a collection of files in the same
directory.

1Extraction of relations for all 130 components would have provided
5400 relationships for Release 1 and 4800, 3000 and 1000 for the following
releases. This is an unmanagable number from our point of view and would
only obscure the most pressing problems.



Times fault-prone 0 1 2 3 4
Number of components 68 29 17 13 3

Table 1. Number of Releases in which Com-
ponents were Fault-Prone

4.3. Analysis of fault relationships

This analysis extracts the fault architecture of the system.
Two fault-prone components have a fault relationship be-
tween them if they each contain files that had to be fixed
as part of corrective maintenance for the same defect report.
All data is stored in a database which contains records with
information for every defect report, including the files that
had to be changed. The component fault-relationships were
extracted with SQL scripts. The first half of Table 2 shows
the results of this analysis. Column 2 identifies the number
of components to be included in the fault architecture for
each release. Column 3 states the number of relationships
(arcs) between components. Column 4 lists a range for the
strength of these relationships (i.e. the number of times re-
lated components shared a defect report). The number of
relationships between components is very large making it
difficult to get an overview of the most problematic com-
ponent relationships. Therefore we decided to focus on the
top 10% of fault-prone component relationships. The results
from this second reduction are in the second half of Table
2. Note that this filtering step also reduced the number of
components (they are omitted if the filter eliminated all arcs
related to them).

Based on these results we also updated the Fault Compo-
nent Directory Structure in Figure 1, marking components
with fault-prone relationships to other components in bold.
Bold components are annotated with the release identifiers
in which they were considered relationship fault-prone. For
example, sd52 and sd53 were relationship fault-prone in
Release 2 and Release 3. The components not marked bold
are fault-prone components with internal problems instead
of fault-prone relationships to other components.

Figure 2 shows the Fault Architecture Diagram for Re-
lease 1. Nodes represent components. Arcs between two
vertices show that components are fault-prone in their re-
lationship. The weights on the arcs indicate the number of
times this happened. Note that Figure 2 includes subdirec-
tories at different levels of the directory structure. This was
necessary when they included (changed) files. For example,
both A/c/sd21 and /A/c/cc/sd23 contain files.

4.4. Fault Architecture Diagrams

Figure 3 was constructed from the Component Level Di-
agram by lifting the component level relationships to the
next higher level in the directory structure. For example,
the components A/c/cc/sd23, A/c/cc/sd24 are ag-
gregated to A/c/cc. The relationship arcs of these com-
ponents (to A/b and A/e) are aggregated as well. Thus
the strength of the aggregated relationship betweenA/e and
A/c/cc became the sum of the component relationships:
142 + 119 = 261. The results from this operation are pre-
sented in Figure 3. Table 3 shows the number of compo-
nents, the number of fault-relationships and their strength
(as a range) for all four releases after the lift operation.

Components Num. relations Strength of rel.
Re. 1 7 12 92-1391
Re. 2 7 11 45-942
Re. 3 3 3 132-562
Re. 4 8 14 13-206

Table 3. Lift Operation

Figures 3-6 show the aggregated Fault Architecture Dia-
grams for all four releases. The thickest arcs indicate at least
500 problems involving both components, while medium
thick arcs represent between 200 and 500 problems. Thin
arcs indicate 50 and 200 problems, and thin dashed arcs rep-
resent less than 50 problems.

In Release 1 most of the problems centered around sub-
system System/A and its components. System/A/b
and System/A/e are the central fault-relationship nodes
indicating faults shared with many components within
System/A. System/A/b was very fault-prone as a sin-
gle entity.

In Release 2 some of the fault relationships persist,
for example, System/A/b and System/A/e have
relationships to System/A/c and System/A/d.
System/A/b still has some internal problems. In
addition, there are three new fault-prone subsystems,
System/B, System/Comm1 and System/Comm2.
System/B only has internal problems while the other two
have faults in common with subsystems System/A/d
and System/A/e. System/A/d plays a central role in
this release with regards to fault relationships. One positive
development in this release is the decreasing magnitude of
the fault relationships.

Release 3 does not seem to be as problematic as the
other releases. Only three components have fault-prone
relationships. One of them is new, System/C, but the
fault relationships represent problems local to subsystem
System/C. System/B has both internal problems and
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Figure 1. Fault Component Directory Structure

Without Fault Prone Filter With Fault Prone Filter
Components Num. relations Strength of rel. Components Num. relations Strength of rel.

Release 1 29 300 1-681 16 29 70-681
Release 2 32 250 1-330 18 27 42-330
Release 3 25 50 1-200 17 22 10-200
Release 4 29 100 1-280 18 29 11-128

Table 2. Relationship Information

problems in common with System/Comm2.
In the last release the local problems in System/B

and System/C persist even though there are fewer than
in previous releases. Release 4 is very similar to Re-
lease 1. In both releases, relationship problems center
around System/A/c which has fault-relationships with
subsystems System/A/c/cc, System/A/c/tt and
System/A/e. The main difference between the two re-
leases is thatSystem/A/d is not fault-prone in the later re-
lase and that the number of fault relationships has decreased.

4.5. Cumulative Release Analysis

Looking across the releases we can see some trends.
Three releases show a large number of problems between
subsystems System/A/b and System/A/e. Persistent
problems for Release 1 and Release 2 involve subsys-
tems System/A/b, System/A/c, System/A/d,
and System/A/e. Even in the fourth release there
are problems in the relationships between subsystems
System/A/b, System/A/c, and System/A/e. We

can also see some problems resurface in System/A/a.
This indicates a systemic problem that is not going away,
and is a strong indicator of architectural problems in the
relationship between these components. It could also be
accompanied by code decay due to repeated problem fixes.
A positive indication is the decreasing number of problems
between System/A/a and System/A/e.

The Cumulative Release Diagram (see Figure 7) illus-
trates persistent problems. This diagram aggregates rela-
tionships between releases. The arc annotations in the dia-
gram describe which fault relationships persisted across re-
leases. For example, System/B had internal problems car-
ried from Release 2 to Release 3, and from Release 3 to Re-
lease 4 and is therefore annotated with T23 and T34. Key
fault relationship “drivers” are subsystems System/A/b
andSystem/A/e. They have fault relationships with most
other subsystems in the upper portion of the diagram. The
problems internal to System/B and System/C also are
persistent. The only two components without any transi-
tions are System/Comm1 and System/Comm2. The rea-
son is that these components only contain files and no sub-
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directories. Thus there are no relationships between compo-
nents.

T14 represents an interesting phenomenon. Arcs anno-
tated with T14 reflect relationships that were present in Re-
lease 1 and Release 4, but not in Release 2 and Release 3.
One interpretation could be that the underlying architectural
problems were never fully solved in Release 1 and, with ad-
dition of new features, reappeared in Release 4. We recom-
mend to look at System/A, especially System/A/b and
System/A/e in conjunction with their fault-related com-
ponents which seem to be key to the biggest problems rela-

tive to multiple components.

5. Conclusions and Further Work

This paper reported a study to evaluate the usefulness
of using defect reports for building fault architectures. De-
fect reports are easily available and could therefore be used
to identify the problematic parts of a system. We have ap-
plied a technique that identifies the most fault-prone rela-
tionships between components and subsystems in a number
of releases. We created a Fault Component Directory Struc-
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ture and investigated the fault-driven relationships between
components. Fault Architecture Diagrams show fault-prone
relationships at several levels. Finally, a Cumulative Re-
lease Diagram is created to track problematic relationships
across releases.

This simple technique visualizes problems due to archi-
tecture fairly well. We were able to clearly identify for ev-
ery release what the most problematic component relation-
ships are. The most problematic stayed that way over more
than one release or reappeared. Even with improvement
efforts in successive releases, the core problems in the ar-
chitecture, while mitigated, never disappeared completely.
Lesser problems, as for example the difficulties with the
System/Comm1 andSystem/Comm2 subsystems in Fig-
ure 4, may be due to premature release, rather than more
deeply rooted architectural problems. In the latter case, they
will disappear from the fault architecture. We see the key ad-
vantage to providing a fault architecture in drawing attention
to the most pressing faulty component relationships. This

identifies which relationships should be scrutinized whether
they require corrective maintenance or re-architecting. The
most central problems seem to revolve around interactions
related to System/A/b and System/A/e. These sub-
systems have relationships to many other components in
System/A and should therefore be analyzed in more depth.

Further, root cause analysis would benefit from count-
ing other indicators, but that depends on their availabil-
ity. In [17] the same system was analyzed using Principal
Components Analysis on detailed measures related to code
changes in (shared) files. They derived measures for im-
pact of change to components and to related components.
The most fault-prone show more decay. Our fault architec-
ture concentrates more specifically on the relationships be-
tween fault-prone components in terms of the magnitude of
the problems in which they are involved. The fault archi-
tecture could also be used in conjunction with the analysis
in [17] to further investigate architectural problems. The
fault architecture identifies which components and compo-
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nent relationships should be analyzed further through Prin-
cipal Components Analysis or box plot trends.

We would also like to apply other techniques like [8] to
the defect analysis reports and compare the results. Adapt-
ing a reverse architecture technique like [16] has the advan-
tage that it can be used to identify both the existing module

architecture as well as its fault related parts.
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