

C. Wohlin and P. Runeson, "A Method Proposal for Early Software Reliability
Estimations", Proceedings 3rd International Symposium on Software

Reliability Engineering, pp. 156-163, Raleigh, North Carolina, USA, 1992.

�
A Method Proposal for Early Software Reliability Estimation

Claes Wohlin and Per Runeson

E-P Telecom Q-Labs, IDEON Research Park, S-223 70 LUND,
SWEDEN, Phone: +46-46-182980, E-mail: cw@q-labs.se

Abstract

This paper presents a method proposal for estimation of
software reliability before the implementation phase. The
method is based upon that a formal description technique
is used and that it is possible to develop a tool performing
dynamic analysis, i.e. locating semantic faults in the
design. The analysis is performed with both applying a
usage profile as input as well as doing a full analysis, i.e.
locate all faults that the tool can find. The tool must
provide failure data in terms of time since the last failure
was detected. The mapping of the dynamic failures to the
failures encountered during statistical usage testing and
operation is discussed. The method can be applied either
on the software specification or as a step in the
development process by applying it on the design
descriptions. The proposed method will allow for software
reliability estimations that can be used both as a quality
indicator, but also for planning and controlling resources,
development times etc. at an early stage in the
development of software systems.

1. Introduction

The reliability problem in software systems of today is a
well-known fact. No silver bullet will solve this problem,
instead the solution will be the combination of several
approaches. That is improvements throughout the whole
life cycle. These improvements include for example
specification and design, verification and validation,
certification as well as maintenance. This is the approach
taken in the Cleanroom methodology, [1, 2, 3], which
includes methods for specification and design, verification
and validation, as well as certification. In particular,
Cleanroom supports the idea and philosophy that it is
possible to develop zero-defect software.

The objective of this paper is to present an idea of how
software reliability can be estimated already before the
coding phase. This is thought to be one step in mastering
the reliability problems of software encountered today.
The problems of estimating the reliability before testing is

also indicated as a challenging research opportunity in [4].
The basis for this work is the ideas from Statistical Usage
Testing within Cleanroom, a formal description technique
and a suitable tool for analysing the descriptions of the
system being developed. The presented work is part of a
project being conducted for the Swedish Telecom. The
objective of the project is to provide the Swedish Telecom
with methods for certification of software reliability. In
particular, in the role as a purchaser of software systems.

The method proposed shall be used to estimate the
reliability of the software during dynamic analysis of the
software described with a formal description technique.
This will be exemplified with SDL (Specification and
Description Language [5]) and the tool environment SDT
(SDL Design Tool [6]), in particular the dynamic analysis
tool within SDT, i.e. SBA (SDL Behaviour Analyser, [7]).
It must be noted that the method is general even if some
specific techniques are used to exemplify the method. It
should also be observed that it is possible to generate the
code completely from formal description techniques, for
example tools exist for generating C from SDL.

The method can be applied either on (customer)
specifications or during the design as a step in the
development process. This provides an opportunity to
estimate both the reliability of the specification on which
the implementation is based as well as on the actual
design of the implementation. This double usage of the
proposed method must be noted. The presentation below
will, however, concentrate on how the method can be used
during analysis of the design as an early estimation
compared with testing or operation, even if the analysis of
specifications are equally important.

The paper will first give an introduction to the
certification process as proposed in Cleanroom. The
general idea will then be discussed before introducing
SDL and the analysis tool. Use case modelling with SDL
will be discussed before presenting how this modelling
can be used in the tool environment. The use case
modelling is then combined with the functional
description of the system. The relevance of the
estimations from the dynamic analysis in comparison with
the failures that occur during operation is then
investigated. Finally, some conclusions from the work is
presented.

2. Cleanroom certification of reliability

The certification process is an important issue, since one
use of it is as an interface between the developer and the
purchaser, in many cases the manager of the software.
This application of the process is the foundation for
acceptance of a software product and a key issue in the
quality control of software products. The objective is to
certify during testing that the reliability requirements
during operation are fulfilled. The basis for this is that the
testing procedure resembles or models the operational
profile. In Cleanroom this type of testing is referred to as
Statistical Usage Testing, [8, 9].

The problem of certification involves two parts, both
discussed in [10]:
• estimation of the reliability, i.e. software reliability

models.
• modelling operation during testing, i.e. a usage model

and the corresponding statistical usage profile
Numerous software reliability models can be found in

the literature, some examples are presented in [11, 12,
13]. The model proposed within the Cleanroom concept is
presented in [8]. Most of these models are based on the
assumption of operational usage, but not much emphasis
has been put into actually modelling and performing tests
that fulfil this assumption.

The certification of software within the Cleanroom
methodology is discussed in [8]. As stated above, the
certification process consists of two equally important
parts. The first part is the software reliability models.
These shall model the behaviour of software failures and
in particular predict the future behaviour and the
reliability of the software. The models are based on
several assumptions, where one of the most critical ones is
the assumption that failures occur according to the
operational usage. Thus the models can only be applied
during operation or during testing where it is possible to
generate test cases from an operational profile. The latter
is the basis for Statistical Usage Testing.

The second item, i.e. modelling the usage, has been
much less studied than the software reliability models.
One approach is to model the behaviour and generate the
test cases based on a plain Markov chain. This approach is
discussed in [14]. The plain Markov approach is useful in
many cases, but for some applications it is not suited. The
problem of modelling the usage for complex multi-user
systems has been overlooked in the past, but if it shall be
possible to certify the reliability under testing conditions
this problem has to be solved, [15]. This has been one of
the key issues in the project conducted for the Swedish
Telecom. The reason is, of course, that it has been shown
that usage testing is superior to other types of testing in
finding the faults that influence the reliability during
operation, [16].

3. A method for estimation of reliability

The objective with this paper is to present a method from
the on-going project whose aim is to apply the ideas
presented in Statistical Usage Testing to
telecommunication software. The goal with statistical
usage testing is to certify the software reliability during
testing procedures. This does, however, seem too late if
the product has to be re-designed due to poor reliability. It
is also clearly not particularly useful if the result in the
certification process shall be used for planning and
controlling quality, resources, development time and
release time of the software. The information from the
certification process is really needed much earlier to cope
with the management of the risks involved in the
development of software systems.

Thus new methods have to be found for performing
early reliability estimations. Based on the experience from
applying formal specification techniques and tools
supporting these techniques [17], it was noted that it ought
to be possible to make the estimations during analysis of
the formal description. The estimations are consequently
made before the coding phase. This implies that the result
from the estimations can be used to plan and control the
forthcoming phases in the development as well as the
quality of the software.

It is a well-known fact that most problems encountered
in the operational phase are due to semantic faults, [4].
Some types of semantic faults can be detected during
dynamic analysis. This observation, in combination with
that tools are available for doing dynamic analysis of
formal descriptions, led to the conclusion that a method
for doing reliability estimations from formal descriptions
of the software ought to be possible to formulate.

The idea and possibility described in this paper is
general. It does not depend on a particular description
technique neither on a particular tool set. It does though
depend on that a well-defined description technique with
appropriate tool support is used. It is, however, difficult to
describe the idea in general terms all the time and in
particular it is hard to show the opportunities with the
approach. This means that a formal description technique
will be used to exemplify the usability of the method.
SDL, [5, 18], will be used throughout the paper. The
reasons for choosing SDL as a suitable design method to
be used are many, e.g. it is standardised and tools are
available. The motives are further discussed in [17].

A brief introduction to SDL will be given below, as
well as a brief description of the tool set, which provide
an opportunity of doing dynamic analysis. The meaning of
dynamic analysis will also be described briefly in
connection with the presentation of the analysis tool.

The main idea of the proposed method is to use the
usage profile as input to an analysis tool which detects
certain types of probable dynamic failures. The tool can
detect all failures of the types it is designed to locate, but
it is not certain that these situations occur during the
actual operation of the software. The tool is not capable of

knowing this. Thus the user of the tool must either correct
the failure assuming it is a real failure, i.e. it may occur in
operation, or the user should verify that the encountered
failure situation will never occur. From the failure
statistics of the analysis tool, it will be possible to make a
first estimation of the software reliability when in
operation. This will be described in more detail below.

4. Brief introduction to SDL

The CCITT Specification and Description Language, [5],
known as SDL, was first defined in 1976. It has been
extended and reorganised in four study periods since this
first definition. These have resulted in new
recommendations for the language published in 1980,
1984 and 1988 respectively. A new recommendation will
appear in 1992.

SDL is intended to be well-suited for all systems
whose behaviour can be effectively modelled by extended
finite-state-machines and where the focus is to be placed
especially on interaction aspects. SDL is a unique
language which has two different forms, both based on the
same semantic model. One is called SDL/GR (graphical
representation) and is based on a set of standardized
graphical symbols. The other is called SDL/PR (phrase
representation) and is based on program-like statements.
SDL is further described in [5, 18].

The main concepts in SDL are system, blocks,
channels, processes and signals. These concepts form the
basis for SDL, where system, blocks and channels
describes the static structure while the dynamic behaviour
is modelled with the processes and its signals. The
processes are described by several symbols.

System: Each system is composed of a number of
blocks connected by channels. Each block in the system is
independent from every other block. Each block may
contain one or more processes which describe the
behaviour of the block. The only means of communication
between processes in two different blocks is by sending
signals that are transported by channels. The criteria
leading to a certain division of the system into blocks may
be to define parts of a manageable size, to create a
correspondence with actual software/hardware division, to
follow natural functional subdivisions, to minimize
interactions, and others.

Block: Within a block, processes can communicate
with one another either by signals or shared values. Thus
the block provides not only a convenient mechanism for
grouping processes, but also, a boundary for the visibility
of data. For this reason, care should be taken when
defining blocks to ensure that the grouping of processes
within a block is a reasonable functional grouping. In
most cases it is useful to break the system (or block) into
functional units first and then define the processes that go
into the block.

Channel: Channels are the communication medium
between different blocks of the system or between blocks

and the environment.
Signal: Signals can be defined at system level, block

level, or in the internal part of process definition. Signals
defined at system level represent signals interchanged
with the environment and between system blocks. Signals
defined at block level represent signals interchanged
between processes of the same block. Signals defined
within a process definition can be interchanged between
instances of the same process type or between services in
the process. Signals are sent along signal routes between
processes and on channels between blocks or when
interchanged with the environment.

Process: A process is an extended finite-state-machine
which defines the dynamic behaviour of a system. The
extended finite-state-machine handles data within tasks
and decisions. Processes are basically in a state awaiting
signals. When a signal is received, the process responds
by performing the specific actions that are specified for
each type of signal that the process can receive. Processes
contain many different states to allow the process to
perform different actions when a signal is received. These
states provide the memory of the actions that have
occurred previously. After all the actions associated with
the receipt of a particular signal have occurred, the next
state is entered and the process waits for another signal.

Processes can either be created at the time the system
is created or they can be created as a result of a create
request from another process. In addition, processes can
live forever or they can stop by performing a stop action.
A process definition represents the specification of a type
of process; several instances of the same type may be
created and exists at the same time; they can execute
independently and concurrently.

5. Tool support for SDL

SDT has been used as a suitable tool for our purposes, [6].
SDT is a tool environment supplied by TeleLogic AB,
Sweden. The environment includes tools for editing SDL
graphs and an analyser for both syntax and semantic
analysis. It also includes tools for simulation, both
functional and performance simulations, as well as code
generators, e.g. SDL to C. The tool also has a browser and
a report generator.

The most interesting tool within the environment for
this work is the prototype tool SBA (SDL Behaviour
Analyser) [7]. The objective of SBA is to support the
specifier to avoid unwanted dynamic properties in the
specified behaviour. This is done by automatic detection
of some fault types e.g. deadlock, more than one possible
receiver of a signal and the existence of queues that can
grow forever. Two types of properties are detected: faults
and warnings. The faults are violations of the rules in
SDL, while the warnings are a result of situations that
have an effect on the dynamic behaviour of the specified
system, but they are not violations of the rules of SDL.
The detected faults and situations that give warnings are

described in more detail in [7].
The analysis is made by using a tree expansion

procedure. The signals in the description determines how
the analysis is made. It is possible to have priorities on
different types of signals, i.e. internal, external and timers.
It is also possible to determine if a certain fault type shall
be reported or not. The analysis is made as a closed
system, i.e. the user of the tool does not generate any
input to the tool in terms of signals. The analysis is halted
when a failure is encountered. The failure type, the place
of the failure and the number of passed states since the
last failure are reported.

6. Use case modelling with SDL

It has been shown in [15], that it is possible to reduce

the state explosion problem in statistical usage testing
descriptions of telecommunication systems by introducing
a state hierarchy model. The study introduces a
hierarchical Markov chain description technique to
describe the users and their usage of the system. The
advantages of using SDL have been discussed briefly
above. These advantages lead to that the objective of the
current work, with this new method for early estimation of
software reliability, is to formulate rules for modelling the
hierarchical descriptions of the usage with SDL instead
(State Hierarchy with SDL, SHY-SDL).

An algorithm for test case selection based on the usage
profile shall be applied to the usage model of the system.
The result from the algorithm shall be a test sequence.
This can be described in text, by SDL or any other
suitable description technique. The examples presented in
[19] give a verbal description of the test cases. It is felt
that it is equally important to study the possibility to
describe the test cases in SDL. The advantages referenced
above can be complemented with:
• If the usage is described with SDL, then it is easy to

generate the test cases automatically in SDL.
• By describing the test cases in SDL, it is possible to

use SBA.

7. Analysis and use case modelling

The description of the users and the usage of the system
shall be used in SBA with the original SDL description of
the system, i.e. the functional description of the system.
There are three major ways of using SBA with SHY-SDL:
1 The original SDL system becomes a block and the

SHY-SDL model becomes another block. These two
together form the new SDL system, see figure 1. This
solution can not be implemented directly, since it will
mean that the SBA tool will make a full dynamic
analysis of the SDL system according to the limitations
of the tool, which contradicts the objective of the
statistical quality control procedure. An advantage with
this approach would be that a consistency check

between the description of the system and the actual
environment is obtained. This approach can, however,
be valuable as a complement to another approach, for
further discussion see below.

2 The solution discussed in item 1 can be used if the
SBA tool is adapted to this particular usage of the tool.
It must execute according to a random walk procedure,
where the particular paths to execute are chosen by the
SHY-SDL model according to the usage profile, i.e. by

External
signal Block

SHY-SDL or
Analysis
sequence in
SDL

Block

Original
SDL system

System
New SDL system

Figure 1: An SDL solution for the SBA

 the probabilities modelling the usage of the system.

The SBA tool has to be complemented in two aspects,
i.e. the handling of decisions and a scheduler has to be
implemented.

3 The last possibility is to generate the analysis (test)
sequences from the SHY-SDL model and let the SDL
description of the analysis cases become a block in the
SDL system, in a similar manner as discussed for the
SHY-SDL above, see figure 1. This solution means
that only the chosen cases of the usage are analysed
with the SBA. The main advantage with this solution is
that the SBA of today can be used.

8. Reliability estimation from analysis

The first estimation of the reliability can be made in two
different ways:
• the times between failures and relevant models.
• by counting the number of successfully executed

analysis cases compared to the total number of analysis
cases.
The first approach means that the analysis is made as

one analysis sequence, while the second one requires that
the description of the environment's behaviour is divided
into several analysis cases. During analysis with the SBA,
the number of states analysed between two consecutive
failures is reported. Thus there is a simple support for the
first approach. If the failures are corrected we will
observe a reliability growth which ought to work as an
estimate of the reliability growth that will be obtained
during testing and operation. An early estimate of this
growth means that the test time to achieve the quality
goals can be better planned. In case of no correction of
failures an estimate of the actual reliability will be

obtained. The latter case will only be possible if the
execution of the analysis tool can continue without fault
correction.

The main problem with the second analysis procedure
is that it is difficult to perform due to the non-interactive
work with the SBA. It is difficult to analyse one case at
the time, if several are implemented in a block. A solution
to the problem would be to only implement one analysis
case at the time. This would, however, force the user to
re-generate the code for each analysis case.

The approaches described in the previous section can
be combined to obtain a second estimate of the software’s
reliability. The dynamic analysis with the usage profile
can be combined with the full analysis (complete in terms
of SBA). They can be combined as follows:
1 do the analysis based on the usage profile and obtain an

estimate of the reliability growth
2 do the full dynamic analysis
3 compare the normalised failure times with the

estimates of the reliability growth, see figure 2.
The normalisation has to be done to be able to compare

the times from a full analysis with the ones that should
have been obtained if the analysis had continued to follow
the usage profile. The times are normalised by recording
where in the usage description the failure occurred. Then
we calculate the mean time to when the failure ought to
have occurred if the analysis was made according to the
usage profile. This time is considered to be the actual
failure time.

Original
SDL
system

Analysis
sequence
in SDL

Reliability
growth
estimate

Failure
statistics

Original
SDL
system

SHY-
SDL

Partial analysis

Full analysis according to SBA

Failure
location

Normalised
failure
times

Evaluation
of estimate

Figure 2: A procedure for evaluation of the software’s
reliability growth

The normalisation procedure can be summarised in the

following steps:
1 Perform a full dynamic analysis based on the

opportunities with SBA.
2 The locations of the failures are recorded in the same

time as the faults are corrected.
3 Based on the usage model, calculate the mean time

when the located failures ought to have occurred.
4 Place the times in order according to size.
5 The obtained times are considered to be the real failure

times. They are then compared with the prior estimated
curve from the partial analysis, i.e. the one based on
the usage profile.

6 The goodness of the estimate is judged in comparison
with the backwards calculated expected mean times to
failures.
These new times can be used to evaluate the estimate

of the reliability growth from the partial dynamic analysis,
see figure 2. This evaluation can be used to estimate the
probable behaviour of the reliability and its growth during
testing and operation. It is, however, necessary to relate
the time axis during dynamic analysis to the real time
experienced during testing as well as operation. This will
be further discussed below.

9. Usage profile

It shall be observed that it can be fruitful to change the
usage profile, in particular during dynamic analysis since
it is easy to make a second analysis. The need for different
usage profiles is also stressed in [4]. The objective with
changing the usage profile is to examine the reliability for
another usage profile. This is valuable since it is probable
that the usage of a system will change over time, which
means that a highly reliable system can become less
reliable due to changes in the usage.

An example of another usage profile is random testing,
i.e. all events or signals into the system are equally
probable. This would work as a test of the system’s
dependability in the future. It is also possible to formulate
a usage profile that takes the critical parts into special
account. This might be valuable if certain types of failures
just not may occur.

Another possibility of getting a picture of the reliability
of parts seldom executed during normal usage, is to use
the full dynamic analysis to note special fault prone parts
in the software. A list of these parts may give a picture of
how changes in the usage profile, may alter the perceived
reliability of the software system.

10. Relationship between failures types

One problem encountered is the relevance of the dynamic
failures found by the analysis tool compared to failures in
operation. The question that has to be answered is: Are the
dynamic failures detected by the analysis tool
representative of the failures found in operation?

10.1 Assumptions

The reasoning above is based on five assumptions, of
which two concern the failures:
1 The set of failures found in dynamic analysis by SBA

is a subset of all possible failures, see figure 3.

Operation: All failure types

SUT, a sample
from operation

SBA: Certain
failure types

SBA based on
usage profile,
a sample from
full SBA

Figure 3: Dynamic failures found with SBA compared
to all failure types

2 The failures found during dynamic analysis are

randomly spread among all failures, i.e. the ratio
between the number of arbitrary failures and the
number of dynamic failures found by SBA, during a
certain time, is a scaling factor here denoted c.
Three assumptions concern the activities in the life

cycle:
3 Testing according to a usage profile is a good

approximation of the operation, see A in figure 4, i.e.
Statistical Usage Testing (SUT) is a sample of the
operation, see figure 3. This assumption is a central
basis for SUT and a basis for most reliability
estimation models as well.

4 The analysis with SBA based on the usage profile is a
good picture of full analysis with SBA, see B in figure
4, i.e. analysis with SBA based on the usage profile is a
sample from full SBA, see figure 3. A full dynamic
analysis walks through all the states. When using the
operational profile for a selective dynamic analysis, the
selection of states to enter is made from the possible
set of all states. The selection is not a random sample
but a sample according to a specific usage profile.

5 The dynamic analysis with SBA using the usage profile
is comparable with SUT, see C in figure 4. The
analysis cases selected for the dynamic analysis are
chosen from the same usage profile model as the test
cases for SUT are selected. The differences between
the selections are only due to random variation.

SBA based
on usage
profile

Full
analysis
with SBA

Statistical
Usage
Testing (SUT)

Operation

Relative time order

AB

C

Figure 4: Relationships between different activities in
the life cycle

The time axis in figure 4 shows the relative order of the

activities, it does not say that the activities do not overlap
or that there is no other activities between the ones in the
figure.

The dashed line in figure 4 indicates the possibility to
evaluate the prediction of the operational behaviour.
Based on the mapping algorithm in section 8, results from
the full analysis can be used to show some aspects of the
operational behaviour. This behaviour can be compared
and used to evaluate the prediction.

The relationships, indicated in figure 4, lead to the
conclusion that it ought to be possible to use analysis with
SBA (partial and full in combination) to obtain a first
picture of the statistical usage testing and the operation. In
particular, an earlier and better picture of the operation
can be obtained than by using only statistical usage
testing. Some relationships and possibilities of how to use
the dynamic analysis to predict future failure behaviour
and calculate the reliability will be discussed in the next
section.

10.2 Derivation failure times

To make the reliability growth, estimated from dynamic
analysis, applicable on the reliability growth with respect
to arbitrary failures, there must be a mapping of the
dynamic analysis failure data to represent all failures. It
can be performed by the following algorithm which steps
are related to figure 5:

Tt1 t2 t3

Tt1 t2 t3

c

t1a t2a t2b t3a

SBA dynamic failures

Arbitrary failures

0

0

Figure 5: Failure data for arbitrary failures derived
from dynamic analysis

1 Make dynamic analysis according to the operational

profile. In figure 5, t1 to t3 are the failure times. The
failure data can be used to estimate MTTF (Mean Time
To Failure) for dynamic failures according to SBA by
e.g. the Cleanroom reliability estimation model [8].

2 Determine c, i.e. the ratio between the total number of
failures and the number of dynamic failures found by
SBA. The c value is to be based on metrics from earlier
projects. The value can differ within programs with
heterogeneous characteristics. These parts have to be
analysed separately.

3 Determine the number of failures to occur in every
interval. If c is not an integer, the number of failures in
an interval is selected from a two-point distribution
with the possible values trunc(c–1) and trunc(c), and a
mean value c–1. If c is an integer, c–1 failures occur in
each interval.

4 Select failure times within the interval to place the
failures, denoted t1a, t2a, t2b etc. in figure 5. These

failure times are chosen randomly within the interval.
Further work has to be done to find a more realistic
way to resemble the failure behaviour.

5 Estimate MTTF for the analysed and the calculated
failure data, t1a, t1, t2a, t2b, t2 etc. shown in figure 5.
This is now an estimation of the MTTF for all failure
types.
The actual value of the analysis and its potential ought

to be further investigated both theoretically as well as
through practical application. It can however be concluded
that as a first estimate it is relevant to consider the
dynamic failures found during dynamic analysis of a
software specification.

This estimation ought to be possible to use for planning
and controlling the statistical usage testing phase, as well
as necessary actions to take to achieve the quality required
in operation.

11. Conclusions

It can be concluded that the statistical quality control of
software products is an important issue. The certification
process is central in this effort, in particular the earlier it
is applied. This process is highly dependent on relevant
software reliability models and a sound basis for
estimation. The basis includes relevant failure data, i.e.
data that is obtained under circumstances fulfilling the
assumptions of the reliability models. In particular, this
means that the failure data during testing and other type of
analysis (e.g. dynamic analysis) has to be similar to the
failure data encountered during operation.

A reliability estimation from dynamic analysis can be
used either to estimate the reliability of a software
specification in SDL or as a first estimate of the
implementation’s reliability. The Swedish Telecom as a
specifier and purchaser of software systems can use both
of these approaches, i.e. estimating the reliability of its
own specifications and requiring that a first estimate of
the reliability shall be made during dynamic analysis of
the implementation. The latter estimation can be made
either by the supplier or as a part of a programme for
quality control of suppliers made by the
purchaser/customer.

As a first preliminary recommendation it is suggested
mainly based on the available tool that:
• the approach where the analysis cases are described in

SDL ought to be used, i.e. not the whole SHY-SDL is
used as a block in the dynamic analysis (see approach
3, section 7).

• the analysis shall be made as one sequence (see section
8).

• the times between failures shall be recorded and the
faults shall be corrected, i.e. the reliability growth will
be estimated (see section 8).

• finally it is recommended that a full dynamic analysis
according to the tool is performed, which provides a
check of the estimated reliability growth (see approach

1, section 7 and section 8).
This new method is not fully developed. It does need

more work, but the idea in itself is very relevant and if the
objective can be fulfilled and the method implemented it
is believed to be an important step towards early
estimations of software reliability. A practical study of the
method is needed to evaluate the method, before it is put
into actual use. The proposed method will work as a
complement to Statistical Usage Testing. In particular, the
new method will provide a basis for planning and
controlling the forthcoming testing phase, the release of
the product and finally the operational phase. Thus the
method is an important step in the risk management
process, since it gives early estimates and consequently
early warnings, which leads to that the risks can be
managed and planned for.

Acknowledgement

The project is being conducted for the Swedish Telecom,
to whom we are grateful for specifying this project and in
particular for letting us publish the results.

Many thanks to Erik Johansson and Bo Lennselius, E-P
Telecom Q-Labs for interesting and fruitful discussions
and comments throughout the project.

References

[1] Mills, Harlan D., Dyer, Michael and Linger, Richard C.,

”Cleanroom Software Engineering”, IEEE Software,
September 1987, pp. 19-24.

[2] Mills, Harlan D. and Poore, J. H., ”Bringing Software
Under Statistical Quality Control”, Quality Progress,
November 1988, pp. 52-55.

[3] Dyer, Michael, ”The Cleanroom Approach to Quality
Software Development”, John Wiley & Sons, 1992.

[4] Musa, John D., and Everett, William W., ”Software-
Reliability Engineering: Technology for the 1990s”, IEEE
Software, November 1990, pp. 36-43.

[5] CCITT, ”Recommendation Z.100: Specification and
Description Language, SDL”, Blue book, Volume X.1,
1988.

[6] Nilsson, Gert, Ljungdahl, Ingemar and Madsen, Pär,
”SDL Toolbox to Support Different SDL Environments”,
in SDL'89: The Language at Work, edited by O.
Færgemand and M. M. Marques, Elsevier Science
Publisher, North-Holland, 1989, pp. 87-93

[7] Ek, Anders and Ellsberger, Jan, ”A Dynamic Analysis
Tool for SDL”, SDL ’91: Evolving Methods, edited by R.
Reed and O. Færgemand Elsevier Science Publisher B V
(North Holland) 1991, pp. 119-134.

[8] Currit, P. Allen, Dyer, Michael and Mills, Harlan D.,
”Certifying the Reliability of Software”, IEEE
Transactions on Software Engineering, vol SE-12, no 1,
January 1986, pp. 3-11.

[9] Cobb, Richard H. and Mills, Harlan D., ”Engineering
Software Under Statistical Quality Control”, IEEE
Software, November 1990, pp. 44-54.

[10] Musa, John D., Iannino, Anthony, and Okumoto,
Kazuhira, ”Software Reliability: Measurement,
Prediction, Application”, McGraw-Hill, New York, 1987.

[11] Goel, Amrit L., ”Software Reliability Models: The State
of the Art”, IEEE Transactions on Software Engineering,
Vol. SE-11, No. 12, 1985, pp. 1411-1423.

[12] Jelinski, Z., and Moranda, P., ”Software Reliability
Research”, Statistical Computer Performance Evaluation,
1972, pp. 465-484.

[13] Goel, Amrit L., and Okumoto, Kazuhira, ”Time-
dependent Error-detection Rate Model for Software
Reliability and Other Performance Measures”, IEEE
Transactions on Reliability, Vol. R-28, No. 3, 1979, pp.
206-211.

[14] Whittaker, James A., ”Markov Chain Techniques for
Software Testing and Reliability Analysis”, Dept. of
Computer Science, University of Tennessee, Knoxville,
USA, 1992, Ph.D. Dissertation.

[15] Runeson, Per and Wohlin, Claes, ”Usage Modelling: The
Basis for Statistical Quality Control”, Proceedings
'Software Reliability Symposium', Denver, USA, June
1992, pp. 77-84.

[16] Adams, E. N., ”Optimizing Preventive Service of

Software Products”, IBM Journal of Research and
Development, January 1984.

[17] Wohlin, Claes, "Software Reliability and Performance
Modelling for Telecommunication Systems", Dept. of
Communication Systems, Lund, Sweden, ISSN 1101-
3931, Technical report - 106, 1991, Ph.D. Dissertation.

[18] Belina, Ference, Hogrefe, Dieter and Sarma, Amardeo,
”SDL with Applications from Protocol Specifications”,
Prentice-Hall, UK, 1991.

[19] Runeson, Per, ”Statistical Usage Testing for
Telecommunication Systems”, Dept. of Communication
Systems, Lund, Sweden, Report no. CODEN:LUTEDX
(TETS-5134)/1–49)/(1991)&Local 9, 1991, Master thesis.

