C. Wohlin, "Evaluation of Software Quality Attributes during Software Design",
Informatica, Vol. 18, No. 1, pp. 55-70, 1994.

Informatica 18 (1994) 55-70 55

EVALUATION OF SOFTWARE QUALITY ATTRIBUTES

DURING SOFTWARE DESIGN

C. Wohlin

Dept. of Communication Systems, Lund Institute of Technology, Lund University, Box 118,

S-221 00 Lund, Sweden

Keywords: quality evaluation, performance, functional analysis, software reliability, simulation, soft-

ware metrics, Cleanroom

Edited by: M. Kubat
Received: October 28, 1993

Revised: January 18, 1994

Accepted: I'ebruary 28, 1994

This article presents an evaluation method of software quality attributes during soft-
ware design with a high-level design technique. The attributes considered are real time
functional behaviour, performance (in terms of capacity) and reliability. The method
is based on transformation of the software design documents and simulation models of
hardware architecture in terms of processors, communication channels etc. and the en-
vironment in terms of usage of the system. The method provides an opportunity to
concentrate on software, architecture and usage of the system one by one and facilitates
analysis of the software system long before it is taken into operation, which is particularly
valuable for safety-critical software and other complex software systems. This implies
that important information concerning both functionality, performance and reliability
can be studied early in the development, so that re-design can be performed instead of
implementing a poor solution. These carly insights become more and more

1 Introduction

The quality of the software in the operational
phase is a critical issue. The cost for software fail-
ures in the operational phase of software systems
today is very high, both in risks and economical
terms. This is in particular the case for safety-
critical software and other large software systems
where the society depends heavily on the software.

The software community is not in control of the
quality of the software. Cleanroom Software En-
gineering [5], [6] and [10] is a promising attempt in
dealing with these problems, but it is not enough.
Methods are needed for early analysis of function-
ality, performance as well as reliability.

The dependability of software systems is highly
due to getting things right from the beginning.
This is essential since the main principles of a
software system are often built into the product
at an early stage of the software life cycle. The
inevitable conclusion {from this is that it is neces-
sary to have methods for modelling and analysing
the behaviour of the software long before it goes

into operation.

A method for evaluation of performance, relia-
bility and functional aspects of software systems
at an early stage is presented. The method sup-
ports prediction of important quality attributes
al the softwarc design phase. The cvaluation and
prediction is based on the actual software design
and simulation models of architecture and user
behaviour.

The article presents initially some objectives
of the work before discussing some related work.
The concepts in the method are then described
from a general point of view. The general con-
cepts are exemplified with SDL (Specification and
Description Language, standardized by ITU, [3]
and [4]), i.e. transformation rules are presented
and an example is described to show the applica-
bility of the method. Finally some general con-
clusions are presented.

56 Informatica 18 (1994) 55-70

2 Objectives

The main objective of this work is to formulate a
general (independent of software description tech-
nique) method for functional, performance and
reliability evaluation at an early stage of software
development. The long term objective is to for-
mulate a method that can be applied throughout
the software life cycle to evaluate and assess the
quality attributes of software systems. The objec-
tive is that the principles presented can be used
throughout the software life cycle even if the ac-
tual level of detail in the models used may vary
depending on available information.

The aim is to provide a method for evaluation
of functional real time behaviour, performance (in
terms of capacity) and reliability of software de-
sign descriptions. The method is based on that
the software design descriptions are specified with
a well-defined language, for example SDL, which
can be transformed automatically into a simula-
tion model of the software design. A tool proto-
type performing the transformations of SDL de-
scriptions into a simulation model of the software
has been implemented, [18] and [8]. It must be
stressed that SDL is used as an example assum-
ing that SDL is the normal software development
method at the company applying the proposed
method.

Transformation rules have been formulated for
SDL, hence showing that it is possible to actu-
ally use the design in the evaluation of quality
attributes instead of formulating a separate sim-
ulation model of the behaviour of the software.
The transformed model is then distributed on a
simulation model of the architecture. The input
to the system (transformed software design dis-
tributed on a simulation model of the architec-
ture) is then modelled in a usage model, which is
a simulation model of the anticipated usage of the
system. The method consists hence of three sep-
arate models: software model, architecture model
and usage model.

The software model is a direct transformation
of the actual design of the software to be used in
the final system. The usage model and the ar-
chitecture model are formulated in the same lan-
guage as used in the software design, but these
two models are supposed to be simulation models
of the actual architecture and of the anticipated
behaviour of the users of the system. The three

C. Wohlin

models are hence described with the same descrip-
tion technique which is the same technique as the
softwarc is being designed in. The strength of the
method is its opportunity to combine the actual
software design with simulation models.

The usage model is used as a traffic generator
to the system, i.e. it sends signals to the system
in a similar way as expected when the system is
put into operation. The reliability of the soft-
ware can be evaluated since failures occur as they
would in operation, since the usage model oper-
ates with a usage profile which describes the an-
ticipated usage in terms of expected events. The
capacity of the system is determined based on the
inputs coming into the system and measurements
on loads and throughputs. The analysis allows
for analysis of bottlenecks in the system as well
as delays. The real time functional behaviour is
analysed in terms of locating unexpected func-
tional behaviour. In particular, it is possible to
find functional behaviour that is a direct conse-
quence of the delays in the system.

The difference between the work presented here
and other approaches is the opportunity to com-
bine the software design with simulation models
described in the same description technique as the
software design. The idea in itself is general and
no direct limitations concerning for which design
techniques this approach can be applied have been
identified. The objective has neither been to for-
mulate a tool set nor to advocate the use of SDL.
The major difference with existing approaches is
that a special notation has not been used and
hence the method is believed to be general and
the method aims at more than one quality at-
tribute. This implies that it should be possible to
adapt the general idea and formulate transforma-
tion rules etc. for other design techniques as well.
The aim is to provide a framework and a method
supporting early evaluation based on the actual
software design as well as other description levels
in the future.

The advantages with the proposed scheme can
be summarized by:

_ the evaluation of quality attributes can be
performed at an early stage, ji.e. during the
design (cf. below with for example statistical

usage testing),

— the concepts are general even though trans-
formation rules have to be formulated for

EVALUATION OF SOFTWARE QUALITY ...

cach specific design language,

— the actual software design is included in the
evaluation method hence allowing for a good
basis for decisions regarding the quality of
the software,

— the method aims at analysing performance,
reliability and real time functional behaviour
hence no separate analysis has to be per-
formed for cach quality attribute.

3 Relation to other work

Some approaches resembling the functional and
the performance evaluation can be found, see for
example [1], [7], [14] and [15]. These methods do
neither support reliability evaluation of the soft-
ware nor do they base the analysis on the actual
software design. One of the major differences with
the approach presented in this article is its gener-
ality. The objective has been to clearly separate
method from tools. The approaches presented in
[1], [7], (14] and [15] primarily aims at using a
"home made” notation for the problem and then
building a tool supporting the proposed notation
and method. The method presented here takes
a more general approach by introducing concepts
and ideas, which can be adapted to the design
method and tools used in the ordinary software
development process. The objective is to make
the method independent from any specific de-
scription technique and tool environment.

Statistical certification of software, including
usage modelling, is currently an area evolving
rapidly. Statistical usage testing as a method
for certification was initially proposed within the
Cleanroom method [5], [6] and [10]. A similar
approach is currently used and being developed
at AT & T. 1t is concluded from the projects at
AT & T, (9], [11] and [12], that the cost for sys-
tem test and the overall project cost are reduced
considerably. In [11], it is stated that the cost re-
duction for system test for a "typical” project is
56%, which is 11.5% of the total project cost. Us-
age modelling from Markov chains are discussed
in [13) and [16]. The opportunity to perform carly
software reliability estimation from high-level de-
sign documents using dynamic analysis has been
presented in [19]. The reliability certification is
normally applied during the test phase, with ex-
ception of the work presented in

Informatica 18 (1994) 55-70 57

4 Overview: Modelling
concepts

Three models are defined to formalise the mod-
elling and evaluation process. The mapping be-
tween reality and models are depicted in figure 1.
The models are denoted:

— Software Model
— Usage Model
— Architecture Model

The models, which will be explained below, are in-
dependent in the sense that the Software Model,
the Usage Model and the Architecture Model are
derived independently and they can be combined
into an Evaluation/Simulation Model. The simu-
lation is foremost intended to be used during the
software design,

Evaluation/Simulation
Users model
I Usage

T model
Services: Input |to
- Categories
- Functions — Softwarey

% model
Sysl‘:f:“ . Distributed 04
architectures:
- Communication \
- Protocols ™~ Architecture
- Nodes model
Hardware and //'
software
platforms

Figure 1 Mapping of the Jayers of users and sys-
tem on the modelling concepts.

The Software Model and the Architecture
Model are linked to each other through the distri-
bution of the software units in the architecture.
This means that the Software Model is allocated
to the Architecture Model in a way that describes
the actual distribution of the software in the ar-
chitecture. The Usage Model generates the in-
put to the simulated system (Software Model allo-
cated on the Architecture Model). Thus the three
models are connected together into the Evalua-
tion/Simulation Model.

5 Model description

The models are derived in the following manner:

58

Informatica 18 (1994) 55-70

— Software Model

The software descriptions (specification or
design) are transformed to include the real
time aspect of the software, which normally is
not included in the software design. As part
of the transformation the user is requested
to add time consumption for executing dif-
ferent concepts of the software design. This
addition of time consumption must be made
based on prior knowledge or knowledge of
the current system. The Software Model de-
scribes the application software, i.e. the ser-
vices that the system provides to the user.

The content of the Software Model is shown
in figure 2.

Software Model:

- Services and functions
- Logical flow

- Relative service times

Iigure 2: Content of the Software Model.

— Usage Model

The external usage is not normally described
unless a reliability certification is to be made
or as input to a performance simulation. The
Usage Model must describe the structural us-
age of the analysis object (which refers to the
part of the system being evaluated) and it
shall be complemented with a usage profile to
allow for reliability certification. The struc-
tural usage describes the behaviour of the
user without quantification of the usage. The
latter is added with the usage profile. Usage
modelling with Markov chains is discussed in
[13] and [16]. It is, however, favourable if
the Usage Model is formulated in the same
description technique as used in the software
design. This is clearly possible as shown in
(17] and in the example below.

The content of the usage model is shown in
figure 3.

. Wohlin

Usage Model:
- Analysis object
- User categories
- Usage states
- Input probabilities/
intensities
-- Service demand

Figure 3: Content of the Usage Model

— Architecture Model

The architecture is described in terms of a
performance simulation model. This type of
model is quite common and it is used exten-
sively when doing performance analysis. The
aspects to find are those governing the perfor-
mance behaviour of the architecture. The ob-
jective here is to define a performance model
of the architecture in the same description
technique as has been used in the software
design. This is also further discussed in [17]
and in the example below.

The content of the architecture model is
shown in figure 4.

Architecture Model:

- Topology

- Interconnection devices

- Resources and servers

- Operating system features
- Algorithms (e.g. scheduling
and routing)

- Flow-paths

- Capacity

Figure -1: Content of the Architecture Model.

The concepts of the method have hence been
described and to illustrate the application of the
method SDL is used. First a brief introduction to
SDL is given, secondly the transformation rules
for SDL are described and finally an example us-
ing the method is presented.

6 Brief introduction to SDL

The ITU Specification and Description Language,
(2], (3] and [4], known as SDL, was first defined
in 1976. It has been extended and reorganised
in four study periods since this first definition.
These have resulted in new recommendations for
the language published every fourth year.

EVALUATION OF SOFTWARE QUALITY ...

SDL is intended to be well-suited for all sys-
tems whose behaviour can be effectively modelled
by extended finite-state-machines and where the
focus is to be placed especially on interaction as-
pects. SDL is a unique language which has two
different forms, both based on the same semantic
model. One is called SDL/GR (graphical repre-
sentation) and is based on a set of standardized
graphical symbols. The other is called SDL/PR
(phrase representation) and is based on program-
like statements.

The main concepts in SDL are system, blocks,
channels, processes and signals. These concepts
form the basis for SDL, where system, blocks and
channels describe the static structure while the
dynamic behaviour is modelled with the processes
and its signals. The processes are described by
several symbols.

System: Each system is composed of a number
of blocks connected by channels. Each block in
the system is independent from every other block.
Each block may contain one or more processes
which describe the behaviour of the block. The
only way of communication between processes in
two different blocks is by sending signals that are
transported by channels. The criteria leading to
a certain division of the system into blocks may
be to define parts of a manageable size, to create
a correspondence with actual software/hardware
division, to follow natural functional subdivisions,
to minimize interactions, and others.

Block: Within a block, processes can commu-
nicate with one another either by signals or shared
values. Thus the block provides not only a conve-
nient mechanism for grouping processes, but also,
a boundary for the visibility of data. For this rea-
son, care should be taken when defining blocks
to ensure that the grouping of processes within
a block is a reasonable functional grouping. In
most cases it is useful to break the system (or
block) into functional units first and then define
the processes that go into the block.

Channel: Channels are the communication
medium between different blocks of the system
or between blocks and the environment.

Signal: Signals can be defined at system level,
block level, or in the internal part of a process def-
inition. Signals defined at system level represent
signals interchanged with the environment and
between system blocks. Signals defined at block

Informatica 18 (1994) 55-70 59

level represent signals interchanged betweea pro-
cesses of the same block. Signals defined within
a process definition can be interchanged between
instances of the same process type or between ser-
vices in the process. Signals are sent alorg sig-
nal routes between processes and on channels be-
tween blocks or when interchanged with the envi-
ronment.

Process: A process is an extended finite state-
machine which defines the dynamic behaviour of
a system. The extended finite-state-machine han-
dles data within tasks and decisions. Prccesses
are basically in a state awaiting signals. When
a signal is received, the process responds by per-
forming the specific actions that are specified for
cach type of signal that the process can receive.
Processes contain many different states to allow
the process to perform different actions when a
signal is received. These states provide the mem-
ory of the actions that have occurred previously.
After all the actions associated with the receipt of
a particular signal have been performed, the next
state is entered and the process waits for another
signal. The basic concepts within a process are
further described below.

Processes can either be created at the tine the
system is created or they can be created as a re-
sult of a create request from another proczss. In
addition, processes can live forever or thsy can
stop by performing a stop action. A process def-
inition represents the specification of a type of
process; several instances of the same type may
be created and exists at the same time; they can
execute independently and concurrently.

7 Transformation rules for SDL

7.1 SDL concepts

Each SDL concept or symbol must be associated
with parameters that describe its behaviour in
terms of performance, to create a Software Model
that together with the Architecture Model and
the Usage Model shall be put together to the sim-
ulation model. Initially the method has been fo-
cused on the most common used councepts, de-
noted Basic concepts (process level), wtich de-
scribes the behaviour within a process.

The parameters that can be associated with the
symbols are:

60 Informatica 18 (1994) 55-70

— time, i.e. a delay in terms of an execution
time (random or constant),

— probability, i.e. the probability for different
outcomes when passing the symbol during
the execution,

— signal reception or sending (intensities). The
reception of a signal is based on the execu-
tion in another part of the analysis object
or the environment, while a signal sending is
based on the actual execution of the anal-
ysis object. This means that no intensity
has to be directly associated with the sym-
bol, but the symbol must be associated with
a signal reception or sending all the same.
The intensity is a consequence of the execu-
tion. The arrival intensities for signals arriv-
ing from the environment of the analysis ob-
ject is part of the Usage Model, which models
the surrounding of the analysis object.

— dynamic behaviour, i.e. creation or deletion
of a process.

An estimate of one of these parameters can either
be only one estimate or a combination of several
estimates that have been weighed together. The
basic concepts are associated with the parameters
as follows:

Basic concepts (process level):

State - execution times, i.e. the times it takes to
leave and enter a state respectively. Each trans-
action results in one time leaving a state and one
time for entering a state, except when the trans-
action means that the process terminates its exe-
cution.

Input - signal reception and execution time, i.e.
the time it takes to remove the signal from the
queue and start the execution.

Output - execution time and signal sending.
The execution time shall correspond to the time
it takes to send the signal, while the signal send-
ing is a direct consequence of reaching the output
symbol.

Save - no parameters are associated with the
save symbol, since it is assumed that the han-
dling of the queue of a process is carried out by
the processor responsible for that specific software
process. This means that any delays caused by
the queueing discipline shall be modelled by the
Architecture Model. The save symbol has to be
present after transformation as well to be able to
save the right signals in the queue.

C. Wohlin

Task - execution time, i.e. the time it tekes to
perform the actions specified in the task.

Decision - execution time and probability. The
execution time must correspond to the time it
takes to evaluate the statement in the d:cision
symbol and to choose execution path based on the
evaluation. In cases when the criterion within the
decision box can not be evaluated based on the
specification, i.e. the symbol does only contain
informal text, a probability for different paths
is needed. The probability or probabilities shall
model the number of times a certain exccution
path is chosen, based on the evaluation, corapared
to the total number of times the symbol is nassed.
The number of probabilities will be one less than
the number of possible paths to leave the deci-
sion symbol, since the sum of the probabilities
are equal to one.

Create request - execution time and dynamic
creation. The execution time models the time it
takes to create a new process and initiate all its
values. The dynamic creation must be a part of
the Software Model, since it is a vital par: of the
dynamic behaviour of the analysis object. This
means that the symbol cannot just be translated
to a delay.

Terminate process - execution time and dy-
namic deletion. The explanation is simila~ to the
one about ”create request”, with the diference
that a process is terminated instead of created.

Timer - Signal sending. The set and the re-
set command respectively are carried out within
a task, which means that the execution tire is as-
sociated with the task concept and not the timer
concept. But the timer also means that a signal is
sent to the process itself, and this signal sending
has to be modelled in the Software Model. The
internal signal sending is performed with the set
concept.

Procedure - Execution time. The procedure
symbols (call and return) themselves are only as-
sociated with execution times, while the result of
the procedure call, i.e. the execution of the pro-
cedure, is modelled symbol by symbol within the
procedure and according to the rules for respec-
tive symbol. This means that the procedure call
symbol cannot be translated merely to a delay.
In other words the procedure call symbol must
remain in the Software Model.

Macro - The macro symbol is substituted with

EVALUATION OF SOFTWARE QUALITY ...

the content of the macro before the execution,
which means that it can be disregarded from a
performance point of view.

Join and label - Join and label have two main
functions, either showing that the flow description
continues on another page (in the description) or
describing a ”goto” in the program. The latter
means that a jump is made to another part of the
program. Instead of handling these two functions
separately, it is assumed that the jump is done
instantaneously independent if the jump is done
to the next line or to another part of the program.
This means that join and label are assumed to
have no influence on the performance.

Asterisk - The asterisks are only a shorthand
to be used as a wildcard, for example in a save
symbol, where it means that all signals not ex-
plicitly received shall be saved. This shorthand is
merely a simplification when working with SDL
and it does not influence the behaviour of the ac-
tual implementation.

This discussion, of which performance parame-
ters that have to be associated with the SDL sym-
bols, leads to that transformation rules for each
symbol can be formulated.

7.2 Example of some transformation
rules

The transformation means that the system design
in SDL is transformed into SDL descriptions de-
scribing the system from a performance perspec-
tive. Based on the parameters identified for each
symbol transformation rules can be found. The
transformation rules below include in some places
symbols that are optional depending on the actual
behaviour of the original description. A major
objective for all concepts is that, if it is possible
to put two or more transformations together it
shall be done. For example, the execution times
for two symbols after each other shall be put to-
gether to one delay. It must also be noted that
the whole delay for a symbol is always assumed to
be done first, before the actual event described by
the symbol occurs. The delay can either be given
a specific value or a random time, with some mean
value, from some distribution. This means that
when the task (set timer) is referred, it shall be
possible to incorporate a random or constant de-
lay if wanted. The assignment of values and the
c

Informatica 18 (1994) 55-70 61

Basic concepts (process level): The ba-
sic concepts describe the dynamic behav our of
a process and they are translated to basc con-
cepts describing their behaviour from a perfor-
mance perspective. Most of the concepts, as de-
scribed above, mean some sort of executicn time
(i.e. delay). The execution time can always be
modelled with a task (set timer) and a state in
which the process stays until the timer signal is
received. Instead of describing this for each con-
cept below a new meta-concept, which will be de-
noted "delay”, will be used.

Definition of Delay:

Task (set timer): The timer is set to the time it
takes to execute a particular symbol.

State: The ”symbol” remains in this sta.e until
the timer signal is received.

The delay concept will be a shorthand for a task
where a timer is set and a state where the process
is waiting until the timer signal is received. The
delay concept also includes the possibility of gen-
crating a random number corresponding tc the ex-
ccution time. The random number is drav/n from
a distribution with parameters that model the be-
haviour of the execution of the symbol. Some ex-
amples of how the basic concepts are tran:iformed
are:

State

Delay: The state symbol is really two cifferent
events that is leaving and entering a state respec-
tively. The entering event is often referred to as
"nextstate” from the perspective of the state we
are leaving. This means that the delay can be
divided into two parts, i.e. one delay for leaving
the state and one delay for entering a new state
(perhaps the same).

Input

m: The signal must be received, since it can
influence the forthcoming behaviour of the anal-
ysis object. Delay: The time to take tte signal
from the queue and to evaluate what to co has to
be modelled as a delay.

Save

The save symbol will remain unchanged since it
is needed to be able to handle the queie in an
appropriate way, 1.e. to save the right signals de-
pending on the state of the process. It must be
observed that the process is assumed to e in the
last state until it reaches the next state. and the
states referred to are the "real” states of :he origi-

62 Informatica 18 (1894) 55-70

nal process and not the states that are introduced
to cope with the delays. The reason for this is that
the queue and the arriving signals shall be han-
dled in an appropriate way, i.e. the signals shall
be saved according to the actual system descrip-
tion.

Decision

Delay: The time to evaluate the statement within
the decision symbol is modelled with the delay.
Task: 1f the decision symbol contains informal
text a task is needed. The task shall be used
to draw a random number from a uniform dis-
tribution to compare with the given probabilitics
for the different execution paths, which model the
behaviour of the decision box in cases when the
decision can not be evaluated from the original
description.

Decision: The decision symbol is either left with-
out any changes or in cases when the symbol con-
tains informal text complemented with a decision
criterion. The complement means that a random
number is compared with the probabilities for dif-
ferent execution paths and a path is chosen ac-
cording to the evaluation.

Task :

Delay: The time to execute the task is modelled
as a delay.

Create request

Delay: This delay models the time it takes to cre-
ate a new process.

Create request: The new process is created in the
SDL description describing the performance as-
pect as well.

Rules have in a similar way been formulated
for all other basic concepts in SDL. The objec-
tive is to do the transformation automatically and
in a dialogue with the user. The dialogue gives
the user possibility to assign values to execution
times, probabilities etc. The transformation rules
and the concepts arc evaluated through an exam-
ple subsequently.

8 Example

8.1 Introduction

The objective of the example is to provide an il-
lustration of how the proposed method may work
and give a flavour of the type of analysis that can
be made. This is made by going through some
results from the example. It is impossible to go

(. Wohlin

through the example in detail, but more infcrma-
tion can be found in [17]. The example has been
formulated using SDL (Specification and De: crip-
tion Language), [2], [3] and [4], but any other well-
defined design technique could have been used.
The example will show results concerning func-
tional behaviour, performance and reliabilit.s.

The example describes the communication be-
tween two very simple telephone exchanges, which
only provide the subscriber with the possibil ty to
call alocal call (within the same exchange) o long
distance call (to the other exchange). The archi-
tecture is modelled with three SDL process types,
one describing an exchange, one modellin;s the
communication channel between the exchainges
and onc handling the administration of the irchi-
tecture. The services provided by the exchange
are designed with seven SDL process types The
usage is modelled with five SDL process "ypes.
Some of the process types are created and ter-
minated dynamically, and several instances of the
same process type may cxist simultancously. This
means that the example in total includes 1) pro-
cess types.

The system layout of the example including the
environment is illustrated in figure 5.

The example can be summarised by:

— 5 processes modelling the behaviour Hf the
subscribers.

— A_Subscriber: models the behaviotr of a
phoning subscriber.

— B_Subscriber: models the behaviour of a
phoned subscriber.

— Call_Generator: responsible for crzating
A_Subscribers as a new call shall start.

— Monitor: responsible for crzating
B_Subscribers when connecting a call.

— Creator: responsible for creating Moni-
tor and Call_Generator.

— 3 processes modelling the architecture.

_ Processor: models the behaviour of the
processors executing the software.

_ Com_Link: models the commun cation
link between processors.

— Arch_Creator: responsible for c-eating
Processors and Com_Links according to
the layout of the architecture.

— 7 processes designing the services provided
by the software.

EVALUATION OF SOFTWARE QUALITY ...

Informatica 18 (1994) 55-T0 63

/ & Processor

b i

7/

/i&ﬁffﬁfﬁ\ /T ARCHITECTURE " ENVIRONMENT
Eﬁ_l [Communication |« Creator

eneratod | Momeor | Communication | ca | moitr

\f_Sub.—] B_Sub.J' \ K1 l / [A_éub l \ B_Sub. |

[

D

" SOFTWARE

OO

SDL processes
according to
system description

C O

Figure 5: Layout of the example.

— Statistics: models the times when statis-
tics about the processors (exchanges)
shall be written on a file.

— A_Handler:
scribers.

- B_Handler:
scribers.

— Digit_Handler:
ception of digits and reserves a code
recciver through communication with
Code_Recciver.

handles the phoning sub-
handles the phoned sub-

responsible for the re-

- Code_Receiver: responsible for holding
code receivers for on-going calls.

- Soft_Monitor: responsible for monitoring
on-going calls at a processor.
Soft_Creator: responsible for creating the
Soft_Monitors necessary due to the archi-
tecture.

8.2 Software design in SDL

The SDL system description consists, as pointed
out, of 7 processes, but before these are discussed
in some more detail, the system and block level
have to be discussed. The system consists of two
blocks. The first block handles all activities that
concern subscribers and the second one is a block
responsible for collecting the statistics of the tele-

phone exchange. The layout of the SDL d-sign
is shown in figure 6 and the processes and their
communication are briefly described below.

The statistics block is simple, it only cousists
of the Statistics process of which one instar ce is
created at the system start and it exists the vhole
life time of the system. The only thing to be noted
with the process is that it calls a procedure regu-
larly, which describes the times the statistics are
put on a file.

The subscriber block consists of six proc:sses,
where one process is created by the system
(Soft_Creator). This process is responsible for
creating two monitors (one for each processor).
The Soft_Monitor process is the receiver of ir.com-
ing calls and it creates other processes that han-
dles the subscribers, both A- and B-subscribers.
The B_Handler process is created by the mnoni-
tor in cases of a long distance call, otherwise the
B_Handler process is created by the A_Hindler
process. The B_Handler process is quite easy
and it handles the communication with the B-
subscriber in the environment. The monitor pro-
coss also creates the two processes controlling
code receiving.

The A_landler process creates a Digit_Han dler
process and is responsible for keeping the contact
with the A-subscriber in the environment The

64 Informatica 18 (1994) 55-70

C. Wohlin

Software System

Statistics Block

Statistics
Process

Subscriber Block
A_Handler B_Handler
Process Process
Soft_Creator Soft_Monitor
Process Process
Digit_Handler \ /Code_Receiver
Process Process

I'igure 6: Software processes in the design.

Digit_Handler process checks if there are any code
receivers free and if there are any it reserves a
code receiver for the incoming call. The call is
blocked if the code receivers all areboccupied. The
Digit_Handler is responsible for releasing the code
receiver when it has been used.

The Code_Receiver process is not modelled in
any detail at all. It consists mainly of signal re-
ceiving, signal sending and informal text. This is
an lmportant aspect, i.e. that the processes may
be quite unspecified but still the quality attributes
can be evaluated by applying this concept.

The tool support used allows for syntax and se-
mantic analysis of the SDL system and code gen-
eration (SDL to C). The generated code was then
compiled and linked. The tool allows for func-
tional simulation without taking real time into
consideration. A functional simulation was per-
formed but it failed since the SDL system was not
complete, i.c. some of the behaviour was not for-
mally specified, it was only given in informal text.
The problem with the informal text is in partic-
ular decision boxes with informal text since this
means that the actual execution is not formally
described. The decision boxes with informal text
are translated when doing the transformation into
a the Software Model.

8.3 Identify objectives of simulation

The objective of the simulation shall not influence
the translation technique applied, but it may in-
fluence the way the architecture and the usage
are described in the model. The objectives of the
simulation can lead to that a measurement pro-
cess has to be included in the simulation system.

In this case the objectives are:

—~ Determine the total execution times ol each
software process type on the processors. This
provides a possibility to identify the software
bottleneck, since the available executior time
is known through the simulated time. This
must not be mixed up with the execution
time of the simulation program.

— The load on the communication links is mea-
sured.

— Identify any functional problems.

— Detect faults that influence the perceived re-
liability of the software.

These objectives affect the process mod:lling
the processor, the process modelling the commu-
nication link and the Softwarc Model processes. A
complement is needed in the Software Mode . pro-
cesses to be able to measure for each process type,
see below. The latter measurement will require a
separate measurement process. These objectives
have to be modelled by the user, when de:crib-
ing the architecture, the usage and introducing a
measurement process.

8.4 Software Model

The original SDI system is transformed apply-
ing the rules formulated for SDL. The transfor-
mation results in a new system level, where the
original SDL system is a block. This corresponds
to the Software Model discussed above. The new
system level also contains three new blocks, i.e.
one block modelling the architecture, one block
modelling the usage and one general block (used

EVALUATION OF SOFTWARE QUALITY ...

to control the simulation and to make measure-
ments). These three blocks are left without con-
tent. These blocks will be complemented with
the Architecture Model and the Usage Model as
well as general processes governing the simulation.
These models have to be formulated by the user,
see below. The Software Model and the generated
empty blocks are illustrated in figure 7.

All block levels in the original system have been
moved one step down in the hierarchical struc-
ture. The processes in the Software Model are
the result of applying the transformation rules.
It must in particular be observed that all symbols
with informal text have been removed or replaced,
but they are modelled in terms of delays.

As an example of a transformation we will con-
sider the transformation of a task in an SDL pro-
cess, see figure 8.

The task remains after the transformation if it
contains a functional behaviour in which case it
influences the outcome of the execution of the pro-
cess. Independently of the content of the task, a
procedure call is added before the execution of the
task. This procedure is denoted the delay proce-
dure and one parameter is passed to the proce-
dure, i.c. the delay for the task. The length of
the delay has to be determined by the user of the
method, as a first approach every symbol of the
same type is assigned the same delay. The pro-
cedure is also shown in figure 8. The procedure
delays the execution for the specified delay by use
of the timer concept in SDL. It must be noted that
all signals are saved within the procedure, and the
reason is of course that the transformation may
not alter the original functional behaviour. The
transformation corresponds to the rule discussed
in section 7. In particular the delay concept is
illustrated within the task concept.

8.5 Usage Model, general simulation
block and Architecture Model

The formulation of the complete simulation model
includes modelling the architecture, the usage and
describing the content of the general block. The
usage is modelled with five processes describing
the behaviour of the subscribers, both A- and B-
subscribers, as well as a model of a call generator
and a monitor which is responsible for creating
the B-subscriber when a call is made, see figure 5
and the brief description above.

Informatica 18 (1994) 55-70 65

The processes in the general block are intro-
duced to govern the simulation and to make mea-
surements according to the objectives of thz sim-
ulation. The measurements are specified s> that
they shall cover some usual measurement situa-
tions.

Finally, the architecture is modelled. This part
is the most difficult in the example, since it in-
cludes a general data structure which hand es the
connections between the different models i.s well
as the routing within the Architecture lModel.
The actual content of the structure is generated
by one process and the process modelling tle pro-
cessor then works on the generated structur:. The
processor process is formulated so that it can han-
dle the structure independently of the actuil gen-
cration. The architecture processes are briefly de-
scribed above. The data structure handliag the
connection between the models is based on linked
lists. The structure is shown in figure 9 a1d it is
briefly described below.

The structure consists of three queue types.
The first queue (Proc_Queue) is a queue of the
processors, i.e. the Architecture Model processes
executing software processes (Software Model
processes). This queue is the most central one.
This queue is created by Arch_Creator and it is
not altered during the execution of the simt lation.
For each processor two other queues are created,
where the first one (Contact_i) models the connec-
tion of process instances from the Software Model
and the Usage Model to the Architecture Model
and the second one (Route_i) describes the rout-
ing. In the example this means five quzues in
total, i.c. one central queue with two obje:ts (the
two processors) and two queues for each of these
objects. The routing queue of each proc:assor is
also static, while the queues containing prccess in-
stances connected to the processors are d;mamic,
i.c. the contents of the queues are changed as new
process instances are created or instances are ter-
minated.

8.6 The simulation system

The modelling results in new SDL graphs describ-
ing the architecture, the usage and the general
utilities. It is also necessary to alter some of the
generated Software Model processes. Tiese are
changed due to the objective of measuing the
load on the processors for each process type. The

66 Informatica 18 (1994) 55-70 C. Wol lin
Transformed System
Software Model Block
Statistics Subscriber
Subblock Subblock
Architecture Usage Model General
Model Block Block Block
(empty) (emPtY) (empty)
Figure 7: Transformed system.
. Transformed Procedure Delay
ONg.!ml. Delay
description (Delay_Task)

C D

[TASK] . TASK

Set(Delay_Task
+ Now,

Delay_Timer)

Task Procedure

.

S e

9

Procedure

call + Task

Figure 8: An example of a transformation.

additions are only minor, i.e. the graphs are com-
plemented with a new variable describing the pro-
cess type, which shall be used to measure the load
on the processors for different process types.

8.7 Simulation results

The simulation system can be executed after
having been analysed, generated, compiled and
linked. It must be noted that the obtained sim-
ulation model cannot only be executed for per-
formance and reliability analysis. It can also be
used as a real time functional simulator. This
means that the methodology provides a way of
doing functional simulations in cases where it in
the normal case is impossible (see above), i.e. for
incomplete system descriptions (that is for exam-

ple descriptions containing informal text in leci-
sion boxes). The transformation and generition
facilitates execution of the original not complztely
specified SDL system from a functional peripec-
tive in a real time model environment as we l.
The input data are not actual measuremnent
data, but they have, however, been chosen to work
as an input set where the relative size betweea the
different inputs are reasonable. The main cbjec-
tive is as pointed out earlier not the actual vilues,
but to show that the simulation actually ci.n be
performed based on the proposed concept. The
values of the parameters are easily changed since
they are declared as external synonyms in £DL.

Three parameters are of particular intere;t:

— The time, when the A-subscriber thinks he

EVALUATION OF SOITWARE QUALITY ...

Informatica 18 (1994) 55-70 67

Proc_2

Proc_Queue

o, []

(Static list)

Eu.c:: Bbject: Dbject:

rocessinstance Processinstance |~ nstance | ¥ Nil
-t ¢

Proc_\d : Pid; Proc_Id : Pid; Proc_k : Pid;

Ebject:
outing

Route_1 —% M
(Static [To_Proc : Ptd,_
Hst) Via_Link : Pid;

Figure 9: Data structure connecting the modelling concepts.

has waited too long before an answer, is first
assigned the value 10, in which case the first
output result below was obtained. The value
is then changed to be equal to the simulation
time.

— The simulation time is set to 1000. This may
be too short to obtain real confidence in the
output results, but since the actual figures
are of minor interest it has been chosen short
to obtain the results quickly.

— The mean time between arrival of calls is var-
ied from 10 to 1.5.

The execution of the simulation model of the
example gives three valuable results: 1) functional
simulation results from a real time model, 2) reli-
ability evaluation in terms of fault detection and
3) performance analysis results.

I'unctional result

A race between two signals is discovered, i.e. the
behaviour of the system becomes different de-
pending on the order of two signals. Due to the
delay in the architecture it may happen that a ter-
minate signal has not reached the receiving pro-
cess instance before it sends a signal to the pro-
cess that has terminated. This leads to a dynamic
failure in the simulation. The original SDL sys-
tem has been specified so that under some cir-

cumstances this will occur. Specifically the p:-ob-
lem arises for high loads. A re-design is therefore
necessary to cope with this problem, which would
have been difficult to find without this simulat on.

The functional fault without the
method, probably not have been found until the
load test in the test phase, since timing problims
can not be evaluated with ”"normal” functicnal
simulations. Since the usage profile is input to the
simulation, faults will be found according to t eir
probability of occurring in operation. There ore
the method will reveal faults as they are likely' to
occur in operation hence allowing for a reliabil-
ity estimate in the same way as can be obtaiied
through operational profile testing [11] and [12],
and in statistical usage testing [5] and [6]. "The
simulation technique proposed advances thoigh
the estimation in the software life cycle to the
software design phase.

would,

Reliability result

The functional fault found is clearly a reliabi ity
problem at high loads. The fault found can hence
be regarded as both a functional problem and s a
reliability problem. Therefore it can be concluied
that the software will at high loads be viewed as
not being reliable, while in other cases it will be
regarded as being reliable. No other faults were

68 Informatica 18 (1994) 55-70

found in the software during the simulation hence
it was concluded that after correcting the func-
tional fault found, the software can be approved,
i.e. after regression simulation of the corrected
software design.

Performance results

The results from the performance part of the sim-
ulation depend on what is specified by the user.
The measurements are specified by the user of the
system when complementing the generated simu-
lation model with the Architecture Model, the Us-
age Model and the general processes that govern
the simulation (see general block above). The lat-
ter has not been discussed in detail, but it is nec-
essary to have some general processes for starting
the simulation and perhaps for making measure-
ment. These type of processes are quite simple to
formulate and they will not be any problem for
the user. In this particular case the load on the
communication links was measured as well as the
contribution to the total load on the processor by
the different software processes. The latter was
measured to identify the software processes con-
tributing the most to the load and hence being
candidates for re-design.

The results are shown in table 1. The table con-
{ains information about the mean time between
new calls, the utilization of the two links, the total
load on the most used processor, i.e. processor 1.
The contribution to the load for the two processes
that consume most execution power on processor
1is also shown in table 1. An example for proces-
sor 1, when the mean arrival time between calls
is 10; the figure 45 stands for the time process
A_Handler executes and the time 176 is the total
execution time used on the processor, i.e. out of
1000, which is the simulation time.

Some comments to the results in table 1 are
worth making, even if the actual figures are of
minor interest. It can be scen that the link from
processor 2 to processor 1 is utilized more than the
other, i.e. link 2. The reason is that the Statistics
process is only located on processor 1. It can also
be seen that process A_Handler is the largest con-
tributor to the load. It is responsible for between
26-29% of the load, which means that a re-design
of the process perhaps ought.to be considered.
The Statistics process contributes also very much
and this is probably a problem, since the statis-

C. Wohhn

tics in an exchange can be hard to motivate to the
subscribers. A solution would be to distributc the
statistics to all processors, and this will alsc cut
down the utilization of the communication link
between processor 2 and processor 1.

The obtained results show that valuable infor-
mation relating to software quality can be ob-
tained in the design phase with the proposed >val-
uation method.

9 Concluding remarks

Well-defined, formal or standardised description
techniques provide excellent opportunities for au-
tomatic transformations to other representations.
The other representation can cither be a step in
the development life cycle or a special repr:sen-
tation for evaluating one or several qualit at-
tributes of the system. The presented method can
be applied to both functional and object oricnted
description techniques. The quality attributes of
the systems of today are becoming critical 1ssues
as the systems are getting larger, more coriplex
and more critical. This means that techniques
and methods for analysis of system quality at-
tributes are needed to stay in control of the soft-
ware system being developed.

This article has considered how software design
descriptions and simulation models can be used
to evaluate the performance and the reliabil ty as
well as the functional behaviour of the system at
an early stage. In particular, the method prevides
an evaluation procedure before the coding ard the
testing phases.

The method provides a basis for:

_ functional simulation in a real time mcdel,

— estimation of software reliability in a simu-
lation environment, when the usage in the
simulation model is generated according to
the operational profile,

— identifying software bottlenecks at an early
stage,
— evaluating different distributions of sotware

processes in an architecture,

— studying the introduction of new services in
an existing system (network),

~ examining different architectures abiity to
execute a given software description,

EVALUATION OF SOFTWARE QUALITY ...

Informatica 18 (1994} 55-70 69

Mean arrival Utilization Utilization Load Processor 1 Processor 1
time calls link 1 link 2 Pro. 1 A_Handler Statistics
10 0.06 0.17 0.18 45(176) 51(176)

7 0.10 0.24 0.24 64(240) 61(240)

5 0.16 0.22 0.31 84(306) 72(306)

3 0.24 0.42 0.51 144(509) 106(509)

2 0.35 0.59 0.70 197(698) 140(698)
1.5 0.54 0.86 0.98 283(981) 181(981)

Table 1: Performance simulation results

— identifying system bottlenecks.

These issues will become important aspects as
the demands on new services and systems grow
in the same time as the requirements on short
software development times and higher produc-
tivity continue to grow. The above list will be
particularly important for safety-critical software
systems, where a failure may be catastrophic.
Part of the solution to meet the high require-
ments on functionality, performance and reliabil-
ity is most certainly to put more emphasis on the
early phases of the system life cycle through in-
troduction of well-defined description techniques
and methods that support different aspects of the
development process. It is believed that meth-
ods for automatic translations of software descrip-
tions into other representations will be one of
the key issues to cope with the productivity and
quality problems of software systems. The pre-
sented method provides an opportunity to tackle
the problem of early verification of performance,
reliability and functionality, as well as for doing
capacity dimension

This method, or a similar one, is needed to con-
trol the quality attributes before the software sys-
tem has been coded. The quality of the software
must be evaluated and assured during early devel-
opment. The presented method is a step in the
right direction, towards a comprehensive view on
quality control of software products.

Acknowledgement

Many thanks to Per Runeson, Q-Labs and
Christian Nyberg, Dept. of Communication Sys-
tems, Lund, Sweden, for valuable help and con-
structive improvement suggestions concerning the
article.

References

[1] R. L. Bagrodia and C-C. Shen, MIDAS: Inte-
grated Design and Simulation of Distributed
Systems. IEEE Transactions on Software En-
gineering, Vol. 17, No. 10, pp. 1042- 058,
(1991).

(2] . Belina F., D. Hogrefe, and A. Sarma, SDL
with Applications from Protocol Specifica-
tions, Prentice-Hall, UK, (1991).

[3] CCITT, Recommendation Z.100: Specifica-
tion and Description Language, SDL, Blue
book, Volume X.1, (1988).

[4] CCITT, SDL Methodology Guidelines Ap-
pendix I to Z.100, (1992).

[5] R. H. Cobb and H. D. Mills, Engineering
Software Under Statistical Quality Control,
IEEE Software, pp. 44-54, November, (1 990).

(6] M. Dyer, The Cleanroom Approach to Qual-
ity Software Development, John Wiley &
Sons, (1992).

(7] E. Heck, D. Hogrefe and
B. Miiller-Clostermann, Hierarchical Ferfor-
mance Evaluation Based on Formally Speci-
fied Communication Protocols, IEEE "[rans-
actions on Communication, Vol. 40, No. 4,
pp. 500-513, (1991).

[8] M. Hacansson and O. Persson, [Derfor-
mance Simulation for SDT, Master thesis,
CODEN:LUTEDX(TETS-5176)/1-
66/(1993) & Local 26, Dept. of Communica-
tion Systems, Lund Institute of Techr.ology,
Lund University, Lund, Sweden, (1994).

[9] B.D. Juhlin, Implementing Operational Pro-
files to Measure System Reliability, Proceed-
ings 3rd International Symposium on Soft-

70

(10]

[11]

[14]

[17]

[19]

Informatica 18 (1994) 55-70

ware Reliability Engineering, pp. 286-295,
Raleigh, North Carolina, USA, (1992).

H. D. Mills, M. Dyer, and R. C. Linger,
Cleanroom Software Engineering, IEEE Soft-
ware, pp. 19-24, September, (1987).

J. D. Musa, Software Reliability Engineering:
Determining the Operational Profile, Techni-
cal Report AT & T Bell Laboratories, Mur-
ray Hill, NJ 07974, New Jersey, USA, (1992).
J. D. Musa, Operational Proliles in Software
Reliability Engineering, IEEL Software, pp.
14-32, March, (1993).

P. Runeson and C. Wohlin, Usage Modelling:
The Basis for Statistical Quality Control,
Proceedings 10th Annual Software Reliabil-
ity Symposium, pp. 77-84, Denver, Colorado,
USA, (1992).

M. Véran and D. Potier, QNAP2: A Portable
Environment for Quecueing Systems Mod-

elling, Technical report, Bull, France and IN-
RIA, France, (1984).

W. Whitt, The Queucing Network Analyzer,
The Bell System Technical Journal, pp. 2779-
2815, November, (1983).

J. A. Whittaker and J. H. Poore, Statisti-
cal Testing for Cleanroom Software Engincer-
ing, Proceedings 25th Annual Hawaii Inter-
national Conference on System Sciences, pp.
428-436, Hawaii, USA, (1992).

C. Wohlin, Software Reliability and Per-
formance Modelling for Telecommunication
Systems, Dept. of Communication Systems,
Lund Institute of Technology, Lund Uni-
versity, Lund, Sweden, Ph.D Dissertation,
(1991).

C. Wohlin, The Performance Prototyping
Simulator Concept, Technical report, 1'T4-
project "Specification with Prototyping and
Simulation”, TeleLogic, Sweden (1991).

C. Wohlin and P. Runeson, A Method Pro-
posal for Early Software Reliability Estima-
tions, Proceedings 3rd International Sym-
posium on Software Reliability Engineering,
pp- 156-163, Raleigh, North Carolina, USA,
(1992).

C'. Wohlin

