
 

 

 

 

 

 

 

 

 

 

 

 

C. Wohlin, "Is Prior Knowledge of a Programming Language Important for Software 
Quality?", Proceedings 1st International Symposium on Empirical Software 

Engineering, pp. 27-36, Nara, Japan, October 2002. Selected and extended for a 
special issue of Empirical Software Engineering: An International Journal. 



Published in Proceedings of the first IEEE International Symposium on Empirical Software Engineering
Is Prior Knowledge of a Programming Language Important for Software Quality?

Claes Wohlin
Department of Software Engineering and Computer Science,

Blekinge Institute of Technology,
Box 520, SE-372 25 Ronneby, Sweden

claes.wohlin@bth.se
Abstract
Software engineering is human intensive. Thus, it is

important to understand and evaluate the value of different
types of experiences, and their relation to the quality of the
developed software. Many job advertisements focus on
requiring knowledge of specific programming languages.
This may seem sensible at first sight, but maybe it is suffi-
cient to have general knowledge in programming and then
it is enough to learn a specific language within the new
job. A key question is whether prior knowledge actually
does improve software quality. This paper presents an
empirical study where the programming experience of stu-
dents is assessed using a survey at the beginning of a
course on the Personal Software Process (PSP), and the
outcome of the course is evaluated, for example, using the
number of defects and development time. Statistical tests
are used to analyse the relationship between programming
experience and the performance of the students in terms of
software quality. The results are mostly unexpected, for
example, we are unable to show any significant relation
between experience in the programming language used
and the number of defects detected.

1. Introduction
It is more than 30 years ago since the term “software

engineering” was coined. We are still struggling with the
same type of problems, for example, cost overrun and soft-
ware defects. It is true that we are developing more com-
plex systems today than for 30 years ago, but the basic
problems are the same. New technologies and methodolo-
gies will not solve the problem; there is no silver bullet [1].
The fact still remains that the key asset is the people devel-
oping the software. This was made perfectly clear almost
20 years ago in the book by Boehm [2]. The most impor-
tant factor is the people! Other studies have also reported
in the large differences in performance between individu-
als, see for example [3, 4]. 

Before turning our attention to the people, we would like
to highlight some general success factors, which in retro-
spect determine whether a specific software project has
failed or become a success. The following four factors are
important success factors:

• Cost: primarily related to effort, i.e. person-hours, and
productivity,

• Cycle time: time from development starts to delivery,

• Quality: this is a complex attribute where one important
part is defects,

• Predictability: the ability to predict the other attributes.

The bottom-line is that to achieve quality in the software,
it is necessary to understand which factors that affect soft-
ware quality. To shed some light on one of the most impor-
tant factors, namely people issues, and in particular the
importance of specific language knowledge, in relation to
the above success factors, we have conducted an empirical
study. Thus, we do not intend to question whether there are
large differences between individuals; we view this as a
known fact. However, we would like to study the effect of
the background of individuals in terms of programming
knowledge and relate that to their ability of developing
high quality software.

The objective of the study is to investigate the perform-
ance of the individuals versus their programming knowl-
edge and experience. The study has been conducted within
the context of the Personal Software Process [5, 6]. 65 stu-
dents filled out a survey aiming at documenting their back-
ground as they entered the PSP course. After the course the
outcome was measured. Seven measures were defined to
capture the performance of the individuals. The perform-
ance is for most students improved through the course,
whether it is a result of the PSP or practising software
development in general is hard to know. The change in per-
formance over the 10 assignments is not viewed as a prob-
lem, since the performance is measured in terms of overall
performance in the 10 assignments. The seven measures
were defined so that they should capture three of the above
factors; it was not possible to define any measure capturing
cycle time. The assignments were handed in on a weekly
basis, hence making it difficult to actually measure cycle
time.



The objective is to present the results from the study and
discuss the outcome. It should be noted that the objective is
not to study and evaluate the PSP. The PSP is used as a
context in the empirical study. To evaluate the PSP, we
should study the performance of individuals before and
after the course. It is fairly obvious that we will see
improvements during the course as course attendees start
practising planning and better follow-up. A study of the
defect data from the perspective of understanding defect
detection within the PSP is presented in [7].

The paper is organized as follows. Section 2 describes
the design of the empirical study. The analysis of the data
is discussed in Section 3. The presentation includes both
analyses of the survey data, the performance data and then
an inference between the survey and the performance. Sec-
tion 4 provides a summary and some discussions.

2. Design of the empirical study

2.1 Context: the Personal Software Process
The Personal Software Process (PSP) has gained lots of

attention since it became publicly available [5]. The objec-
tive of the PSP is basically to provide a structured and sys-
tematic way for individuals to control and improve their
way of developing software. We have seen papers, for
example [8, 9, 10], presenting the outcome of the PSP, both
from educational and industrial settings. The PSP is cur-
rently used in a number of universities and industry is also
becoming interested in applying the PSP.

The PSP includes seven incremental steps in which the
personal software process is gradually improved. The
seven increments include four main increments denoted by
PSP0, PSP1, PSP2 and PSP3. The main differences
between these are:

• PSP0 - PSP1: Improved estimation techniques
• PSP1 - PSP2: Introduction of reviews
• PSP2 - PSP3: Incremental development is introduced

At the university, we run the PSP as an optional course
for students in the Computer Science and Engineering pro-
gram and the Electrical Engineering program. Most stu-
dents take the course in their fourth year, and 40-70
students take the course. The main objective of the course
is to teach the students the use of planning, measurement,
estimation, quality control, post-mortem analysis and sys-
tematic reuse of experiences. It is from a course perspec-
tive more important to teach the students the techniques
packaged within the PSP than actually teaching them the
PSP for future use.

A major advantage in using the PSP as a context for
empirical studies is that the description of the PSP is gener-
ally available, and hence makes replication of studies con-

ducted easier. The use of the PSP as a context for empirical
studies is further discussed in [11]. The study presented
here is not a study of the PSP as such, but of the relation-
ship between programming experience and performance.
The use of the PSP as a vehicle for empirical studies
implies that the design of the experiment is pre-defined to a
large extent. For example, metrics and templates are given
by the PSP. This also means that the data collection proce-
dure is determined by the PSP. The objective of using the
PSP as context for empirical studies is that the PSP should
not affect the results as such. This may not be completely
true, but it is very difficult to judge the effect of context, if
any. This is true not only for the PSP context, but for any
context in an empirical study.

In this particular study, the use of students is not critical
since the objective is to study the outcome of the PSP for
people having different background and experience. In par-
ticular, the differences related to educational background
are evaluated. The subjects (students) are, however, not
chosen by random. They are chosen based on availability,
i.e. the students taken the course. This is often referred to,
as being convenience sampling [12], and the study
becomes a quasi-experiment due to the lack of randomisa-
tion of subjects.

2.2 Variables

2.2.1. Independent variables. As part of the first lecture in
the course, the students were asked to fill out a survey
regarding their background in terms of programming expe-
rience, for example, knowledge in C. The survey material
is presented in Table 1. A third column allowed the stu-
dents to fill an answer.

These three measures become the independent variables
in the study. The objective of the survey was to capture
their programming experience both in general and in C and
C++ specifically. C was enforced as a mandatory program-
ming language independent of the previous knowledge of
the students. Given that we enforced a language, we
wanted to know whether this also meant that the students
produced software of different quality based on their prior
knowledge in C, C++ and programming in general. To
enforce a specific programming language is not in accord-
ance with the recommendation in [5]. This also meant that
we provided a coding and counting standard. It should be
noted that the background and experience are measured
from an educational perspective rather than practical expe-
rience. Thus, the measures would probably have to be
changed if replicating the study in an industrial context.

The general hypothesis based on experiences is that the
more experiences in the field the better performance
(higher quality). For example, the hypothesis is that the
students having more experience in C make fewer mis-



takes, hence having fewer defects in their programs. Thus,
in relation to the survey in Table 1, we assume that a higher
grade means a better performance. These general hypothe-
ses are formalized and evaluated in Section 3.

The results of the survey are presented in Table 2 in terms
of frequency distributions of the number of students pro-
viding a certain answer. In Table 2, we may observe that
the results are not optimal from an analysis perspective. A
balanced result would have been better, i.e. an equal
number of students giving, for example, a 1, 2, 3 and 4
respectively. It is with the results in Table 2 not possible to
perform any sensible analysis when only a few individuals
have provided a certain answer. The analysis would only
reflect how these few individuals differ from the rest, and it
will not say anything about that type of background in gen-
eral.

Table 1. Student characterization

Table 2. Number of individuals giving a certain answer.

2.2.2. Dependent variables. Seven measures were defined as
dependent variables, i.e. measures we would like to meas-
ure and evaluate to assess if the independent variable has a
statistically significant effect on them. The measures are all

derived from the data collected within the PSP. The meas-
ures are all based on all 10 assignments, i.e. we do not
judge performance on an individual assignment, and
instead we have chosen to study the results of all 10 assign-
ments together. The intention is to remove some of the var-
iations with looking at individual assignments and instead
capturing the overall performance in the course. The seven
measures are:

• Time - total development time (often also referred to as
effort and here measured in minutes),

• Size - total size of the programs, i.e. new and changed
lines of code are calculated,

• Defects - total number of defects,
• Defects/KLOC - the number of defects per 1000 lines

of code,
• Productivity - total size of the programs divided by the

total development time (presented as LOC per hour),
• Predictability size - the relative error estimating pro-

gram size (measured in percentage),
• Predictability time - the relative error estimating devel-

opment time (measured in percentage).

No further planning was required as the data are collected
as an integral part of the PSP. In other words, all of the
seven measures defined could be derived from the data col-
lected during the PSP course. It was decided to stick with
the original measures in the PSP instead of formulating
new measures. The mean and standard deviation of the
seven dependent variables are shown in Table 3.

Table 3. Summary of dependent variables.

2.3 Hypotheses
Based on the independent and dependent variables

defined we are now able to state our hypotheses better. Our
general hypothesis is that more experience (higher score on
the survey) means better performance, for example, fewer

Area Description

General knowledge 
in programming
(denoted Program-
ming)

1. Only 1-2 courses
2. 3 or more courses, no industrial 
experience
3. A few courses and some industrial 
experience
4. More than 3 courses and more 
than 1 year industrial experience

Knowledge in C
(denoted C)

1. No prior knowledge
2. Read a book or followed a course
3. Some industrial experience (less 
than 6 months)
4. Industrial experience

Knowledge in C++
(denoted C++)

1. No prior knowledge
2. Read a book or followed a course
3. Some industrial experience (less 
than 6 months)
4. Industrial experience

Independent variable 1 2 3 4

Programming 7 28 23 1

C 32 19 6 2

C++ 37 16 4 2

Dependent variables Mean value Standard deviation

Size 984 244.1

Time 3353 1342.1

Defects 75.8 63.8

Defects/KLOC 75.9 50.5

Productivity 20.0 8.3

Predictability size 37.1 15.2

Predictability time 30.7 12.2



defects.
This means that we would like to test if there is a statisti-

cally significant relationship between the different inde-
pendent variables and the dependent variables. Before
doing this, it is important to evaluate which of the four suc-
cess factors, see Section 1, the dependent variables repre-
sent. This is done in Section 3.2 using factor analysis after
having validated the data set in Section 3.1. Prior to analys-
ing the data, it is, however, important to address the valid-
ity of the study.

2.4 Validity
The validity of empirical studies is always important. It

is, however, particularly important when the empirical
studies are based on non-random samples. In software
engineering, we have mostly to accept that we are unable
to have random samples. This type of studies is sometimes
referred to as quasi-experiments [12, 13]. In our particular
case, we are interested in several aspects related to validity.

Firstly, we must consider the internal validity, i.e. are the
results trustworthy? The internal validity within the course
is probably not a problem, except that the measures of
experience in the survey may not mirror the important
aspects, although they try to capture educational aspects.
The performance is measured on an individual level, and
the same individuals have participated in the survey. Thus,
the coupling between the treatment (difference in back-
ground) and outcome (performance) is clear. Moreover, the
large number of tests (equal to the number of students)
ensures that the results become trustworthy.

Secondly, the external validity may be considered. The
external validity is concerned with the possibility of gener-
alizing the results outside this particular study. Two differ-
ent generalizations are of particular interest 1) students
entering the software industry, and 2) software engineers in
industry. The first generalization is the primary concern in
terms of external validity in this paper.

The results from the study are probable generally valid
for students entering the software industry. The students
taking the PSP course at the university are probably a rep-
resentative sample of students leaving the university for a
software development job in industry. The Swedish stu-
dents are probably representative of fourth year’s students
in several other countries. The software industry is very
international and the Swedish students perform as good as
students coming from other countries. This assessment is
based on qualitative information obtained when talking to
people working in the telecommunication industry. Thus,
the study provides some insight of what industry can
expect when hiring new employees coming directly from
the university. In particular, industry obtains information
regarding the value of, in terms of producing high quality
software, that an applicant knows or does not know a par-

ticular programming language. For example, the study pro-
vides insight into whether it is important or not to state, in a
job opening, that knowledge in a specific programming
language is important.

The study presented is based on student data, and the
results may be slightly different when involving software
engineers from industry, but we believe that the main
results are valid also for software engineers in general,
since differences in background exist in all work places. In
summary, we believe that the results have a rather good
external validity, hence making the results generally inter-
esting. To further investigate the validity, we would like to
encourage replication of the study.

2.5 Operation
The subjects (students) are not aware of what we intend

to study. They were informed that we wanted to study the
outcome of the PSP course in comparison with the back-
ground of the participants, and our intentions of analysing
the data. They were, however, not aware of the actual stud-
ies. The students, from their point of view, do not primarily
participate in an empirical study; they are taking a course.
All students are guaranteed anonymity.

The survey material is prepared in advance. Most of the
other material is, however, provided through the PSP book
[5]. The empirical study is executed over 14 weeks, where
the 10 programming assignments are handed in regularly.
The data are primarily collected through forms. The 10
programming assignments are mostly small statistical pro-
grams. The complexity and difficulty of the programs vary
slightly. Interviews are used at the end of the course, pri-
marily to evaluate the course and the PSP as such.

3. Analysis of the empirical study

3.1 Data validation
Data were collected for 65 students. After the course, the

achievements of the students were discussed among the
people involved in the course. Data from six students were
removed, due to that the data were regarded as invalid or at
least questionable. Students have been removed not
because the evaluation was based on the actual figures, but
because of our trust in the delivered data. The six students
were removed due to:

• Data from two students were not filled in properly.
• One student finished the course much later than the rest,

and he had a long period where he did not work with the
PSP. This may have affected the data.

• The data from two students were removed based on that
they delivered their assignments late and required con-
siderably more support than the other students did,



hence it was judged that the extra advice might have
affected their data.

• Finally, one student was removed based on that his
background is completely different than the others.

This means removing six students out of the 65, hence
leaving 59 students for statistical analysis and interpreta-
tion of the results.

3.2 Analysis of dependent variables
The dependent variables, i.e. the seven performance

measures, are analysed using a factor analysis. The objec-
tive is to evaluate the relationship between the seven meas-
ures. This is done to ensure that the seven dependent
variables represent different dimensions of achieved per-
formance in terms of different quality aspects. This is done
to ensure that the measures really capture several of the
many dimensions of software quality. The factor analysis is
made using principal component analysis with Orthogonal
Transformation Solution-Varimax, and using an eigen
value > 1 as the criterion for including a factor [14]. The
results are presented in Table 4. It is of particular interest to
assess if we are able to capture the success factors dis-
cussed in Section 1. 

Table 4. Factor analysis of the performance measures.

The seven measures are divided into three factors. Load-
ings above 0.6 are shaded, and indicate which measures
that are most closely related. The first factor is primarily
related to defects (cf. quality in Section 1, i.e. primarily
product quality). The time is included in this factor that
may be viewed as unexpected, but there is a natural expla-
nation. The long development times come primarily from
the times when the students have some problems with one
or two defects. Thus, the development time is very much

driven by the mistakes made by the students when develop-
ing the programs. The second factor is mostly related to
size. This is not found among the factors in Section 1, but it
is most closely related to cost and effort. Finally, the third
factor is clearly a predictability factor (cf. Section 1).

It is interesting to note that we are able to identify two of
the factors in Section 1 rather easily, and even the third is
detectable. It indicates that the defined measures do indeed
capture at least three success factors rather nicely. Thus, the
defined measures are relevant measures of the performance
of the individuals, i.e. the seven measures capture several
important facets of software quality.

The correlations between variables within a factor are not
as high as may be suspected. The correlation between
Defects and Defects/KLOC is high, but the others are
around 0.5 except for the correlation between the two pre-
dictability variables which is as low as 0.22.

3.3 Hypotheses assessment
The next step is to test the hypotheses stated above in

Section 2. In the statistical inference, we use an ANOVA
test to evaluate the hypotheses. These tests are parametric
tests, but they are mostly rather robust, see, for example,
[15]. A significance level of 0.05 is used for all tests, which
is a standard level of significance in many research disci-
plines. The p-values obtained from the tests are shown in
Table 4. If the ANOVA test turns out to be significant, a
Fisher PLSD (Protected Least Significant Difference) test
is performed to evaluate the pairwise significance between
the measures [16]. For example, is there a significant dif-
ference between students having given a grade of 2 respec-
tively 3 in experience in C with regard to the number of
defects?

If the p-value is less than the chosen significance level
(0.05), then the null hypotheses can be rejected. The study
includes a large number of hypotheses given the number of
variables. To illustrate the hypotheses:

• H0: There is no difference in the number of defects
based on the experience in C. Let Defects(1),
Defects(2), Defects(3) and Defects(4) be the number of
defects when the grade in experience is 1, 2, 3 and 4
respectively. The hypothesis can now more formally be
stated as: H0: Defects(1) = Defects(2) = Defects(3) =
Defects(4)

• HA. The alternative hypothesis is that the experience in
C does make a difference in the number of defects. This
can also be formulated as that there is a difference
between two or several of Defects(1), Defects(2),
Defects(3) and Defects(4).

Dependent 
variable

Factor 1 Factor 2 Factor 3

Time 0.676 -0.527 -0.131

Defects 0.963 0.139 -0.024

Defects/KLOC 0.919 -0.068 0.008

Size 0.382 0.736 -0.142

Productivity -0.301 0.925 0.037

Predictability 
size

-0.098 0.060 0.776

Predictability 
time

0.045 -0.095 0.774



In Table 5, the significant results are shaded. It should,
however, be noted that a significance level of 0.05 indi-
cates also a 5% risk of getting a significant result although
there is no significant result. This is particularly crucial
since the large number of tests may very well mean that
some findings are a statistical artefact rather than a true
result. This also emphasizes the need for replication of the
study.

The p-value is less than 0.05 in some other cases, but in
these cases the significant difference comes from a few
individuals having extreme values, see also the discussion
regarding balance in the data set in Section 2 in relation to
Table 2. Further, it is of course important not only to iden-
tify significant results, but also the differences (size of the
effect). The latter is however out of the scope of the analy-
sis here.

Two main issues are worth highlighting:
• Significant results,
• Unexpected non-significant results.

These two issues are discussed together. The results are
discussed from the perspective of the experience data, i.e.
the discussion of Table 4 is done column by column (Col-
umn 2-4).

Table 5. The p-values for independent variables when 
evaluated versus the dependent variables.

Some of the aspects worth noting from Table 5 are:
1. General knowledge in programming

Significant: the programming experience only signif-
icantly affects the productivity. The significant results
come between those having just read a couple of
courses (grade 1), and those having some more expe-
rience (grade 2 and 3). Only one individual has a
grade of 4, hence it is not possible to talk about any
significant results. This result is not surprising. It is
reasonable that students having programmed more
become more productive.

Non-significant: it is rather surprising that more pro-
gramming experience does not affect the other varia-
bles, for example, the number of defects and the
development time. It also seems clear that although
some students have more programming experience,
they have not been used to make predictions. 

2. Knowledge in C
Significant: no significant results are obtained based
on the experience in C.
Non-significant: it is unexpected that experience
from the mandatory language does not significantly
affect any of the parameters. It is in place to provide a
note of caution here. The data set (see Table 2) is
fairly skewed. In other words, the data set is not bal-
anced, i.e. there are very few students with high
scores on prior experiences. This may be one reason
that significant results are not obtained.

3. Knowledge in C++
The results are rather similar to the previous item, i.e.
knowledge in C. It was expected that previous experi-
ence from C++ should have been important when C
was used as a mandatory language. The same remark
as for knowledge in C is valid here too.

4. Summary and discussion

Software engineering is highly dependent on the skills
and knowledge of the individuals working in the field.
Thus, it is important to know what type of individual dif-
ferences is important to achieve high quality. This paper
has addressed the situations where students have different
background and knowledge in terms of programming. The
latter includes both general knowledge and knowledge of
C and C++ specifically. The objective has been to answer
whether knowledge in a specific programming language is
important for the final quality of the software or if a pro-
gramming language may be learnt on the job. This was
evaluated by enforcing C as a mandatory programming
language within a course on the Personal Software Process.

The context of the PSP has allowed us to evaluate the
dependence between programming knowledge/experience
and actual performance in developing software. It has also
been argued that the subjects (students) are believed to be
rather representative although not being professional soft-
ware engineers. How representative fourth year students
are in comparison with industrial software engineers is an
area for further research, which is partly addressed in [17].
The study was primarily quantitative and given the results
it would have been valuable to complement the quantita-
tive results with a qualitative evaluation. This was, how-
ever, infeasible since the analysis was primarily made after
the students left the class and had moved on to other

Variables Prog C C++

Time 0.173 0.101 0.318

Defects 0.701 0.768 0.961

Defects/ KLOC 0.845 0.724 0.899

Size 0.429 0.903 0.947

Prod. 0.035 0.111 0.110

Pred. size 0.243 0.166 0.183

Pred. time 0.756 0.271 0.272



courses, Master thesis work or in some cases started work-
ing in industry.

Several hypotheses have been assessed using statistical
inference. It is particularly interesting to note that the expe-
rience in the programming language had no significant
effect on the performance, independent of the performance
measure. In general, it can be noted that the study resulted
in more unexpected than expected results. It is particularly
interesting to note that no significant results were found
based on knowledge in a particular programming language.
Thus, it is indicated that personal ability in general is prob-
ably more important than actual skills in a specific pro-
gramming language. This actually means that it is not
particularly important to require knowledge in a specific
programming language for different job openings. Other
skills are clearly more important to develop high quality
software. However, this is the result with this data set,
which unfortunately is fairly skewed, and hence the previ-
ous statements should be interpreted with some caution. It
would be very interesting to have the study replicated and
in particular if it was possible to find a more balanced data
set than the one in this study.

The results seem to indicate that the major difference in
performance may not easily be measurable by different
experience measures. From the data, it is clear that there
are large individual differences. Some students perform
better than others do, although it is not possible to show it
with the defined experience measures. The actual outcome
will, however, be further analysed in the future, for exam-
ple, to differentiate between different percentiles in terms
of the performance measures. In particular, it will be stud-
ied whether the same individuals perform best for all of the
measures. In other words, the future work will focus on
finding different patterns in the performance measures.

Although not evaluated in the study, it is our belief that
the differences between individuals are larger than that
between different design methods or programming lan-
guages. The differences between individuals may very well
depend on psychological issues and the ingenuity of the
individuals. The latter is not easily captured in simple
experience measures as evaluated in this study. This rea-
soning leads us to the conclusion that these issues have to
be studied further. First, the data presented here have to be
further analysed including studying variation between indi-
viduals, different measures (for example quality in terms of
defects) when some of the measures are similar (for exam-
ple productivity). Second, it is necessary to evaluate the
importance of people in comparison with new technologies
and methodologies. Third, it is necessary to take other
aspects into account when studying the performance of
individual software developers. It is probably not until we
truly understand the human aspect of software develop-

ment that we can make major progress in terms of develop-
ment time and software quality.

Acknowledgment
I am grateful to the students for having worked hard in

the course and for making a great effort in trying to follow
the processes as faithfully as possible. Furthermore, I
would like to express my sincere thanks to my former col-
leagues in the Software Engineering Research Group at
Lund University in Sweden for all discussion regarding
empirical studies and the Personal Software Process. 

References
[1] F. Brooks, “No Silver Bullet: Essence and Accidents of

Software Engineering”, IEEE Computer, Vol. 20, No. 4, pp.
10-20, 1987.

[2] Boehm, B. W., Software Engineering Economics, Prentice-
Hall, 1981.

[3] F. Brooks, “Studying Programmer Behavior Experimen-
tally: the Problems of Proper Methodology”, Communica-
tions of the ACM, April 1980.

[4] B. Curtis, “Measurement and Experimentation in Software
Engineering”, Proceedings of IEEE, September 1980.

[5] Humphrey, W. S., A Discipline for Software Engineering,
Addison Wesley, 1995.

[6] Humphrey, W. S., Introduction to the Personal Software
Process, Addison Wesley, 1997.

[7] C. Wohlin and A. Wesslén, “Understanding Software
Defect Detection in the Personal Software Process”, Pro-
ceedings IEEE 8th International Symposium on Software
Reliability Engineering, pp. 49-58, Paderborn, Germany,
1998.

[8] P. Ferguson, W. S. Humphrey, S. Khajenoori, S. Macke and
A. Matvya, “Results of Applying the Personal Software
Process”, IEEE Computer, Vol. 30, No. 5, pp. 24-31, 1997.

[9] W. S. Humphrey, “Using a Defined and Measured Personal
Software Process”, IEEE Software, pp. 77-88, May 1996.

[10] A. Wesslén, “A Replicated Empirical Study of the Impact
of the Methods in the PSP on Individual Engineers”,
Empirical Software Engineering: An International Journal,
Vol. 5, No. 2, pp. 93-123, 2000.

[11] C. Wohlin, “The Personal Software Process as a Context for
Empirical Studies”, IEEE TCSE Software Process Newslet-
ter, pp. 7-12, No. 12, Spring 1998.

[12] Robson, C., Real World Research: A Resource for Social
Scientists and Practitioners-Researchers, Blackwell, 1993.

[13] Wohlin, C., P. Runeson, M. Höst, M. C. Ohlsson, B. Reg-
nell and A. Wesslén, Experimentation in Software Engi-
neering – An Introduction, Kluwer Academic Publishers,
Boston, USA, 1999.



[14] Kachigan, S. K., Statistical Analysis: An Introduction to
Univariate & Multivariate Methods, Radius Press, New
York, 1986.

[15] L. C. Briand, K. El Emam and S. Morasca, “On the Appli-
cation of Measurement Theory in Software Engineering”,
Empirical Software Engineering: An International Journal,
Vol. 1, No. 1, pp. 61-88, 1996.

[16] Montgomery, D. C., Design and Analysis of Experiments,

4th edition, John Wiley & Sons, 1997.

[17] M. Höst, B. Regnell and C. Wohlin, “Using Students as
Subjects - A Comparative Study of Students and Profes-
sionals in Lead-Time Impact Assessment”, Empirical Soft-
ware Engineering: An International Journal, Vol. 5, No. 3,
pp. 201-214, 2000.


