

C. Wohlin, "Engineering Reliable Software", Proceedings 4th International
Symposium on Software Reliability Engineering, pp. 36-44, Denver, Colorado,

USA, 1993.

1

Engineering Reliable Software

Claes Wohlin1

Dept. of Communication Systems, Lund Inst. of Tech., Lund University,
Box 118, S-221 00 LUND, Sweden, E-mail: claesw@tts.lth.se

Abstract

Software reliability engineering is not only the use of
software reliability models and similar techniques, it is
the use of sensible engineering principles with
cost/benefit analysis throughout the software life cycle to
obtain reliable software. The need to have a
comprehensive view on software development to engineer
reliable software will be emphasized. Cleanroom
Software Engineering is proposed as being the basis for
developing reliable software. The paper will in particular
discuss some extensions to Cleanroom, both in terms of
adaptations and additions. Particular emphasis will be
on high-level design techniques and methods for
reliability certification of the software. The
comprehensive view of software is supported by several
success stories, both with references to results presented
in literature as well as experiences from projects
conducted by Q-Labs. The results obtained are
encouraging. The methods proposed are shown to give a
substantial gain in the development of reliable software.

1. Introduction

Software Reliability Engineering must be a life cycle
commitment. The ultimate challenge of reliability
engineering must be to provide software which does not
fail in the operational phase, while the objective must be
to develop software with the required reliability within
schedule and budget. This goal is high for some types of
system, for example safety-critical software.

The objective of this paper is to argue that the way
towards engineering reliable software is a combination of
several techniques. The reliability problems in software
will not be solved with one single technique. The best
techniques available today must be put together to obtain
a substantial improvement in reliability of software
systems. In particular some techniques that have been
successfully introduced during projects conducted by Q-
Labs will be emphasized. Experience gained is supported
by other studies presented in the literature.

The introduction of high-level specification and design

techniques is one step in the right direction, along with a
rigorous and comprehensive approach in development
similar to the one presented in Cleanroom Software
Engineering, thus emphasizing early verification and
inspection as well as early certification and prediction of
reliability. The focus in this paper will be on extensions
and additions to Cleanroom, particular emphasis will be
on certification through statistical usage testing, which is
the fishing net supposed to stop poor products from being
put into operation. The introduction of these techniques
will be supported by a presentation of some success
stories, both performed by Q-Labs and found in the
literature.

As the maturity of software development has grown, it
is necessary to develop fault tolerant techniques to cope
with the faults introduced in the software despite high-
level design techniques and a rigorous approach. The
introduction of fault tolerance is of course based on the
assumption that the required reliability can not be
achieved solely by a rigorous development. Fault
tolerance will not be discussed in this paper. Neither will
the necessity to continuously monitor the work being
performed to be able to evaluate it and improve it in
future projects to come be addressed.

The paper will not give any deep insight into any of
these techniques. The goal is rather to outline a possible
concept towards engineering of reliable software in the
future.

An illustration of what is believed to be a concept
towards engineering reliable software instead of crafting
unreliable software is illustrated in figure 1. The concept
is based on Cleanroom Software Engineering, but
additions, extensions and adaptations will be proposed.

2

1 The practical experience of Cleanroom has been
obtained when working as a consultant for Q-Labs, Lund,
Sweden.

Continuous evaluation and improvement process

Development method
using high-level
specification and
design techniques

Fault
tolerance
techniques

Reliability
certification
filter

Cleanroom practices and processes, for example
development process, organizational aspects and
verifications

Figure 1. The context of the paper.

The concept for more reliable software is thought to be
based on Cleanroom:
• Cleanroom Software Engineering provides a good

basis for engineering reliable software. It contains a
set of good engineering and management practices. In
particular, the philosophy in Cleanroom including
rigorous verifications as well as organizational and
responsibility aspects forms a good basis. The
Cleanroom practices are of course based on a well-
documented and functioning development process. A
brief introduction to Cleanroom is given in section 2.
Cleanroom contains methods for high-level

specification and design as well as a method for
certification, but these methods are not always sufficient
for all types of applications. This motivates some
adaptations of Cleanroom, then some additions are
needed as well. The following items will be discussed as
being suitable improvements of Cleanroom:
1 The use of other high-level specification and design

techniques than the one presented in Cleanroom is
argued. In particular, it is stated that the high-level
design techniques are mature enough to be applied
broadly in the industry, see section 3.

2 Fault tolerant techniques ought to be used, if the
required reliability level can not be proven based on
the rigorous development. Fault tolerance will though
not be discussed in this paper.

3 The certification method proposed in Cleanroom is not
particularly suitable for large system, since a state
explosion in terms of user states occurs. Adaptations
and additions to the certification method in Cleanroom
are discussed from different views in section 4, 5 and
6.

 • Section 4 contains a brief presentation of a method
which aims at certification before the testing phase.

 • Section 5 discusses an alternative certification
method during testing than the one proposed within
Cleanroom.

 • Section 6 presents some preliminary results
concerning certification and problems with change in
usage. This aspect is not discussed at all within
Cleanroom.

4 A continuous evaluation and improvement process
ought to be included as part of the Cleanroom
development process. The evaluation and
improvement process includes for example methods
for early estimation of reliability or fault content. The
general process will not be discussed, but a method for
early reliability certification is discussed in section 4.

2. Cleanroom software engineering

2.1 Introduction

Cleanroom Software Engineering, [1, 2, 3], has shown
that it is possible to improve the software quality and in
the same time improve the productivity.

Cleanroom has been developed at IBM and Software
Engineering Technology (SET) in the USA and it is
currently being adapted to the telecommunications field
by Q-Labs and the department of Communication
Systems.

The Cleanroom methodology is based on the
philosophy that it is possible to develop zero defect
software, though it may be hard to prove. The overall
principle in developing software systems using
Cleanroom is to remove defects in the same development
phase as they are introduced, instead of waiting for an
executable code representation of the system to perform
tests and defect removal on.

Two abstraction levels of Cleanroom can be identified,
first the philosophical level and secondly the level
containing the specific techniques. If interpreting
Cleanroom primarily on the philosophical level then the
actual methods can be changed as long as the overall
philosophy is supported and its objectives achieved. The
objective of this section is to present these two
abstraction levels based on presentations of Cleanroom
found in the literature.

2.2 Cleanroom philosophy

”The Cleanroom software development method has three
main attributes: a set of attitudes, a series of carefully
described processes, and a rigorous mathematical basis”
[2]. Attitudes from the software engineers and managers
to their job are very important parts in the development
process. This is emphasized through the following
viewpoints stressed in Cleanroom:
• Zero defect software is possible.
• Team responsibility of the work.

3

• Intellectual control of the software development.
• Process driven development.
• Incremental development.
• Stepwise refinement and rigorous verification.
• High level specification and design.
• Certification of software reliability.

These items are a collection of aspects stressed in the
Cleanroom literature, but they still allow for application
of different techniques. If these views are considered as
Cleanroom, then several different techniques may be
applied still fulfilling the objectives of Cleanroom, but
some more specific techniques can also be found in the
literature.

2.3 Cleanroom methods

To reach the philosophical objectives of Cleanroom for
software development, some specific methods are
proposed:
• Box Structures [4, 5] is the method proposed for

specification and design of the software.
• Stepwise Refinement and Functional Verification [6,

7] are methods for implementing code in small steps
and verifying them mathematically.

• Statistical Usage Testing [8] describes how the
certification is to be done in Cleanroom. It is proposed
that the usage shall be modelled with a plain Markov
chain, [9, 10], hence allowing for generation of test
cases according to the anticipated usage. The
reliability model proposed is presented in [11].
These specific methods are not always possible to use,

for example due to application domain, tool support or
prior use of a specific development technique. It may be
difficult for an organization to adopt several new methods
and techniques, due to for example education and
investments done in the past. This does, however, not
mean that the Cleanroom philosophy can not be adopted.
The philosophy in Cleanroom is believed to be more
important than the actual technical methods. Therefore it
will be argued that other methods may as well be applied
as long as the philosophy and overall objectives of
Cleanroom are fulfilled.

2.4 Adaptations to Cleanroom

The Cleanroom methodology is being adapted to

telecommunication systems by Q-Labs and the
department of Communication Systems. The objective is
to offer full support to large multi-user systems with high
quality requirements. The work has so far resulted in:
• a tailored development method for telecommunication

systems, which includes application of another design
technique than the one proposed within Cleanroom.
The method has been applied to one of the projects
discussed among the success stories, see section 3, 7
and [12, 13, 14].

• a method for statistical usage testing has been
developed, see section 5, 7 and [15].

• a certification method for early reliability evaluation
based on the usage has been proposed, see section 4
and [16].

• a method to evaluate the change in reliability based on
a change in the usage is currently being researched.
Some preliminary results are presented in section 6.

3. High-level specification and design

 techniques

3.1 Evolution of program development

The programming trade started with assembler and soon
went on to unstructured programming. The disadvantages
with programming using gotos and other non-structured
concepts lead to the introduction of the structured
programming concept, thus implicating that prior
programming had been unstructured. It must though be
noted that nobody thought of programming prior to
structured programming as being unstructured. The
objective of this paper is not to give an introduction to the
history of programming, but to emphasize that these
transitions between different types of programming were
made based on belief and time. It always takes time to
change a behaviour and even if computer scientists are
performing quite a new trade compared to building
houses etc. it is obvious that it is a conservative group of
craftsmen.

Not much proof has been presented that the transition
to structured programming increased the quality and in
particular the reliability of the software, all the same
today everybody (almost) agrees that structured
programming is a necessity to cope with the systems of
today. Some indications showing that structured
programming actually improved quality does however
exist.

A study has been presented in [17] indicating that
from 35 complexity measures including McCabe´s
cyclomatic complexity, the measure that had the highest
correlation with software faults was the number of
“gotos”. The study included about 30000 lines of code for
a large telecommunication switch. Two types of gotos
were used in the code of the product, namely:
• if then goto
• unconditional goto, i.e. only goto

The highest correlation obtained was for the number of
unconditional gotos, thus emphasizing that the transition
to structured programming and banning unconditional
gotos possibly increased the reliability of the software
being developed. This statement is supported with the

4

subjective feeling of many developers.
The conclusion from history is that new techniques

evolve, but it takes time to introduce them. This ought in
particular to be the case when the transition to new
techniques can not be supported by success stories made
by others, more courageous companies or project leaders.

The next step in programming evolution is the high-
level design techniques, for example SDL (Specification
and Description Language) standardised by CCITT [18,
19, 20] and Box Structures [4, 5]. The software
community is probably not ready for formal description
techniques as for example Z [21]. A step between
structured programming and formal description
techniques seems to be the right way. The problem
encountered, when talking about high-level design
techniques, is the conservative opinion that the way we
do it today is the best way to develop reliable software.
This is not the case. The evolution of software
development will continue and this will give us more
reliable software in the future.

History has shown, as pointed out above, that new
more structured techniques will give an increase in
reliability. Thus the introduction of high-level design
techniques will probably give an increase in reliability
compared with the reliability obtained in software
development today.

3.2 Advantages of high-level design techniques

It has been argued that high-level design techniques
ought to be introduced, hence some other benefits with
the techniques will be emphasized in this section. The
advantages with using a high-level design technique will
be outlined to try to illustrate that these type of
descriptions are mature enough to be used in an industrial
environment today. In general the following advantages
can be identified for high-level design techniques:
• High-level design techniques can be analysed both by

tools and more easily by humans than code. The
readability means that the description becomes
inspectable and thus more faults are found in the early
phases.

• A common description technique early in the life cycle
also means that metrics can be collected early. Thus
helping in planning, controlling and risk management
in the early phases.

• Metrics from different types of analysis can also be
used to estimate different software qualities, for
example reliability and fault content. It may be
possible to identify fault prone modules at an early
stage.

• The outcome of the previous items will form a basis
for decision making. It is hence possible to decide to
re-design instead of implementing and going into test
with a poor product.

• Finally, the tool support for different high-level design

techniques is increasing. It is possible to find tools for
editing, syntax and semantic analysis, dynamic
analysis/behaviour analysis, simulation and code
generation.
The list of advantages can probably be made longer if

a particular high-level design technique is considered. As
an example we will use SDL [18, 19, 20], since this is the
high-level design technique used in our environment
today.

SDL is based on dividing the system into blocks and
then into processes. The processes describe the dynamic
behaviour of the system. A system described with SDL
consists of a number of inter-communicating processes,
where the communication is made with signals. The
signals contain a number of parameters. An introduction
to SDL can be found in the references, unfortunately it is
not possible to go into more details here. The major
advantages with SDL are:
• SDL has a formal representation and it is standardized

by the CCITT, hence being standardised primarily for
real time systems which means that the concepts in the
description technique have been adapted to the needs
in real time systems.

• SDL is easy to teach and to learn. Students have found
that SDL provides a good basis for describing real
time systems. This results in that the industry easily
can employ well-educated technicians with good
knowledge in a high-level design technique, hence
promoting the transition to application of high-level
design techniques.

• SDL is human-oriented and it comes from the need to
have a suitable description technique to describe the
software at a higher level than the code. This means
that SDL (or at least a subset of SDL) is widely
accepted in the environments developing the software
to the telecommunication systems of tomorrow.

• SDL has shown to be a suitable level for analysis of
the software structure, which has been used as
complexity metrics to correlate with the fault content.
These metrics are applied prior to the code which
make them important indicators of reliability. Some of
the results have been presented in [22].

• Tools and methods for dynamic analysis of SDL [23]
and simulations based on SDL have been developed,
see for example [24, 25]. A method for evaluation of
prediction of software reliability based on dynamic
analysis is presented in [16] and the evaluation of
software qualities based on simulation of the design in
SDL is presented in [26]. The prediction technique
from dynamic analysis is briefly introduced in section
4. The tools allow for earlier analysis than is possible
otherwise, hence the tools help improving the quality
since problems may be identified earlier.
Similar advantages can probably be found for other

high-level design techniques as well. High-level design
techniques are mature. The transition into using them on a

5

daily basis in the industry may take some time, but the
companies managing the transition first will lead the
evolution into engineering more reliable software in the
future.

SDL together with message sequence charts have been
used instead of Box Structures in the development
method tailored for telecommunication systems. The
method has been applied to a large project, see section 7.

4. Early certification of HLDT

A method for early estimation of software reliability is
presented in [16]. The main advantage of the method
which makes it different from other methods is the use of
the operational profile for reliability certification before
the testing phase and with full tool support. The method
hence provides an opportunity to obtain an early and
relevant indication of the expected reliability.

The certification can be made from failure statistics
from for example dynamic analysis of formal
descriptions. This analysis can be made either on the
specification of the software or of the design of the
software during development.

The approach is based on that the operational profile
can be input to an analysis tool which detects certain
types of probable dynamic failures. An example of a tool
is SDL Behaviour Analyser (SBA) presented in [23].
From the failure statistics of the analysis tool, it will be
possible to make a first prediction of the software
reliability when in operation. This prediction can either
be based on that the dynamic failures are supposed to be
representative of the failures in the product, or a
relationship between the dynamic failures and ”normal”
failures has to be determined.

The proposed method can be summarized in the
following procedure:
1 The usage is modelled with the same technique as the

system is being described.
2 Test cases are generated from the usage model and the

analysis cases are described with the description
technique applied for system description.

3 The usage model is put together with the system
description in the tool supporting the description
technique.

4 The dynamic analysis tool is capable of locating
certain types of faults. The analysis of the system is
made based on analysis cases generated from the
usage model. This means that a partial dynamic
analysis is done, which shall be compared with the full
analysis which would have been done if not
controlling the analysis with the generated analysis
cases.

5 The failure statistics from the analysis tool is put into a
reliability growth model to allow for reliability
estimation and prediction of future failure behaviour.

6 A full dynamic analysis is then performed using the

analysis tool, hence locating all faults that the analysis
tool can find.

7 The failure times are recorded and a normalization
procedure is applied to get failure statistics which can
be compared with the predicted failure behaviour. The
goodness of the prediction can hence be calculated.
This information is important to be able to compare
with the usage testing, which is assumed to be carried
out. The hypothesis is that if the prediction from
dynamic analysis is good, then the prediction of the
reliability growth from usage testing ought to be
reliable.

8 A transformation from faults found by the analysis
tool to an arbitrary fault in the software must be
applied. This requires a re-calculation metric
describing the number of faults remaining in the
software in comparison with the number of faults
found in the dynamic analysis.
This procedure will allow for estimation and

prediction of the software reliability at an early stage in
the development based on the operational profile, which
make the method more realistic than most methods
proposed for early estimation of software reliability. Most
methods merely estimates the fault content and uses this
as an indication of reliability.

The method and its opportunities are discussed in
more detail in [16].

5. Certification during testing

5.1 Statistical Usage Testing according to

 Cleanroom

Statistical Usage Testing (SUT), [1, 2, 3, 8, 9, 10], is the
certification method described as a part of the Cleanroom
software development method. The goal for SUT in
Cleanroom is not, as in traditional software development,
to find as many faults as possible but to certify the
software reliability. The planning and certification of
software system reliability is also discussed in [27].

Software reliability depends not only on how correct
the software is, but also on how it is used. If there is a
failure for a certain state and stimulus, its effect on
reliability will depend on how often this event arises.
This depends on how often the state is reached and how
often the certain stimulus is selected. This reality is
considered by the Statistical Usage Testing and that is
why it can be the basis for certification.

The original proposal in Cleanroom for modelling the
usage is a plain Markov model, [9, 10]. We have
encountered that this type of model will soon become too
large and complex for large multi-user systems. The
number of usage states soon becomes cumbersome, often
referred to as the state explosion problem. The problem
has been solved by introducing a hierarchical Markov
model, presented in [28, 29], see also section 5.2 and 5.3.

6

Certification is the control of the quality fulfilment,
e.g. to certify that a specific reliability has been obtained.
Based on the fact that tests are carried out from the test
cases compiled, it should be possible to predict the
software reliability that can be expected in actual
operation. The reliability model referred to in the
Cleanroom literature is presented in [11]. The main
disadvantage is that the application of a reliability model
mostly requires a number of failures to occur, which
contradicts the objective of Cleanroom in general.
Therefore another type of certification method is needed,
see section 5.2.

5.2 Adaptations of Statistical Usage Testing

Statistical usage testing consists of two major parts, i.e.
usage modelling, which includes construction of a usage
profile, and reliability estimation. The adaptations to
telecom concern both these parts. Q-Labs has conducted a
project for Swedish Telecom to provide them with a
certification method to be used in acceptance testing
when purchasing software systems. The usage model is a
description of how the software is used in operation,
which stimuli are sent in different cases. The usage
profile illustrates the probabilities for the different events.
The test cases are generated from the usage profile by
random selection according to the software usage. The
certification is performed by analysis of the failure data
collected during testing. It must be possible to, with a
certain confidence, certify a particular reliability level or
predict the reliability at some point of time in the future.

The following adaptations have been made:
• Introduction of a new model to describe usage, i.e. a

hierarchical Markov chain, [28, 29]. The model allows
for dynamic changes in the probabilities based on the
states of the users. This is not supported by the
original method proposed in Cleanroom, neither by the
method proposed in [30, 31, 32]. The hierarchical
model aims at generating one event at the time and not
complete functions. The objective is that the
generation shall support a mixing of events which
resembles the actual operational phase. The
hierarchical Markov usage model is briefly described
in section 5.3 and it is further discussed in [28, 29].

• Instead of applying reliability growth models as the
one presented in [11], it is proposed that the
hypothesis testing technique presented in [33] shall be
applied. The main advantage of the hypothesis testing
technique is that it does not require a number of
failures to occur before it can be applied, but on the
other hand it does not provide a prediction
opportunity. Therefore it is recommended to use the
hypothesis testing technique to accept or reject the
software and then optionally it is possible to apply a
reliability growth model for prediction.
 The hypothesis testing technique means that a

control chart shall be used. The diagram shows the
normalized failure time versus the failure number. The
control chart contains two lines, which divides the
diagram into three parts, one continue to test region
and one region depicting if the reliability requirement
has been fulfilled and finally one region showing if the
software shall be rejected. The lines are drawn based
on the reliability requirement and the needed
confidence in the decision. This method allows
decision making concerning the reliability based on
the failure data available and a predefined confidence.
The method does not need a certain number of failures
to occur, therefore the method is better to use in
Cleanroom projects where the expected number of
failures found is supposed to be low.
These two adaptations to Cleanroom are the basis in a

method provided to Swedish Telecom, which shall be
used during acceptance testing of software products.

5.3 Hierarchical Markov usage model

The hierarchical usage model is developed based on the
inability to apply a plain model on a large system with
numerous users. The plain Markov model clearly grows
too large, since it depends on the number of users in a
non-linear way. This observation made it necessary to
model the usage of the system in another way.

It was decided to model the usage in a hierarchical
Markov model, because it gave a possibility to divide the
problem domain in a natural way. The first level in the
hierarchy is a common usage level, the next level is
supposed to describe the different user types of the
system, the third level shall model the actual users, while
the fourth and last level models the services provided to
the users.

The hierarchy means that a service used by several
users is only modelled once and then instantiated for all
users using that particular service. The generation of test
cases are made through traversing the Markov hierarchy.
The next event to be added to the test case is generated by
first choosing a particular user type, then a specific user
of the chosen type and finally based on the state of the
chosen user a transition (event) is added to the test case.
The last level will be referred to as the service level since
this level models the services available to the users.
Events are thus added to the test case, based on the
operational (or usage) profile assigned to the usage
model. The operational profile is hence taken into
account in every event added to the test case.

The model also allows for dynamic probabilities,
which better capture the actual behaviour in operation. It
is obvious that it is more probable that a subscriber who
has recently lifted his/her receiver dials a digit, than that a
specific user lifts his/her receiver. This means that the
choice of a specific user to generate the next event
depends on the actual state of the user. This is handle by

7

introducing state weights which model the relative
probability of generating the next event compared with
the other states of the service. The dynamic probabilities
are easily included in the test case generation procedure.
This opportunity is not handled in any of the other
models describing the usage. Therefore the hierarchical
Markov model is believed to be a valuable addition to
model usage both within Cleanroom and in other
environments.

The structure of the usage model supports reuse as
well with its object oriented approach. A service is
modelled with a plain Markov chain and hence as a
service is added to the software system, it is easy to add
the usage model of the component implementing the
service to the usage model of the system. The plain
Markov model has to be re-developed as changes to the
system are made. The hierarchical model is reusable to
the same extent as the components. The certification of
components and the reliability of systems based on
component certification is further discussed in [27, 34].

The hierarchical Markov usage model is further
discussed in [28, 29].

5.4 Some problems related to change in usage

The application of statistical usage testing has one

major problem; the usage profile applied during testing is
not correct due to changes in the usage. Some different
reasons to experience a change in usage compared to the
usage profile applied during certification can be
identified:
• An erroneous profile was applied during the

certification. The change will be experienced as the
software is being released.

• A change will occur with the time, either slowly or
perhaps quickly due to for example marketing of some
specific services.
This calls for methods for predicting the reliability

based on change in usage. This work is currently being
done, but some ideas can be presented, see section 6.

6. Future certification techniques

6.1 Introduction

Two different approaches for estimating the reliability (or
MTBF) of a probable future change in the usage can be
identified. This implies that it is not suitable to wait until
the change has occurred. The first opportunity is to
change the usage profile and make a new certification,
while the second possible solution is to make a re-
calculation of the reliability based on the failure data
obtained from the old usage profile and the new usage
profile. Both of these approaches have their pros and
cons. The two approaches have been examined in a minor
pre-study from which the results are summarized below.

6.2 Conclusions: new profile

It can be concluded that it will be costly to execute
several usage profiles, but it may be worthwhile to try to
estimate the future reliability when the usage changes. It
is advantageous if this type of investigation can be made
in parallel with the operational phase, instead of having to
examine several different possibilities during system test.
This type of investigation shall be made to capture a
possible reduction in reliability before it is experienced
by the users. This does, however, not cover the case when
the usage profile is slightly wrong during the original
testing phase, because an erroneous profile during testing
has already been experienced in terms of a decrease in
reliability by the users. The application of a new usage
profile may be very important to be able to continue to
have the same software reliability, even if the usage
changes over time.

6.3 Conclusions: re-calculation

It can be concluded that a re-calculation procedure is
advantageous compared to applying a new profile. The
main reason is of course that the re-calculation can be
more easily performed, than by performing re-testing.

The major problem is, however, that it is questionable
if the reliability estimate is trustworthy. The change in
usage may result in failures during operation that have
not been found before, due to another usage profile.
These aspects have to be examined further or a procedure
for estimating the number of faults in specific parts of the
software must be identified. Some work has been done in
the area of complexity metrics, but no general method
being able to predict the fault content has been found
[35].

A re-calculation procedure is still a tractable method,
hence indicating that it ought to be used because of its
simplicity and to gain experience from it. Research has
however to be conducted in the area to make it really
useful.

7. Success stories

Some success stories concerning high-level design
techniques, verification techniques, usage based testing
and Cleanroom approaches exist in the literature:
1 Two to three times increase in quality when using

SDL has been experienced at Ericsson in Norway [36].
They have measured the number of faults per line of
code from integration and function tests.

2 The introduction of SDL at AT & T has lead to that
the expected number of faults found during the entire
testing interval was reduced to 25%. This indicates a
considerable increase in quality in terms of fault
content when introducing high-level design

8

techniques. The results are presented in [37].
3 At Northern Telecom it has been shown that,

”Inspections were two to four times more efficient at
finding errors than either formal designer testing or
system testing. If non-execution errors such as code
optimization and non-compliance to standards are
included, the difference is even larger” [38]. The result
is based on data collected from 2,5 million lines of
code in eight system releases. Similar experiences are
reported at AT & T [39].

4 Operational Profile Testing is currently used and being
developed at AT & T. It is concluded from the projects
at AT & T, [30, 31, 32, 40, 41], that the cost for
system test and the overall project cost are reduced
considerably. In [31], it is stated that the cost reduction
for system test for a ”typical” project is 56%, which is
11.5% of the total project cost.

5 The major reason for the high quality and high
productivity in development using Cleanroom is in
[42] explained with the avoidance of defect transfer
through consecutive development phases.
The experiences presented in the literature support the

projects results obtained in two projects conducted by Q-
Labs for two separate customers:
6 A method based on Cleanroom and high-level design

techniques (message sequence charts and SDL) has
been developed and it is used in a 100 man year
project [43]. The project develops a new operating
system for a telephone exchange. The method is
described in [12, 13, 14]. The project can be
characterized by:

• More resources and time are allocated to the earlier
phases of the project.

• The project is divided into teams according to
Cleanroom. The team responsibility is emphasized and
it is an important factor for all teams.

• Reviews are conducted regularly and they are the basis
in the verification procedure. Each week is divided
into three days of development, one day of preparation
for review and one day of review.

• The unit testing is omitted, instead the time is spent in
the earlier phases and in the reviews
The project is running at the moment hence no formal

results or metrics exist. However, clear improvements
have been achieved both in quality and productivity.
Some indications can however be presented:
• The project is still on the original schedule, i.e. the

time schedule of the project has not been revised in 18
months. The functional content of the project has not
been changed either.

• The effort used to locate a fault has been lowered
considerably. The efficiency has increased by 20
times.

• The productivity has been doubled, i.e. in terms of
lines of code per hour.
The objective is to apply usage testing as the product

goes into the testing phase.
7 For the Swedish Telecom a method for acceptance

testing has been developed. This method is currently
put into requirements specifications to enforce that this
method shall be used in the acceptance procedure. The
method includes both a rejection criterion as well as an
acceptance criterion. Thus giving the Swedish
Telecom in its role as a large purchaser of software
systems an opportunity to evaluate the software
reliability requirements. An evaluation and
improvement of the method will be done as the
method has been in use in a couple of purchase
situations.

8. Conclusions

A reliable software system is a system on which the user
can rely and the basis for reliance is the absence of
failures. The methods discussed: Cleanroom Software
Engineering with high-level design techniques,
verifications, inspections and certification as well as other
techniques as fault tolerant techniques are not a guarantee
for zero defect software, but it will increase the quality.
Since it is not possible to actually prove that the software
is free from defects, it is necessary to combine many
methods to engineer reliable software, instead of
producing software with too many faults as the product
goes into operation. The latter is unfortunately more of a
rule than an exception.

The proposed methods produces reliable software by
turning software development into an engineering
practice instead of looking at software development as a
private art form for hackers. A large software system with
”smart” local solutions will never became a dependable,
reliable and maintainable system.

The engineering approach, as in for example
Cleanroom, includes several techniques and it is the
sound application of the total concept that makes the
software reliable. The problems of software failures in
operations will not be solved with one technique, e.g.
object-orientation, or by applying more sophisticated
software tools. The only way to reliable software systems
is to stay in intellectual control by applying sound
engineering disciplines throughout the life-time of the
software.

The application of sound engineering disciplines is
accepted in almost all other fields of engineering. Who
would drive across a bridge which was constructed based
on ad hoc techniques similar to the ones applied in
software development? Bridge building has, however,
been around for quite a long time and it took a long time
to get to where bridge building is today. This can,
however, not be an excuse for not applying engineering
techniques in software development. The society today
depends heavily on the software, which makes us
extremely vulnerable to the failures. Thus, the private art

9

of software development must be abandoned and turned
into an engineering activity.

Cleanroom or similar concepts turn software
development into an engineering discipline. Hence, these
methods and techniques will help in the development of
reliable software systems in the future.

Acknowledgement

I would like to acknowledge the reviewers of the paper,
who provided many valuable comments which have
improved the quality of the paper.

References

[1] Mills, H. D., Dyer, M. and Linger, R. C., ”Cleanroom

Software Engineering”, IEEE Software, pp. 19-24,
September 1987.

[2] Mills, H. D. and Poore, J. H., ”Bringing Software Under
Statistical Quality Control”, Quality Progress, pp. 52-55,
November 1988.

[3] Dyer, M., ”The Cleanroom Approach to Quality Software
Development”, John Wiley & Sons, 1992.

[4] Mills, H. D., ”Stepwise Refinement and Verification in
Box-structured Systems.”, IEEE Computer, pp. 23-36,
June 1988.

[5] Mills, H. D., Linger, R. C. and Hevner, A. R. ”Principles
of Information Systems Analysis and Design”, Academic
Press Inc. 1986.

[6] Mills, H. D., ”Structured Programming: Retrospect and
Prospect”, IEEE Software, pp. 58-66, November 1986.

[7] Linger, R. C., Mills, H. D. and Witt, B. I., ”Structured
Programming Theory and Practice”, Addison-Wesley
Publishing Company, 1979.

[8] Cobb, R. H., and Mills, H. D., ”Engineering Software
Under Statistical Quality Control”, IEEE Software, pp.
44-54, November 1990.

[9] Whittaker, J. A., ”Markov Chain Techniques for
Software Testing and Reliability Analysis”, Dept. of
Computer Science, University of Tennessee, Knoxville,
USA, 1992, Ph.D. Dissertation.

[10] Whittaker, J. A. and Poore, J. H., ”Statistical Testing for
Cleanroom Software Engineering”, Proceedings 25th
Annual Hawaii International Conference on System
Sciences, pp. 428-436, 1992.

[11] Currit, P. A., Dyer, M., and Mills, H. D., ”Certifying the
Reliability of Software”, IEEE Transactions on Software
Engineering, Vol. SE-12, No. 1, pp. 3-11, January 1986.

[12] Cosmo, H., Sixtensson, A. and Johansson, E., ”SMO – A
Stepwise Refinement and Verification Method for
Software Systems”, In ”SDL '91: Evolving Methods”,
Editors: O. Færgemand and R. Reed, pp 137-147, North-
Holland, The Netherlands, 1991.

[13] QCCC (Q-Labs Cleanroom Competency Center),
”Cleanroom Software Engineering Applied to
Telecommunications”, Proceedings Nordic Seminar on
Dependable Computing Systems, pp. 253-264,
Trondheim, Norway, 1992.

[14] QCCC (Q-Labs Cleanroom Competency Center),
”Cleanroom Software Engineering in Telecommunication
Applications”, Submitted to Software Engineering and Its
Application, Paris, France, November 1993.

[15] Runeson, P., and Wohlin, C., ”Statistical Usage Testing
for Software Reliability Certification and Control”,
Accepted for publication at EuroSTAR'93, London, UK,
October 1993.

[16] Wohlin, C., and Runeson, P. ”A Method Proposal for
Early Software Reliability Estimations”, Proceedings 3rd
Int. Symposium on Software Reliability Engineering, pp.
156-163, Raleigh, North Carolina, 1992.

[17] Magnusson, C., ”A Study of Software Complexity”,
Department of Communication Systems, Lund Institute
of Technology, Sweden, Master thesis, 1983, (in
Swedish).

[18] CCITT, ”Recommendation Z.100: Specification and
Description Language, SDL”, Blue book, Volume X.1,
1988.

[19] CCITT, ”SDL Methodology Guidelines”, Appendix I to
Z.100, 1992.

[20] Belina, F., Hogrefe, D. and Sarma, A., ”SDL with
Applications from Protocol Specifications”, Prentice-
Hall, UK, 1991.

[21] Spivey, J., ”The Z Notion - A Reference Manual”
Prentice-hall, Englewood Cliffs, N.J., 1989.

[22] Lennselius, B., ”Software complexity and its impact on
different software handling processes”, Proceedings 6th
International Conference on Software Engineering for
Telecommunication Switching Systems, pp. 148-153,
1986.

[23] Ek, A. and Ellsberger, J., ”A Dynamic Analysis Tool for
SDL”, In ”SDL '91: Evolving Methods”, Editors: O.
Færgemand and R. Reed, pp 119-134, North-Holland,
The Netherlands, 1991.

[24] Karlsson, J. and Ek, A., ”SSI - an SDL simulation tool”,
In: SDL ´89 - The language at work, Editors O.
Faergemand and M.M. Marques, Elsevier Science
Publisher, North-Holland, pp. 211-218, 1989.

[25] Sredniawa, M., Kakol, B. and Gumulinski, G., ”SDL in
performance evaluation”, Proc. 3rd SDL Forum,
Eindhoven, Netherlands, pp. 21.1-21.11, 1987.

[26] Wohlin, C., ”Evaluation of Software Qualities during
Software Design”, Submitted to IEEE Software, special
issue on Safety-Critical Software, 1993.

[27] Poore, J. H., Mills, Harlan D., and Mutchler, David,
”Planning and Certifying Software System Reliability”,
IEEE Software, pp. 88-99, January 1993.

[28] Runeson, P., ”Statistical Usage Testing for
Telecommunication Systems”, Dept. of Communication
Systems, Lund, Sweden, Report No. CODEN:
LUTEDX(TETS-5134)/1-49/(1991) & Local 9, 1991,
Master thesis.

[29] Runeson, P., and Wohlin, C., ”Usage Modelling: The
Basis for Statistical Quality Control”, Proceedings 10th
Annual Software Reliability Symposium, pp. 77-84,
Denver, Colorado, 1992.

[30] Musa, J. D., ”The Operational Profile in Software
Reliability Engineering: An Overview”, Proceedings 3rd
International Symposium on Software Reliability
Engineering, pp. 140-154, 1992.

10

[31] Musa, J. D., ”Software Reliability Engineering:
Determining the Operational Profile”, Technical Report
AT & T Bell Laboratories, Murray Hill, NJ 07974, New
Jersey, USA, 1992.

[32] Musa, J. D., ”Operational Profiles in Software Reliability
Engineering”, IEEE Software, pp. 14-32, March 1993.

[33] Musa, J. D., Iannino, A. and Okumoto, K., ”Software
Reliability: Measurement, Prediction, Application”,
McGraw-Hill, New York, 1987.

[34] Wohlin, C., and Runeson, P., ”Certification of Software
Components”, Submitted to IEEE Transaction on
Software Engineering, special issue on Software
Reliability, 1993.

[35] Lennselius, Bo and Rydström, Lars, ”Software Fault
Content and Reliability Estimations from
Telecommunication Systems”, IEEE Journal on Selected
Areas in Communications, Vol. 8, No. 2, pp. 262-272,
1990.

[36] Rød, T., ”Experiences - SDL and measures”, EEN,
900829, (in Norwegian).

[37] Klick, Vickie, B., Patti, Joanna and Todd, Marie, L.,
”Experiences in the Use of SDL/GR in the Software
Development Process”, In: SDL ´91 - Evolving Methods,
Editors O. Faergemand and R. Reed, Elsevier Science
Publisher, North-Holland, pp. 449-457, 1991.

[38] Russell, G. W., ”Experience with Inspection in
Ultralarge-scale Developments.”, IEEE Software, pp. 25-
31, Jan 1991.

[39] Fowler, P. J., ”In-process Inspections of Workproducts at
AT&T.”, AT&T Technical Journal, pp. 106, March/April
1986.

[40] Abramson, S. R., Jensen, B. D., Juhlin, B. D. and Spudic,
C. L., ”International DEFINITY Quality Program”,
Proceedings International Switching Symposium,
Yokohama, Japan, 1992.

[41] Juhlin, B. D., ”Implementing Operational Profiles to
Measure System Reliability”, Proceedings 3rd
International Symposium on Software Reliability
Engineering, pp. 286-295, 1992.

[42] ”The Cleanroom Case Study in the Software Engineering
Laboratory – SEL 90-002”, Software Engineering
Laboratory, 1990.

[43] Presentation material from the OS-32 project, Ellemtel,
Sweden, 1992, (in Swedish).

