T. Thelin, P. Runeson, C. Wohlin, T. Olsson and C. Andersson, "How Much
Information is Needed for Usage-Based Reading? - A Series of Experiments",
Proceedings 1st International Symposium on Empirical Software Engineering, pp.
127-138, Nara, Japan, October 2002. Best paper award, and selected and extended
for a special issue of Empirical Software Engineering: An International Journal.

How much Information is Needed for Usage-Based Reading? —
A Series of Experiments

Thomas Thelin?, Per Runeson?, Claes Wohlin2, Thomas Olsson! and Carina Andersson

1Dept. of Communication Systems
Lund University
Box 118, SE-22100 Lund, Sweden
{thomast, perr, thomaso, carinaa}@telecom.lth.se

Abstract

Software inspections are regarded as an important tech-
nique to detect faults throughout the software development
process. The individual preparation phase of software in-
spections has enlarged its focus from only comprehension
to also include fault searching. Hence, reading techniques
to support the reviewers on fault detection are needed. Us-
age-based reading (UBR) is a reading technique, which fo-
cuses on the important parts of a software document by
using prioritized use cases. This paper presents a series of
three UBR experiments on design specifications, with focus
on the third. The first experiment evaluates the prioritiza-
tion of UBR and the second compares UBR against check-
list-based reading. The third experiment investigates the
amount of information needed in the use cases and whether
a more active approach helps the reviewers to detect more
faults. The third study was conducted at two different places
with a total of 82 subjects. The general result from the ex-
periments is that UBR works as intended and is efficient as
well as effective in guiding reviewers during the prepara-
tion phase of software inspections. Furthermore, the results
indicate that use cases developed in advance are preferable
compared to developing them as part of the preparation
phase of the inspection.

1. Introduction

Software inspections have emerged over the last 25 years
as a key technique to detect and hence remove faults
throughout the software development process [1]. Re-
searchers have over the years proposed several different
ways of improving software inspections. The improvements
include new inspection processes, for example, represented
by n-fold inspection [12] and phased inspections [10]. It
also includes changes to the different steps in the inspection
processes, for example, new reading techniques [2] and
whether an inspection meeting is needed or not [22]. Final-
ly, other improvements include support to the inspection
process, for example, fault content estimations [15]. The

1

2Dept. of Software Eng. and Computer Science
Blekinge Institute of Technology
Box 520, SE-372 25 Ronneby, Sweden
claes.wohlin@bth.se

objectives of this paper are in general to contribute to the
improvement of reading techniques and to study a new
reading technique. More specifically, the main aim is to
contribute to the evaluation of a reading technique called
usage-based reading.

The user perspective in software development is ac-
knowledged and valued in different methods including for
example use cases in object-orientation [9] and operational
profile testing [13]. However, the user perspective can also
be introduced into software inspections, where the individ-
ual preparation may be conducted with a user-oriented ap-
proach. Such a method has been proposed and evaluated in
a series of experiments. The method is denoted usage-based
reading. It was initially presented by Olofsson and Wen-
nberg [14], and has since been extended and evaluated in
two main studies [19][20].

This paper contributes with a third study as well as a
presentation of the series of experiments. The latter includes
the lessons learned through a planned series of experiments,
where the studies have built upon each other to create a
body of knowledge with respect to usage-based reading.
The first experiment focused upon comparing use case driv-
en inspections with prioritized use cases versus randomly
ordered use cases. After having found out that the prioriti-
zation, which constitutes a key part in usage-based reading,
was significantly better, usage-based reading was compared
with checklist-based reading. Usage-based reading was
found to be significantly better than using a checklist. The
third experiment looks at whether the reviewers perform
better in the preparation phase if they develop use cases as
part of the inspection or if it is better to utilize pre-devel-
oped use cases in the inspection. The third experiment also
studies usage-based reading as part of the inspection proc-
ess, i.e. a meeting is also held in the third study. It is con-
cluded that usage-based reading is both effective and
efficient.

The paper is outlined as follows. Usage-based reading is
described in Section 2, and an overview of the series of ex-
periments is presented in Section 3. The third experiment is
then discussed in detail in Section 3.3 to Section 7. The ar-
tefacts for the experiment are presented in Section 4. In Sec-

tion 5, the planning of the experiment can be found. The
operation of the experiment is discussed in Section 6 and the
analysis is presented in Section 7. A discussion of the third
experiment and the series of experiments can be found in
Section 8. Finally, conclusions are presented in Section 9.

2. Usage-Based Reading

The individual preparation of software inspections has
enlarged its focus from only comprehension (initially pro-
posed by Fagan) [6] to also comprise fault searching.
Hence, support to the reviewers on how to detect faults is
needed. Therefore, different reading techniques have been
developed, for example, defect-based reading [16] and per-
spective-based reading [2]. Usage-based reading (UBR) is
one such reading technique, which focus on the quality of
the product from a user’s point of view.

The cornerstones of UBR are use cases and prioritiza-
tion. Use cases are utilized to guide reviewers through a
software document during inspection. The use cases are pri-
oritized (for example by using the Analytic Hierarchy Proc-
ess (AHP) [17]) in an order of importance from users’
requirements on the system developed. Hence, reviewers
using UBR focus on the important parts first, leading to the
important faults are found. The most important faults are
denoted critical in the paper and refer to the faults that a
user of a system thinks are most important.

The main purpose of UBR is to focus inspections on us-
ers’ needs, much in the same way as operational profiling in
testing [13]. The reviewers applying UBR follow the prior-
itized used cases and check the software artefact under in-
spection. During inspection, the reviewers need to go
through the artefact actively, although they do not need to
actively develop the use cases. However, in this paper it is
investigated how much information that is needed in order
to apply UBR, see Section 3.3.

There are some other reading techniques that utilize use
cases during fault searching. Among these are traceability-
based reading (TBR) [21] and the user perspective in per-
spective-based reading (PBR) [3]. TBR is a reading tech-
niqgue aimed for inspecting object-oriented design
specifications. The user perspective in PBR is based on ac-
tive development of use cases during inspections. Hence,
the use cases are developed on the fly and the reviewers are
supported with a scenario of how the development should
be carried out. A benefit of using already developed use cas-
es is that they may be prioritized by a user. In addition, Dun-
smore et al. compare a use case approach with checklist-
based reading (CBR) and structured reading [5]. The use
cases are based on sequence diagrams for object-oriented
design and are not prioritized. The results indicate that CBR

is the best reading technique of the three for object-oriented
code inspections.

3. Usage-Based Reading Experiments

In order to evaluate the UBR technique, a series of three
experiments was planned and conducted. The subjects per-
formed inspections of design documents using different
reading techniques. The experiments were conducted in
academical settings with students at software engineering
programmes in their third or fourth years of studies.

The sequence of experiments is summarized in Table 1.
The first and second experiments are presented in Section
3.1 and Section 3.2 respectively, and the third experiment is
presented in Section 3.3 and onwards.

Table 1: The main research questions in the
series of UBR experiments.

1st 2nd 3rd
Question Are the review- IsUBR Is pre-devel-
ers affected by more effec- oped use
the reading tech- tive and cases needed
nique? efficient for UBR?
than CBR?
Answer Yes, prioritized Yes, UBR Yes, in most
use cases are finds more cases,
more efficient critical reviewers
than randomly faults than using detailed
ordered use CBR. use cases find
cases. more faults.

3.1. First Experiment

The first experiment, which was aimed at investigating
the basic principle of UBR, was launched during the fall se-
mester of 2000. 27 students of their third year of the soft-
ware engineering Bachelor’s programme at Lund
University (Campus Helsingborg) inspected a high-level
design for a taxi management system. The design document
contained 37 faults, of which 13 where critical (class A), 13
were important (class B) and 11 were not important (class
C) (see Section 4.2 for fault classification). Half of the sub-
jects were given use cases that were prioritized with respect
to the impact on the intended users of the system. The other
half of the subjects were given the same use cases, but in a
random order. The experiment is presented in more detail in
[19].

Three main research questions were investigated in the
experiment:
 RQ1 - Is UBR effective in finding the most critical

faults?

¢ RQ2 - Is UBR efficient in terms of total number of crit-
ical found faults per hour?

* RQ3 - Are different faults detected using different pri-
ority orders of use cases?

In Table 6, the efficiency and effectiveness values are
presented for the group that used prioritized use cases. Hy-
potheses were set up and tested. It was concluded that the
reviewers applying prioritized use cases were more efficient
in detecting faults than the reviewers using randomized use
cases (p=0.044). This was also true for class A faults
(p<0.001) and for class A&B faults (p=0.005). Further-
more, the reviewers applying prioritized use cases were
more effective in detecting faults than the reviewers using
randomized use cases for class A faults (p=0.002) and class
A&B faults (p=0.005). They were not significantly more ef-
fective for all faults. Finally, the reviewers applying priori-
tized use cases detected different faults compared to the
reviewers applying randomized use cases (p<0.001).

Hence, we can conclude that reviewers actually perform
differently when given a different inspection method. By
prioritizing the use cases, reviewers are forced to focus on
issues that are of highest importance for the system user,
and hence improve the efficiency and effectiveness of the
inspection process.

3.2. Second Experiment

The purpose of the second experiment was to compare
UBR to checklist-based reading (CBR). CBR is some kind
of industry practice, and was used as a baseline to which
UBR was compared. The experiment was launched during
the spring semester of 2001. 23 students of their fourth year
of the software engineering Master’s programme at Ble-
kinge Institute of Technology inspected the same high-level
design, although the design documented had been updated
due to further development of the system (some faults were
removed and some injected). The design document con-
tained now 38 faults, of which 13 were critical (class A), 14
were important (class B) and 11 were not important (class
C). In the second experiment, half of the subjects were
taught the UBR method and were given prioritized use cas-
es. The other half of the subjects were taught the CBR meth-
od and were given a checklist, where the items were sorted
in a significance order. The experiment is presented in more
detail in [20].

Three main research questions were investigated in the
experiment, similar to the ones on the first experiment:
¢ RQ1 - Is UBR more effective than CBR in finding the

most critical faults?

* RQ2 - Is UBR more efficient than CBR in terms of total
number of critical faults found per hour?

* RQ3 - Are different faults detected when using UBR
and CBR?

Hypotheses, similar to the ones in the first experiment
were set up and tested. In this experiment, it was concluded
that the reviewers applying UBR were more efficient in de-
tecting faults than the reviewers using CBR (p=0.042, 37%
more faults per hour). This was also true for class A faults
(p=0.013, 100% more class A faults per hour) and class
A&B faults (p=0.016, 64% more class A&B faults per
hour). Furthermore, the reviewers applying UBR were more
effective in detecting faults than the reviewers using CBR
for class A faults (p=0.036, 75% more class A faults) and
class A&B faults (p=0.031, 51% more class A&B faults).
They were not significantly more effective for all faults. Fi-
nally, the reviewers applying UBR detected different faults
compared to the reviewers applying CBR (p=0.001).

From this analysis, we draw the conclusion that the UBR
method is more effective and efficient compared to the in-
dustry practice method, CBR.

3.3. Third Experiment

The third experiment, which was launched during the fall
semester of 2001, investigates how much information is
needed in the use cases when performing UBR inspections.
It takes time to develop the use cases in detail, and more in-
formation in the use case document may cause inconsisten-
cies. Hence, they should not be more detailed than
motivated by the use of the use cases.

The rationale of the experiment is to investigate whether
less provided information to the reviewers still makes UBR
efficient and effective. The question has been raised wheth-
er reviewers detect more faults if they develop something
actively during inspection (as in PBR and TBR), i.e. wheth-
er they are more effective. It is also evaluated whether there
are any differences in efficiency and whether they find other
and more critical faults from a user’s point of view. UBR,
as investigated in the previous experiments, utilizes use cas-
es developed before the inspection. Here, we investigate
whether it is enough with only the purpose of the use cases
and the prioritization. Hence, the comparison is against
UBR with purpose and tasks pre-developed (see Section
4.1), and the main research questions are:

* RQ1 - How much information is needed in the use cases
for UBR?

* RQ2 - Is UBR with less information as efficient and
effective?

 RQ3 - Are different faults detected when actively
developing the use cases?

In the following sections, the third experiment is de-
scribed in detail.

4. Experiment Artefacts

The development of the software documents and the de-
sign of the series of experiments have involved seven per-
sons in total. The persons have taken different roles in the
development of the experiment package since it was impor-
tant to develop and design some parts of the experiment in-
dependently in order to minimize the threats to the validity
of the experiments. The artefacts are briefly described in the
following sections. A detailed description of the artefacts
and the development of those is provided in [19].

4.1. Documents

The software artefacts in the experiment package are a
textual requirements document, use case documents, a de-
sign document, and questionnaires. In addition, code and
test documents have been developed for the system, but are
not used in the experiments. The code was written in the
specification and description language (SDL) [7]. The fol-
lowing documents were used in the third experiment.

» Textual Requirements Document — The textual require-
ments document was written in natural language (Eng-
lish). The document was used as a reference document
to know what the system should do.

* Use Case Documents — The use case documents con-
tains 24 use cases. There are two versions, one for the
group with pre-developed use cases (utilizing method)
and one for the group with only the purpose specified
(developing method). The pre-developed use cases were
written in task notation [11]. An example of a use case
for the taxi management system in task notation is
shown to the left in Figure 1; the corresponding use case
with less information is shown to the right.

The prioritization of the use cases was made in terms
of the importance from a user’s point of view. Three
persons acted users and prioritized the use cases before
the experiment according to the AHP method [17]. The
order of use cases was the same for both methods (uti-
lizing and developing). The fault classification is based
on the same criterion for prioritization, i.e. the users are
in focus.

« Design Document — The design document (9 pages,
2300 words) consists of an overview of the software
modules and communication signals that are sent to and
from the modules. In addition, the communication
between the system and the users is specified. Further-
more, the design document contains two message
sequence charts (MSC) [8], which show signalling
between the modules for two different cases.

The faults injected during development of the taxi
system were re-inserted into the design document. The

design document was updated between the first and sec-
ond experiment. In the first experiment, the document
contained 37 faults, and in the second and third, it con-
tained 38 faults. Eight faults were seeded by the devel-
oper the system. The 30 others were faults made during
development of the design document and later found in
inspections or testing.

» Experience Questionnaire — A questionnaire with seven
questions was used to explore the students’ experiences
in programming, inspections, SDL, use cases and the
application domain. This information was used in the
design of the experiments in order to control the differ-
ent experiences among the students.

 Inspection Questionnaire — After the inspection, a ques-
tionnaire was filled in to explore how well the reviewers
have followed the specified inspection process and what
they thought about the method used.

4.2. Fault Classification

The faults are classified from the point of view of a user.
They are divided into three classes depending on the impor-
tance for a user, which is a combination of the probability of
the fault to manifest and the severity of the fault from a us-
er’s point of view.

» Class A faults — The functions affected by these faults
are crucial for a user, i.e. the functions affected are
important for a user and are often used. An example of
this kind of faults is: the operator cannot log in to the
system.

e Class B faults — The functions affected by these faults
are important for a user, i.e. the functions affected are
either important and rarely used or not as important but
often used. An example of this kind of fault is: the oper-
ator cannot log out of the system.

e Class C faults — The system will work although these
faults are present. An example of this kind of fault is: a
signal is confused with another signal in an MSC dia-
gram.

The design document contains 13 class A faults, 14 class
B faults and 11 class C faults.

5. Experiment Planning

5.1. Subjects

The experiment was conducted at two universities in
Sweden during a period of two weeks. First, the experiment
was conducted at Campus Helsingborg (Hbg) at Lund Uni-
versity and then in Ronneby (Rb) at Blekinge Institute of
Technology. The experiment was a mandatory part of two

Taxi: Alarm Event (Utilizing method)

Purpose: If a driver, for some reason, feels threatened
there is an alarm system which notifies the central of the
problems.

Tasks:

1. The driver is in some kind of trouble and hits the
alarm button.

2. The voice radio channel to the central is opened from
the taxi to the central.

3. The taxi sends exact coordinates to the central every
30 seconds.

4. The channel is open until the central resets the alarm.
The voice link is terminated.

Taxi: Alarm Event (Developing method)

Purpose: If a driver, for some reason, feels threatened
there is an alarm system which notifies the central of the
problems.

Figure 1. An example of a use case written in task notation. The use case describes an alarm event.
To the left is an example of a use case that was given to the utilizing groups and to the right is a use
case that was given to the development groups, see Section 5.2

courses in verification and validation. The courses included
lectures and assignments, and both courses were related to
verification and validation of software products and evalu-
ation of software processes. Although the courses have the
same name, they do not include exactly the same items. The
main difference is that the course in Rb is more research ori-
ented and the course in Hbg is more focused on a test
project.

The subjects in Hbg were 34 third-year students at the
software engineering Bachelor’s programme at Lund Uni-
versity. The students were almost finished with their educa-
tion and have experience in requirements engineering, use
case development, software design and in the particular ap-
plication domain (taxi management systems). They had par-
ticipated in, for example, a large-scale software project
course and a previous course in requirements engineering,
where they developed a requirements document for a taxi
management system. This means that the students have
good domain knowledge.

The subjects in Rb were 48 fourth-year software engi-
neering Master’s students at Blekinge Institute of Technol-
ogy. Many of the students have extensive experience from
software development. As part of their Bachelor degree,
they have obtained practical training in software develop-
ment. Among other things, they have participated in a one-
semester project including 15 students. The customers for
these projects are normally people in industry, and hence
the students have participated in projects close to an indus-
trial situation with changing requirements and time pres-
sure. Several of the Master students also work in industry in
parallel with their studies. This means that the students are
rather experienced and to some extent comparable to fresh
software engineers in industry.

Thus, the difference between the student groups (Hbg
and Rb) can be referred to their education, domain knowl-
edge, and industrial experience.

5.2. Variables

Three types of variables are defined for the experiment,
independent, controlled and dependent variables. The inde-
pendent variable is the reading technique used and the con-
trolled variable is the experience of the students. The
dependent variables are measures collected to evaluate the
effect of the methods.

The reading technique used is either utilizing (utilizing
use cases) use cases or developing (developing use cases)
use cases. Both these treatments were used in Hbg and Rb.
The abbreviations used in this paper are Util (utilizing use
case), Dev (developing use cases), Hbg (Helsingborg), Rb
(Ronneby) and the combination of these, i.e. Util-Hbg, Dev-
Hbg, Util-Rb and Dev-Rb.

5.3. Hypotheses

The hypotheses of the experiment are set up to evaluate
the amount of information needed in order to utilize UBR.
The hypotheses are expressed in terms of efficiency and ef-
fectiveness of finding critical faults from a user’s perspec-
tive.

The main alternative hypotheses of the experiment are
stated below. These are evaluated for all faults, class A
faults and class A&B faults.

* Hgg — There is a difference in efficiency (i.e. found
faults per hour) between the reviewers utilizing (Util)
pre-developed use cases and the reviewers who develop
(Dev) use cases.

* HRgate — There is a difference in effectiveness (i.e. rate of
faults found) between the reviewers utilizing pre-devel-
oped use cases and the reviewers who develop use
cases.

* Hpgguit — The reviewers utilizing pre-developed use cases

detect different faults than the reviewers who develop
use cases.

5.4. Design

The subjects were divided into two groups, Util and Dev.
This was carried out in Hbg and Rb, separately. Using the
controlled variable (experience), the students were divided
into three groups (at each place) and then randomized with-
in each group, resulting in 17 students in the Util-Hbg
group, 17 students in the Dev-Hbg group, 23 students in the
Util-Rb group and 25 students in the Dev-Rb group. One
student in each group in Hbg and one in Util-Rb were re-
moved from the analysis, since they did not complete all
parts of the experiment.

The experiment data are analyzed with descriptive anal-
ysis and statistical tests [23]. The collected data were
checked for normal distribution. Since no such distribution
could be demonstrated using normal probability plots and
residual analysis, non-parametric tests are used. The Mann-
Whitney test is used to investigate hypotheses Hgg and
HRrate and a chi square test is used to test Hg,¢ [18].

The significance value of rejecting the hypotheses is set
to 0.05 for all tests. In addition to the chi-square test, a par-
tial correlation analysis is used to measure the degree of
similarity of the faults that the reviewers found.

The Kruskal-Wallis test is used to test whether there are
statistical differences in the time data. If there is a signifi-
cant difference, the multiple comparison procedure is used,
see Siegel and Castellan [18].

An alternative would be to use a non-parametric two-
way ANOVA (Friedman’s test). The two independent vari-
ables would then be the student groups (Hbg and Rb) and
the reading technique used. However, Friedman’s test as-
sumes balanced data, i.e. equal number of students in Hbg
and Rb, which is not the case. Thus, statistical tests are used
within each place and descriptive analysis is used between
the students groups, i.e. Hbg and Rb.

5.5. Threats to Validity

A key issue when performing experiments is the validity
of the results. Is the study designed and performed in a
sound and controlled manner? Are the statistical tests used
correctly? Are the issues under investigation really investi-
gated in the study? To which domain are the results possible
to generalize? In this section, the threats are analyzed relat-
ed to four groups of threats: Conclusion validity, internal
validity, construct validity and external validity [23].

Conclusion validity concerns the relation between the
treatments and the outcome of the experiment. The threats
related to the statistical tests used in the experiment are con-
sidered being under control as non-parametric tests are
used, which do not require a certain underlying distribution.
Threats with respect to the subjects are also limited since (1)
there are two subject groups which both treatments are as-
signed to, and (2) the subject groups are rather homogene-
ous; the subjects have attended the same education
programs (at each place).

Internal validity of the experiment concerns the question
whether the effect is caused by the independent variables or
by other factors. The social threats about imitation of treat-
ment, compensation for treatment etc. are limited since the
subjects had nothing to gain from the actual outcome of the
experiment. The grading of the courses was only based on
their participation in the experiment, not on their perform-
ance. The threat of selection is also under control, as the ex-
periment is a mandatory part of a course. There is one threat
of ambiguity of the direction of causal influence, concern-
ing the time spent reading and the method used. This is fur-
ther analyzed in Section 7.1.

Construct validity concerns the ability to generalize from
the experiment result to the concept behind the experiment.
The experiment is the third in a series, where the same
method has been used as one treatment in all the three ex-
periments, giving very much the same results with respect
to effectiveness and efficiency (see Section 8). The per-
formance measures as such are standard: faults found per
hour and rate of faults found. Furthermore, the inspection
questionnaire is used as a cross-check of the results, to re-
duce the mono-method bias. Hence, we conclude that the
treatment applied actually is the difference between the dif-
ferent subject groups.

External validity concerns the ability to generalize the
results to industry practice. The largest threat is that stu-
dents are used as subjects. However, the students are in their
third or fourth year of software engineering studies and
hence close to start working in industry. The members of
one of the subject groups are familiar with the application
domain, which is industry-like, as they have developed a re-
quirements specification for a similar, but more extensive
system, in a previous course. The comparison between the
two subject groups enables blocking with respect to domain
knowledge and educational background. The inspected doc-
ument is the same in this experiment as in the two former,
which is a threat to the external validity. On the other hand,
it strengthens the internal validity.

In summary, the threats are not considered large in this
experiment. As it is a follow-up experiment, some issues
can be monitored over all the experiments, and the analysis
shows that the results are stable.

6. Experiment Operation

The experiment was run in September 2001. The exper-
iment was conducted during one day both in Hbg and Rb,
see schedule in Table 2. However, since the students in Hbg
had participated in a course where they developed a require-
ments document for a taxi management system, they only
had a brief introduction. Thus, the general introduction (A
in Table 2) was only performed for the students in Rb. The
inspection (B in Table 2) was divided into three parts, prep-
aration, inspection and questionnaire times. The aim of
these was to read the documents briefly (about 20 minutes),
inspect the design document, and answering questions
about the reading technique used (about 15 minutes).

Table 2: Schedule for the Experiment. Note that
(A) was only performed in Ronneby.

Time Util group Dev group
Day 1 (A) ; ;
gorsam - | snn | SIS o0
11.00 a.m.) d y
Day 1 (A) Introduction InttroocLiJuI;:tFlon
(11.15am.- 45 min. to UBR (Develop-
12.00a.m.) (Utilizing) ment)
Day 1 (B) ; ;
aaaspm. - | 3nesmin. | Qe o)
17.00 p.m.)

7. Analysis

7.1. Preparation and Inspection Time

The reviewers logged the time for preparation (read
through the documents) and inspection. In Table 3, the
mean and standard deviation values of preparation, inspec-
tion and total times are shown for the four groups. For prep-
aration time, no significant difference can be observed.
However, Dev-Rb differs significantly against the others
considering inspection time and total time. The standard de-
viations are all in the same ranges, indicating the disper-
sions are equal for the different groups. Hence, Dev-Rb,
which is one of the groups that developed use cases, used
significantly more inspection time. The other group that de-
veloped use cases, Dev-Hbg, did not use more time.

Furthermore, the groups used different number of use
cases during the inspection. The use case document consists
of 24 use cases. The median of the number of use cases used
is 24 for all groups except Dev-Rb, which has a median val-
ue of 19.

Table 3: Mean and standard deviation values for
preparation and inspection time (minutes).

Hbg Rb

util Dev util Dev

- Preparation 36.2 32.6 31.7 28.2
S Inspection 100.9 1025 | 107.0 139.1
= Total 137.1 135.1 138.7 167.3
Preparation 11.7 9.1 8.6 9.8
gé Inspection 21.0 245 26.3 24.8
Total 25.6 25.9 29.2 26.2

In addition to preparation and inspection times, the re-
viewers also logged the time when a fault was found. In Fig-
ure 2, the cumulative number of faults found is plotted
versus the time for an average reviewer (an average review-
er is created by standardizing the faults found by all review-
ers using a certain method with the number of reviewers
using that method). The plots show that an average Util re-
viewer was more efficient than an average Dev reviewer.
For class A faults, the difference is small and the slope does
not increase, indicating that Dev reviewers were at least as
efficient as Util reviewers, especially if development time
of use cases is taken into consideration.

The reviewers using the Util method show similar pat-
terns, while the reviewers using the Dev method do not
show similar patterns. There are the same patterns for class
A and A&B faults as for all faults. In these cases, the slopes
of Util-Hbg, Util-Rb and Dev-Rb do not increase. This in-
dicates that after the first faults are found (first use cases are
developed) there is a constant time difference between these
groups. The difference between Dev-Hbg and the others in-
creases, indicating that Dev-Hbg needed more time to de-
velop the use cases.

Consequently, there is a larger difference between the
treatments in Hbg than Rb. The treatments that developed
use cases needed more time, and this time was not used in
the Hbg case. This can be seen by looking at the inspection
times and also in the plots, where the curve for Dev-Rb does
not decrease in the end.

7.2. Efficiency and Effectiveness

In this section, the efficiency and effectiveness of the dif-
ferent treatments are evaluated. The efficiency and effec-
tiveness are evaluated for both places (Hbg and Rb) together
and separately as described in Section 5.4.

In Figure 3, the efficiency is shown for all faults, class A
and class A&B faults. The two first box plots of each class
of faults show Util and Dev when the reviewers from Hbg

All Faults - Standardised

* Utl-Hog
¢ Dev-Hbg
+ Util-Rb
- Dev-Rb

4

* Util- Hbg
¢ Dev-Hbg
+ Util-Rb
- Dev-Rb

A Faults - Standardised

Aand B Faults - Standardised

* Ul - Hog
¢ Dev-Hbg
+ Utl-Rb
- Dev-Rb

i

Minutes

L L L L L L L L & L L L
60 80 100 120 140 160 180 200 0 20 40 60 80 100
Minutes

L L L L L s A L L L L L L L
120 140 160 180 200 60 80 100 120 140 160 180 200
Minutes

Figure 2. The figures show the faults found over time for an average reviewer. The plots are, from left
to right, all faults, class A faults and class A&B faults. Preparation and inspection time are included in
the figures.

and Rb are combined; the next two are reviewers from Hbg
and the last two are reviewers from Rb. The same order is
present in Figure 4, where the effectiveness values are pre-
sented. In total, the Util groups were more efficient and ef-
fective for all faults, class A and class A&B faults. As
discussed in the previous section, the box plots show that
there is larger difference between groups in Hbg than in Rb.

In general, the order of efficiency as well as effectiveness
is, from high to low, Util-Hbg, Util-Rb, Dev-Rb, Dev-Hbg.
Thus, more faults are found when pre-developed use cases
are utilized in inspections. Note that for class A faults, Dev-
Rb is more effective than Util-Rb.

The hypothesis testing is performed as described in Sec-
tion 5.4. The p-values of the significance tests for Hg¢ and
HRrate are presented in Table 4. These show that the efficien-

Efficiency
T

Faults found per hour
‘
g i

|
|
€

L
I
[
|
| E
I
| |
I
I
: [
N 1

1y

L
A & B Faults

All Faults

Figure 3. Efficiency for all faults, class A
and class A&B faults. The box plot shows,
from left to right, both groups, Hbg and Rb.

Table 4: P-values for the hypotheses

Efficiency Effectiveness
Hbg Rb Hbg Rb
All 0.006 (S) 0.043(S) | 0.002(S) 0.462 (-)
A <0.001(S) 0.550(-) | 0.001(S) 0.416 (-
A+B 0.008(S) 0.097(-) | 0.006(S) 0.582(-)

cy and effectiveness are significantly higher for Util than for
Dev in Hbg, but not in Rb.

Regarding efficiency in Hbg, significant differences oc-
cur for all faults, class A and class A&B faults. In Rb, there
is only a significant difference between Util and Dev for all
faults. Hence, there is no significant difference obtained be-
tween the treatments in Rb for class A and Class A&B
faults.

Effectiveness
T

08F

o
3

o
e

-

=
e

: ‘

Faults found / Total
s
e ™

‘

o
~

0af

L L
All Faults A & B Faults

Figure 4. Effectiveness for all faults, class A
and class A&B faults. The box plot shows,
from left to right, both groups, Hbg and Rb.

A Faults

Il Util - Hbg
[Dev - Hbg
09r [util - Rb 09r
[Dev-Rb

1 3 5 7 9 1 13
Fault Number

B Faults C Faults

I Util - Hbg I Util - Hbg
[Dev - Hbg [Dev - Hby
[uti-Rb 09 [uti-Rb

[Dev-Rb [Dev-Rb

22 24 26 30 32 34 36 38

Fault Number Fault Number

Figure 5. Bar plots of the percentage of faults found by the groups. From left to right,
class A faults, class B faults and class C faults.

Regarding effectiveness in Hbg, the Mann-Whitney test
shows that there are significant differences for all faults,
class A and class A&B faults. There is, however, no signif-
icant difference between the treatments in Rb.

Consequently, there is a large difference between Util-
Hbg and Dev-Hbg and only a small between Util-Rb and
Dev-Rb. This may depend on two factors; one, more time is
used per use case by the reviewers in the Dev-Rb group, and
two, there may be a difference between the students’ capa-
bility in creating use cases between Hbg and Rb.

7.3. Faults

The faults were categorized in three classes depending
on the level importance from a user’s point of view. UBR is
designed to detect the most important faults, since the use
cases were prioritized by using the same criterion as the
faults. Hence, the probability of finding class A faults
should be higher than class B and in its turn class C faults.
Bar plots of distribution the faults that each treatment found
in the experiment are shown in Figure 5.

The plots show that there is a higher probability to find
class A and class B faults than class C faults. The plots also
indicate that different faults are found depending on wheth-
er the reviewers utilize use cases (Util) or develop use cases
(Dev). In order to evaluate whether the reviewers detected
different faults (Hgyy), @ chi-square test is used. The test is
performed for the different places separately, i.e. Util-Hbg
against Dev-Hbg and Util-Rb against Dev-Rb. The result of
the chi-square tests shows that they find different faults
(p<0.001 for Hbg and p=0.006 for Rb).

To measure the degree of similarities among the faults
found, a partial correlation measure is used, see Table 5.
The partial correlations verify the result, which shows that
there is only small correlation between the faults that the

different treatments found. However, there is a larger corre-
lation between the faults that the Util groups found as well
as the two Dev groups, at the different places (Hbg and Rb).
This indicates that the faults they found, depend more on the
treatments used and less on the students.

Table 5: Partial Correlations between the faults
found by the groups.

Util-Hbg Util-Rb Dev-Hbg Dev-Rb
Util-Hbg 1 0.767 -0.148 0.256
Util-Rb 1 0.225 -0.016
Dev-Hbg 1 0.751
Dev-Rb 1

7.4. Questionnaire Data

After the reviewers had finished the individual inspec-
tion, they filled in a questionnaire. The aim of the question-
naire is to explore how well the reviewers followed the
inspection process and what they think about the method.

Figure 6 shows the distribution of how difficult the re-
viewers found the inspection method. There is no large dif-
ference between the Util and Dev groups. However, it
seems like the reviewers in Rb found the inspection method
more difficult to use. The reason for this may be because the
reviewers in Hbg have better domain knowledge.

Figure 7 shows how the reviewers rank their conform-
ance with the inspection process. All of the participants
seem to have followed the process fairly well. The trend of
the data seems to be that the reviewers in Hbg generally felt
they followed the process closer than Rb, and that the Util
groups followed the process closer than the Dev groups.
Note that the inspection process includes everything carried
out during inspection, for example, log clock time, estimate

Perceived Difficultness to Use the Reading Technique

J IIHH | J

Very easy Easy Neither Difficult Very difficult

Figure 6. Bar plot of the perceived difficulty
of using the reading technique.

the risk of the faults found and utilizing or developing use
cases.

Furthermore, the perceived difficulty and conformance
with the process seem to coincide with treatment and group
although the difference is small. Since the reviewers in Hbg
have more domain knowledge, a prior expectation was that
they would find it easier and thereby follow the process bet-
ter. It was also expected that the Dev groups would find it
more difficult since they had to develop the tasks during in-
spection.

A question of whether they would like to use the method
again was asked. In the Hbg group, 88% would like to use
the method again, and in the Rb group, 67% would. No dif-
ferences could be observed between the Dev and Util
groups in the different places.

Consequently, the subjective data reveal no significant
differences between the treatments or the students. It also
seems like they have followed the process fairly well and
understood the reading technique they used.

8. Discussion

The results of the hypotheses are summarized below.

* Hgg — For both subject groups combined (Hbg and Rb),
the Util method was more efficient. In Hbg, the Util
method was significantly more efficient in Hbg for all
faults, class A and A&B faults. In Rb, the Util group
was significantly more efficient for all faults.

* Hgate — For both subject groups combined, the Util
method was more effective. In Hbg, the Util method
was significantly more effective in Hbg for all faults,
class A and A&B faults. In Rb, the Util group was not
significantly more effective in Rb.

* Hpgguit — The reviewers using the Util method found dif-
ferent faults than the reviewers using the Dev method.
The faults that the reviewers in the Util groups (Util-
Hbg vs. Util-Rb) found are correlated and the faults that

H '”H B_mn

All the time Most Often Sometimes

Not at all

Figure 7. Bar plot of the conformance of the
inspection process.

the reviewers in the Dev (Dev-Hbg vs. Dev-Rb) group
found are correlated.

The rationale for investigating these hypotheses is
whether UBR can be used without developing the use cases
prior to the inspection session and whether other faults are
found when a more active reading method is used. Utilizing
pre-developed use cases (Util) leads to that the reviewers
become more focused on detecting faults. On the other
hand, developing use cases during inspection (Dev) could
lead to that other faults are found, since they have to com-
prehend the document in greater detail to develop the use
cases. Travassos et al. [21] argue that it requires semantic
processing when reviewers need to actively develop arte-
facts during inspection. Thus, the semantic processing
could be one reason of detecting more faults. In this exper-
iment, the reviewers did not extract use cases from the de-
sign. They were given the purpose of every use case and had
to develop the tasks, which also requires semantic process-
ing, probably more than only following already developed
use cases.

If the development time of the use cases is considered, it
may be questioned whether it is more efficient to develop
them beforehand. The development of the use cases was es-
timated to about 30 minutes per use case for the taxi system.
Hence, if software organizations are not using use cases in
their development, they should not be developed for UBR
purposes only. Note that other parameters should also be
taken under consideration when deciding whether the use
cases should be developed beforehand or not. For example,
how difficult the system is to understand, the importance of
the use cases and the cost-effectiveness of software inspec-
tions.

The different treatments (Util and Dev) detected differ-
ent faults. Furthermore, there is a correlation between the
faults that were found by the reviewer groups using the
same method. This means that there is a higher probability

to find the same faults with a specific method. Especially
the results of the Util groups are similar.

A consequence of the discussion above is that UBR may
be more efficient if a hybrid approach is designed. An ex-
tension of UBR is to develop detailed use cases of the ones
that are considered crucial, less detailed of the important
ones and no development of the least important use cases.
Hence, the use cases could be categorized in groups depend-
ing on priority. Then, the use cases could be developed with
different details considering priority.

The data reveal larger differences between the methods
in Hbg than in Rb. An explanation of this may be that the
Dev-Rb reviewers used more inspection time than the other
groups (about 30 minutes more). The reviewers have been
differently introduced to the methods at the places depend-
ing on their experiences and courses taken before the exper-
iment. The differences between the places, according to
their own answers in the experience questionnaire, are
mostly on the language used (SDL) and taxi management
systems. About programming, inspections and use cases,
the subjects think they have similar knowledge. Although
this is the case, the Dev groups did not perform equally well.
A reasonable explanation may be that the students in Hbg
are less experienced. The students in Hbg were third-year
Bachelor students and in Rb they were fourth-year Master
students. Furthermore, the education programme is differ-
ent and some of the students in Rb have industrial experi-
ence. Consequently, less experience may result in less
efficiency and effectiveness, especially for the Dev groups,
since they had to develop use cases.

The impact of experience is discussed by Basili et al. [3],
when analyzing conducted defect-based reading experi-
ments [16]. They argue that experienced reviewers are
needed in order to utilize the benefits of DBR. This since the
reviewers have to develop artefacts during inspection. The
impact of experience on inspections is also investigated and
discussed by Cheng and Jeffery [4]. They argue that experi-
enced reviewers do not need much pre-developed informa-
tion when inspecting. It is more important to have a
decomposition strategy, which experienced reviewers are
able to set on their own. A similar effect is shown in this ex-
periment when comparing the Dev groups at different plac-
es. The reviewers in Rb are more experienced than
reviewers in Hbg. Hence, they may have an advantage when
use cases need to be developed during inspection.

In all UBR experiments, the UBR variant with pre-devel-
oped use cases has been used (called Util in this paper). The
design document has been the same for all experiments, ex-
cept for some updates between the first and second experi-
ment. Hence, a comparison of the mean efficiency and
effectiveness values are possible in order to compare the
students’ performance of the three experiments. For all
faults, both the efficiency and effectiveness values are equal

Table 6: Efficiency and effectiveness values of
UBR for the three experiments.

Exp3 Exp3

Expl Exp2 Hbg Rb

— All faults 5.3 5.6 6.0 5.6
P

g & classA 2.6 2.7 2.8 2.3

£ £ classB 18 18 22 25
[

“E classc 09 09 10 09

All faults 0.29 0.31 0.34 0.32
class A 0.43 0.43 0.47 0.39
class B 0.30 0.31 0.35 0.39
class C 0.17 0.20 0.20 0.19

Effectiveness

or slightly higher for the experiment presented in this paper
than the previous two, see Table 6. This indicates that the
students have performed at least as well as in the other ex-
periments.

9. Conclusion

Three experiments of UBR are described in this paper
with a focus on the analysis of the third. The common result
is that UBR works as intended and is efficient as well as ef-
fective in guiding reviewers during the preparation phase of
software inspections. The prioritization of UBR forces re-
viewers to focus on the important parts of the software arte-
fact during inspection, which in its turn makes the
inspection more efficient and effective in detecting impor-
tant faults.

From the first experiment, it is concluded that the re-
viewers find different faults using prioritized use cases
compared to randomly ordered use cases. Furthermore,
UBR (prioritized use cases) is significantly more effective
and efficient than randomly ordered use cases in finding
faults of high importance for a user.

From the second experiment, it is concluded that UBR is
significantly better than CBR in terms of both effectiveness
and efficiency in finding the faults that affect the user the
most. The results show that reviewers applying UBR are
more efficient and effective in detecting the most critical
faults from a user’s point of view than reviewers using
CBR.

From the third experiment, it is concluded that is more
efficient to use pre-developed use cases for UBR. However,
there is a trade-off of whether the use cases should be devel-
oped beforehand or on the fly during inspection. The benefit
of the latter is that other faults are found, since the reviewers
are not that controlled as in the case where they utilize al-
ready developed use cases. Hence, there is no clear answer

of how much information that is needed for UBR. It de-
pends on the experience of the reviewers, the software or-
ganization and effort used for inspections.

The series of experiments presented in this paper shows
that UBR has the potential to become an important reading
technique. However, more research is needed and there are
several areas that should be considered in order to further
develop and investigate UBR. Among these are replica-
tions, time-controlled reading (add time limits to the use
cases), reading techniques for inspection meetings and case
studies in software organizations.

Acknowledgement

This work was partly funded by The Swedish National
Agency for Innovation Systems (VINNOVA), under a grant
for the Center for Applied Software Research at Lund Uni-
versity (LUCAS).

References

[1] Aurum, A., Petersson, H. and Wohlin, C., “State-of-the-Art:
Software Inspections after 25 Years”, to appear in Software Test-
ing, Verification and Reliability, 2002.

[2] Basili, V. R., Green, S., Laitenberger, O., Lanubile, F., Shull,
F., Serumgard, S. and Zelkowitz, M. V., “The Empirical Investi-
gation of Perspective-Based Reading”, Empirical Software Engi-
neering: An International Journal, 1(2):133-164, 1996.

[3] Basili, V. R., Shull, F. and Lanubile, F., “Building Knowledge
through Families of Experiments”, IEEE Transactions on Soft-
ware Engineering, 25(4):456-473, 1999.

[4] Cheng, B. and Jeffery, R., “Comparing Inspection Strategies
for Software Requirement Specifications”, Proc. of the 8th Aus-
tralian Software Engineering Conference, pp. 203-211, 1996.

[5] Dunsmore, A., Roper, M. and Wood, M., “Further Investiga-
tions into the Development and Evaluation of Reading Techniques
for Object-Oriented Code Inspection”, Proc. of the 24th Interna-
tional Conference on Software Engineering, pp. 47-57, 2002.

[6] Fagan, M. E. “Design and Code Inspections to Reduce Errors
in Program Development”, IBM System Journal, 15(3):182-211,
1976.

[7] ITU-T Z.100 Specification and Description Language, SDL,
ITU-T Recommendation Z.100, 1993.

[8] ITU-T Z.120 Message Sequence Charts, MSC, ITU-T Recom-
mendation Z.120, 1996.

[9] Jacobson, I., Christerson, M., Jonsson, P. and Overgaard G.
Object-Oriented Software Engineering: A Use Case Driven Ap-
proach, Addison-Wesley, USA, 1992.

[10] Knight, J. C. and Myers, A. E., “An Improved Inspection
Technique”, Communications of ACM, 36(11):50-69, 1993.

[11] Lauesen, S., Software Requirements — Styles and Techniques,
Addison-Wesley, UK, 2002.

[12] Martin, J. and Tsai, W. T., “N-Fold Inspection: A Require-
ments Analysis Technique”, Communications of ACM, 33(2):225-
232, 1990.

[13] Musa, J. D., Software Reliability Engineering: More Reliable
Software, Faster Development and Testing, McGraw-Hill, USA,
1998.

[14] Olofsson, M. and Wennberg, M., “Statistical Usage Inspec-
tion”, Master’s Thesis, Dept. of Communication Systems, Lund
University, CODEN: LUTEDX (TETS-5244)/1-81/(1996)&local
9, 1996.

[15] Petersson, H., Thelin, T., Runeson, P. and Wohlin, C., “Cap-
ture-Recapture in Software Inspections after 10 Years Research —
Theory, Evaluation and Application”, CODEN:LUTEDX (TETS-
7184) /1-16 / 2002 & local 14, Dept. of Communication Systems,
Lund University, 2002. http://www.telecom.lth.se/Personal/tho-
mast/reports/Crc10Years_TechnicalReport.pdf. (submitted to
Journal of Systems and Software, 2001).

[16] Porter, A., Votta, L. and Basili, V. R., “Comparing Detection
Methods for Software Requirements Inspection: A Replicated Ex-
periment”, |EEE Transactions on Software Engineering,
21(6):563-575, 1995.

[17] Saaty, T. L., The Analytic Hierarchy Process, McGraw-Hill,
USA, 1980.

[18] Siegel, S. and Castellan, N. J., Nonparametric Statistics for
the Behavioral Sciences, McGraw-Hill, Singapore, 1988.

[19] Thelin, T., Runeson, P. and Regnell, B., “Usage-Based Read-
ing — An Experiment to Guide Reviewers with Use Cases”, Infor-
mation and Software Technology, 43(15):925-938, 2001.

[20] Thelin, T., Runeson, P. and Wohlin, C., “An Experimental
Comparison of Usage-Based and Checklist-Based Reading”, sub-
mitted to IEEE Transactions on Software Engineering, 2002,
(shorter version available at http://www.cas.mcmaster.ca/wise/
wise01/ThelinRunesonWohlin.pdf).

[21] Travassos, G., Shull, F., Fredericks, M., Basili, V. R., “De-
tecting Defects in Object-Oriented Designs: Using Reading Tech-
niques to Increase Software Quality”, Proc. of the International
Conference on Object-Oriented Programming Systems, Languag-
es & Applications, 1999.

[22] Votta, L. G., “Does Every Inspection Need a Meeting?”,
Proc. of the 1st ACM SIGSOFT Symposium on Foundations of
Software Engineering, ACM Software Engineering Notes,
18(5):107-114, 1993.

[23] Wohlin, C., Runeson, P., Host, M., Ohlsson, M. C., Regrell,
B. and Wesslén, A., Experimentation in Software Engineering: An
Introduction, Kluwer Academic Publisher, USA, 2000.

	Thomas Thelin1, Per Runeson1, Claes Wohlin2, Thomas Olsson1 and Carina Andersson1
	1Dept. of Communication Systems
	Lund University
	Box 118, SE-22100 Lund, Sweden
	{thomast, perr, thomaso, carinaa}@telecom.lth.se
	Abstract
	1. Introduction
	2. Usage-Based Reading
	3. Usage-Based Reading Experiments
	Table 1: The main research questions in the series of UBR experiments.
	3.1. First Experiment
	3.2. Second Experiment
	3.3. Third Experiment

	4. Experiment Artefacts
	4.1. Documents
	Figure 1. An example of a use case written in task notation. The use case describes an alarm event. To the left is an example of...

	4.2. Fault Classification

	5. Experiment Planning
	5.1. Subjects
	5.2. Variables
	5.3. Hypotheses
	5.4. Design
	5.5. Threats to Validity

	6. Experiment Operation
	Table 2: Schedule for the Experiment. Note that (A) was only performed in Ronneby.

	7. Analysis
	7.1. Preparation and Inspection Time
	Table 3: Mean and standard deviation values for preparation and inspection time (minutes).
	Figure 2. The figures show the faults found over time for an average reviewer. The plots are, from left to right, all faults, class A faults and class A&B faults. Preparation and inspection time are included in the figures.

	7.2. Efficiency and Effectiveness
	Table 4: P-values for the hypotheses
	Figure 3. Efficiency for all faults, class A and class A&B faults. The box plot shows, from left to right, both groups, Hbg and Rb.
	Figure 4. Effectiveness for all faults, class A and class A&B faults. The box plot shows, from left to right, both groups, Hbg and Rb.
	Figure 5. Bar plots of the percentage of faults found by the groups. From left to right, class A faults, class B faults and class C faults.

	7.3. Faults
	Table 5: Partial Correlations between the faults found by the groups.
	Figure 6. Bar plot of the perceived difficulty of using the reading technique.
	Figure 7. Bar plot of the conformance of the inspection process.

	7.4. Questionnaire Data

	8. Discussion
	Table 6: Efficiency and effectiveness values of UBR for the three experiments.

	9. Conclusion
	Acknowledgement
	References
	[1] Aurum, A., Petersson, H. and Wohlin, C., “State-of-the-Art: Software Inspections after 25 Years”, to appear in Software Testing, Verification and Reliability, 2002.
	[2] Basili, V. R., Green, S., Laitenberger, O., Lanubile, F., Shull, F., Sørumgård, S. and Zelkowitz, M. V., “The Empirical Investigation of Perspective-Based Reading”, Empirical Software Engineering: An International Journal, 1(2):133-164, 1996.
	[3] Basili, V. R., Shull, F. and Lanubile, F., “Building Knowledge through Families of Experiments”, IEEE Transactions on Software Engineering, 25(4):456-473, 1999.
	[4] Cheng, B. and Jeffery, R., “Comparing Inspection Strategies for Software Requirement Specifications”, Proc. of the 8th Australian Software Engineering Conference, pp. 203-211, 1996.
	[5] Dunsmore, A., Roper, M. and Wood, M., “Further Investigations into the Development and Evaluation of Reading Techniques for Object-Oriented Code Inspection”, Proc. of the 24th International Conference on Software Engineering, pp. 47-57, 2002.
	[6] Fagan, M. E. “Design and Code Inspections to Reduce Errors in Program Development”, IBM System Journal, 15(3):182-211, 1976.
	[7] ITU-T Z.100 Specification and Description Language, SDL, ITU-T Recommendation Z.100, 1993.
	[8] ITU-T Z.120 Message Sequence Charts, MSC, ITU-T Recommendation Z.120, 1996.
	[9] Jacobson, I., Christerson, M., Jonsson, P. and Övergaard G. Object-Oriented Software Engineering: A Use Case Driven Approach, Addison-Wesley, USA, 1992.
	[10] Knight, J. C. and Myers, A. E., “An Improved Inspection Technique”, Communications of ACM, 36(11):50-69, 1993.
	[11] Lauesen, S., Software Requirements - Styles and Techniques, Addison-Wesley, UK, 2002.
	[12] Martin, J. and Tsai, W. T., “N-Fold Inspection: A Requirements Analysis Technique”, Communications of ACM, 33(2):225- 232, 1990.
	[13] Musa, J. D., Software Reliability Engineering: More Reliable Software, Faster Development and Testing, McGraw-Hill, USA, 1998.
	[14] Olofsson, M. and Wennberg, M., “Statistical Usage Inspection”, Master’s Thesis, Dept. of Communication Systems, Lund University, CODEN: LUTEDX (TETS-5244)/1-81/(1996)&local 9, 1996.
	[15] Petersson, H., Thelin, T., Runeson, P. and Wohlin, C., “Capture-Recapture in Software Inspections after 10 Years Research -...
	[16] Porter, A., Votta, L. and Basili, V. R., “Comparing Detection Methods for Software Requirements Inspection: A Replicated Experiment”, IEEE Transactions on Software Engineering, 21(6):563-575, 1995.
	[17] Saaty, T. L., The Analytic Hierarchy Process, McGraw-Hill, USA, 1980.
	[18] Siegel, S. and Castellan, N. J., Nonparametric Statistics for the Behavioral Sciences, McGraw-Hill, Singapore, 1988.
	[19] Thelin, T., Runeson, P. and Regnell, B., “Usage-Based Reading - An Experiment to Guide Reviewers with Use Cases”, Information and Software Technology, 43(15):925-938, 2001.
	[20] Thelin, T., Runeson, P. and Wohlin, C., “An Experimental Comparison of Usage-Based and Checklist-Based Reading”, submitted ...
	[21] Travassos, G., Shull, F., Fredericks, M., Basili, V. R., “Detecting Defects in Object-Oriented Designs: Using Reading Techn...
	[22] Votta, L. G., “Does Every Inspection Need a Meeting?”, Proc. of the 1st ACM SIGSOFT Symposium on Foundations of Software Engineering, ACM Software Engineering Notes, 18(5):107-114, 1993.
	[23] Wohlin, C., Runeson, P., Höst, M., Ohlsson, M. C., Regnell, B. and Wesslén, A., Experimentation in Software Engineering: An Introduction, Kluwer Academic Publisher, USA, 2000.

	How much Information is Needed for Usage-Based Reading? - A Series of Experiments
	2Dept. of Software Eng. and Computer Science Blekinge Institute of Technology Box 520, SE-372 25 Ronneby, Sweden claes.wohlin@bth.se

