C. Wohlin, P. Runeson and A. Wesslén, "Software Reliability Estimations through
Usage Analysis of Software Specifications and Designs"”, International Journal of
Reliability, Quality and Safety Engineering, Vol. 3, No. 2, pp. 101-117, 1996.

Software Reliability Estimations
through Usage Analysis of

Specifications and Designs!

Claes Wohlin™, Per Runeson” and Anders Wesslén”

“Department of Communication Sys- “"Q-Labs
tems, Lund University IDEON Research Park
Box 118, S-221 00 LUND S-223 70 LUND
SWEDEN SWEDEN
Phone: +46-46 222 33 29 Phone: +46-46 18 29 97
Fax: +46-46 14 58 23 Fax: +46-46 15 28 80
e-mail: (claesw, wesslen)@tts.Ith.se e-mail: pr@g-labs.se
Abstract

This paper presents a method proposal for estimation of software reliability before the
implementation phase. The method is based upon that a formal specification technique
is used and that it is possible to develop a tool performing dynamic analysis, i.e. locat-
ing semantic faults in the design. The analysis is performed with both applying a usage
profile as input as well as doing a full analysis, i.e. locate all faults that the tool can
find. The tool must provide failure data in terms of time since the last failure was
detected. The mapping of the dynamic failures to the failures encountered during statis-
tical usage testing and operation is discussed. The method can be applied either on the
software specification or as a step in the development process by applying it on the
software design. The proposed method allows for software reliability estimations that
can be used both as a quality indicator, and for planning and controlling resources,
development times etc. at an early stage in the development of software systems.

Keywords:

Software quality, software reliability, operational profile, usage profile, software met-
rics.

1.This work is supported by National Board for Industrial and Technical Development (NUTEK), Swe-
den, reference Dnr: 93-2850.

Software Reliability Estimations through Usage Analysis of Specifications and Designs29 December 2007 1

1. Introduction

The reliability problem in software systems of today is a well-known fact. No silver
bullet will solve this problem, instead the solution will be the combination of several
approaches. That is improvements throughout the whole life cycle. These improve-
ments include for example specification and design, verification and validation, certifi-
cation as well as maintenance. This is the approach taken in the Cleanroom
methodology, [1, 2], which includes methods for specification and design, verification
and validation, as well as certification. In particular, Cleanroom supports the idea and
philosophy that it is possible to develop zero-defect software.

The objective of this paper is to present a method for usage analysis during dynamic
analysis of a software design. The method is based on the same principles as statistical
usage testing in Cleanroom. The goal with statistical usage testing is to certify the soft-
ware reliability during testing procedures. This does, however, seem too late if the
product has to be re-designed due to poor reliability. It is also clearly not particularly
useful if the result in the certification process shall be used for planning and controlling
quality, resources, development time and release time of the software. The information
from the certification process is really needed much earlier to cope with the manage-
ment of the risks involved in the development of software systems.

Thus new methods have to be found for performing early reliability estimations. Based
on the experience from applying formal specification techniques and tools supporting
these techniques [3], it was noted that it ought to be possible to make the estimations
during analysis of the formal specification. The estimations are consequently made
before the coding phase. This implies that the result from the estimations can be used to
plan and control the forthcoming phases in the development as well as the quality of
the software.

It is a well-known fact that most problems encountered in the operational phase are due
to semantic faults, [4]. Some types of semantic faults can be detected during dynamic
analysis. This observation, in combination with that tools are available for performing
dynamic analysis of formal specifications, led to the conclusion that a method for per-
forming reliability estimations from formal specifications of the software ought to be
possible to formulate. This idea was first presented in [5], but it has since been further
enlarged and improved, and the major objective here is to present these improvements
as well as the initial ideas to provide a comprehensive presentation of the method.

The idea and possibility described in this paper is general. It does neither depend on a
particular specification technique nor on a particular tool set. It does though depend on
that a well-defined specification technique with appropriate tool support is used. It is,
however, difficult to describe the idea in general terms all the time and in particular it is
hard to show the opportunities with the approach. This means that a formal specifica-
tion technique will be used to exemplify the usability of the method. SDL, [6, 7], will
be used throughout the paper. The reasons for choosing SDL as a suitable design
method are many, for example, it is standardised and tools are available. The motives
are further discussed in [3].

The main idea of the proposed method is to use the usage profile as input to an analysis
tool which detects certain types of probable dynamic failures. The tool can detect all
failures of the types it is designed to locate, but it is not certain that these situations

Software Reliability Estimations through Usage Analysis of Specifications and Designs29 December 2007 2

occur during the actual operation of the software. The tool is not capable of knowing
this. Thus the user of the tool must either correct the failure assuming it is a real failure,
i.e. it may occur in operation, or the user should verify that the encountered failure sit-
uation will never occur. From the failure statistics of the analysis tool, it will be possi-
ble to make a first estimation of the software reliability when in operation. This will be
described in more detail below.

The paper is structured as follows, in Sec. 2, usage modelling is discussed, and Sec. 3
presents the generation of usage cases. The actual usage analysis is briefly described in
Sec. 4 and in Sec. 5 the estimation and prediction of software reliability is discussed.
Finally, in Sec. 6 a procedure, for mapping the failures found during dynamic analysis
to arbitrary failures, is presented. The five method sections are then illustrated through
a minor example in Sec. 7, and finally some conclusions are presented and the method
is summarized in Sec. 8.

2. Usage Modelling for Dynamic Analysis

2.1 Introduction

Usage modelling is an essential part in usage testing [8, 9]. The specification of the
users and their usage of the system shall be used in the tool with the original SDL spec-
ification or design of the system, i.e. the functional description of the system, subse-
quently referred to as the original SDL system. Different methods have been proposed
to model usage, for example a tree structure has been suggested in [10], Markov chains
are discussed in [11] and a state hierarchy (SHY) model is proposed in [12]. The latter
type of model is used here. This type of model is also discussed in the context of reuse
in [13].

The objective here is to describe the usage with a SHY model which then easily is
translated to a usage model in SDL, i.e. the state hierarchy is represented using SDL.
From the latter model, it is possible to semi-automatically generate analysis sequences
which are documented in message sequence charts [14], see Sec. 3. These form the
input to controlling how the analysis is carried out by the tool and how the analysis is
performed, see Sec. 4. The failure data obtained can then be used for estimation and
prediction of software reliability, see Sec. 5 and Sec. 6.

2.2 Modelling

Usage modelling means deriving a usage specification, which can be viewed as con-
sisting of two parts, namely usage model and usage profile. The model describes the
usage from a structural point of view, while the profile contains the usage probabilities
hence providing a statistical view of the usage.

A SHY usage model is formulated according to the procedure described in [9]. The
SHY model is easy to translate into an SDL model, when being familiar with the two
specification techniques and the translations can also easily be implemented in a tool
prototype if adopting the technique. The SHY model can be viewed as a tree, with the
top level as the root. Every node in the tree is represented in the SDL model with a

Software Reliability Estimations through Usage Analysis of Specifications and Designs29 December 2007 3

process. The leaves in the tree are the services and each service forms a process. The
service process is designed according to the behaviour level in the SHY model.

Links are used to describe dependencies between users in the environment. The links in
the SHY model are converted into signals in the SDL model. The links between users
are modelled through the system’s response, the signals from the system to the SDL
model go from the root process down in the hierarchy to a leaf process. The stimulus
generated by a transition in a leaf process go from the leaf process up in the hierarchy
to the root process. The links between a user’s services are expressed as signals
between the leaf processes describing the services.

The usage model is complemented with a usage profile, which describes the antici-
pated usage of the system as it is put into operation. The SHY model assumes a divi-
sion of the usage profile into two parts, namely individual profile and hierarchical
profile.

The individual profile describes the usage for a single user, i.e. how a user behaves
when using the available services. The hierarchical profile is one of the major advan-
tages with the SHY model as it allows for dynamic probabilities. The profiles are fur-
ther discussed in [9].

Usage modelling and generation of usage cases from an SDL model are discussed in
more detail in [15].

3. Generation of Usage Cases

3.1 Introduction

Usage cases must be generated to verify the software system. To generate usage cases,
the SDL model must be executed on its own, i.e. separated from the system. When sep-
arating the SDL model from the system, the executer must play the roll of an oracle.
The oracle analyses the stimuli from the usage specification and answers with the
expected answer from the system. The stimuli from the users and the expected answers
from the oracle form the usage cases. A usage case ends when the system reach a spe-
cific state or when the usage case is of certain length.

3.2 Generation of usage cases in any language

If the usage cases are needed in a specific language, it can be generated automatically.
A case study generating the usage cases as Message Sequence Charts [14] has been
conducted successfully [16]. A process can be added in the SDL model between the
environment and the root process, see Fig. 1, and all signals between the environment

Software Reliability Estimations through Usage Analysis of Specifications and Designs29 December 2007 4

and the root process passes through this process. The added process writes all stimuli
and expected answers to a file in the wanted syntax.

A person acting as an
oracle for the original
system governs the

generation
A
SDL system
of the usage File process - File
model ‘ +
[
Usage model BIOCk
top level Msagel
ode
VY R

FIGURE 1. Generation of usage cases.

When starting the generation, the process opens a new file, writes the program begin-
ning and then waits for signals between the environment and the root process (top level
in the usage model). When a signal comes from the environment the expected answer
is written on the file and when a signal comes from the root process a stimulus is writ-
ten. This procedure ends when the usage case ends and then the process writes the end-
ing of the program and close the file. In the beginning or end of the program, fault
handling must be written to the file to handle faults in the usage case or in the system.

4. Usage Analysis

The usage cases that have been generated can be put together with the developed soft-
ware system, hence providing a basis for dynamic analysis, simulation and test. One of
the major advantages with the approach is the opportunity to perform the analysis auto-

matically as the system together with the usage model form a closed system. This is
illustrated in Fig. 2.

Analysis controlled by the tool

Generated usage

cases as Message (-4 Original SDL system
Sequence Charts

Logging of
failure data

FIGURE 2. Usage analysis based on the generated usage cases.

Software Reliability Estimations through Usage Analysis of Specifications and Designs29 December 2007 5

The execution results in a logging of the failures according to the fault handling proce-
dure introduced in the usage model. The times between failures are recorded and these
form the input to the certification procedure discussed below. In particular, the certifi-
cation procedure for the dynamic analysis is discussed. The analysis of failures from
testing is more straightforward and discussed elsewhere, see for example [17, 18].

5. Reliability Estimation and Prediction

The first estimation of the reliability can be made in two different ways:
e Dy using the times between failures and relevant models.

¢ by counting the number of successfully executed usage cases compared to the total
number of usage cases.

The first approach means that the analysis is made as one analysis sequence, while the
second one requires that the specification of the environment's behaviour is divided
into several usage cases. During analysis with the tool, the number of states analysed
between two consecutive failures is reported. Thus there is a simple support for the first
approach. If the failures are corrected we will observe a reliability growth which ought
to work as an estimate of the reliability growth that will be obtained during testing and
operation. An early estimate of this growth means that the test time to achieve the qual-
ity goals can be better planned. In case of no correction of failures an estimate of the
actual reliability is obtained. The latter case is only possible if the execution of the
analysis tool can continue without fault correction.

The approach described in Sec. 2 can be used to evaluate the estimate of the software's
reliability. The dynamic analysis with the usage profile can be combined with the full
analysis (complete in terms of the tool). They can be combined as follows:

1. do the analysis based on the usage profile and obtain an estimate of the reliability
growth,

2. do the full dynamic analysis,

3. compare the normalised failure times with the estimates of the reliability growth,
see Fig. 3.

The normalisation has to be done to be able to compare the times from a full analysis
with the ones that should have been obtained if the analysis had continued to follow the
usage profile. The times are normalised by recording where in the usage specification
the failure occurred. Then we calculate the mean time to when the failure ought to have

Software Reliability Estimations through Usage Analysis of Specifications and Designs29 December 2007 6

occurred if the analysis was made according to the usage profile. This time is consid-
ered to be the actual failure time.

Partial analysis

Original . -
Usage case| | SDL g Failure __, Reliability
inMSC [| system statistics growth
estimate
Evaluation
Normalised Of estimate
failure
times
Original
SHY-SDL| | SDL
system - Fallu_re
location

Full analysis according
to the tool

FIGURE 3. A procedure for evaluation of the software's reliability growth.

The normalisation procedure can be summarised in the following steps:
1. Perform a full dynamic analysis based on the opportunities with the tool.

2. The locations of the failures are recorded in the same time as the faults are cor-
rected.

3. Based on the usage model, calculate the mean time when the located failures ought
to have occurred.

4. Place the times on an ascending scale.

5. The obtained times are considered to be the real failure times. They are then com-
pared with the prior estimated curve from the partial analysis, i.e. the one based on
the usage profile.

6. The goodness of the estimate is judged in comparison with the backwards calculated
expected mean times to failures.

These new times can be used to evaluate the estimate of the reliability growth from the
partial dynamic analysis, see Fig. 3. This evaluation can be used to estimate the proba-
ble behaviour of the reliability and its growth during testing and operation. It is, how-
ever, necessary to relate the time axis during dynamic analysis to the real time
experienced during testing as well as operation. This will be further discussed in the
next section.

6. Relationship between Failures Types

6.1 Introduction

One problem encountered is the relevance of the dynamic failures found by the analy-
sis tool compared to failures in operation. The question that has to be answered is: Are
the dynamic failures detected by the analysis tool representative of the failures found in
operation?

Software Reliability Estimations through Usage Analysis of Specifications and Designs29 December 2007 7

6.2 Assumptions

The reasoning above is based on five assumptions, of which two concern the failures:

1.

The set of failures found in dynamic analysis by the tool is a subset of all possible
failures, see Fig. 4.

Operation: All failure types
Statistical
Tool: usage
Certain -4—— testing, a
failure sample from
types o operation

Dynamic analysis based on usage
profile, a sample from full analysis

FIGURE 4. Dynamic failures found with the tool compared to all failure types.

The failures found during dynamic analysis are randomly spread among all failures,
i.e. the ratio between the number of arbitrary failures and the number of dynamic
failures found by the tool, during a certain time, is a scaling factor here denoted c.
The actual time also has to be scaled, since the time between failures in the tool is
logged in terms of number of states, while the time during testing and operation is
real time.

Three assumptions concern the activities in the life cycle:

3.

Testing according to a usage profile is a good approximation of the operation, see A
in Fig. 5, i.e. Statistical Usage Testing (SUT) is a sample of the operation, see Fig. 4.
This assumption is a central basis for SUT and a basis for most reliability prediction
models as well.

The analysis, with the tool based on the usage profile, is a good picture of full anal-
ysis with the tool, see B in Fig. 5. Moreover the analysis with the tool based on the
usage profile is a sample from full usage of the tool, see Fig. 4. A full dynamic anal-
ysis runs through all the states. When using the usage profile for a selective dynamic
analysis, the selection of states to enter is made from the possible set of all states.
The selection is not a random sample but a sample according to a specific usage pro-
file.

The dynamic analysis with the tool using the usage profile is comparable with SUT,
see C in Fig. 5.pThe usage cases selected for the dynamic analysis are chosen from
the same usage profile model as the test cases for SUT are selected. The differences
between the selections are only due to random variation.

C r— - - - - - - - - - — — 1
B | A |
v v v v v v v
Dynamic Full Statistical
analysis based > dynamic p-| Usage p-| Operation
on usage analysis Testing P
profile

Relative time order

FIGURE 5. Relationships between different activities in the life cycle.

Software Reliability Estimations through Usage Analysis of Specifications and Designs29 December 2007 8

The time axis in Fig. 5 shows the relative order of the activities, it does not say that the
activities do not overlap or that there is no other activities between the ones in the fig-
ure.

The dashed line in Fig. 5 indicates the possibility to evaluate the prediction of the oper-
ational behaviour. If the three separate relations (A, B and C) are accepted, then the
dashed line must be accepted. This implies that by combining the different lines, it is
possible to obtain an early estimate of the reliability in the operational phase. Based on
a mapping algorithm, see below and in Fig. 6, results from the full analysis can be used
to show some aspects of the operational behaviour. This behaviour can be compared
and used to evaluate the prediction.

The relationships, indicated in Fig. 5, lead to the conclusion that it ought to be possible
to use analysis with the tool (partial and full in combination) to obtain a first picture of
the statistical usage testing and the operation. In particular, an earlier and better picture
of the operation can be obtained than by using only statistical usage testing. Some rela-
tionships and possibilities of how to use the dynamic analysis to predict future failure
behaviour and calculate the reliability will be discussed in the next section.

6.3 Derivation of failure times

To make the reliability growth, estimated from dynamic analysis, applicable on the
reliability growth with respect to arbitrary failures, there must be a mapping of the
dynamic analysis failure data to represent all failures. It can be performed by the fol-
lowing algorithm, where the steps are related to Fig. 6:

— | |
0 tl 12 t3

%c
1
sl | = | w
tla t2a t2b t3a

FIGURE 6. Failure data for arbitrary failures derived from dynamic analysis.

1. Make dynamic analysis according to the operational profile. In Fig. 6, t1 to t3 are
the failure times. The failure data can be used to estimate MTBF (Mean Time
Between Failures) for dynamic failures according to the tool by, for example, the
Cleanroom reliability estimation model [19].

2. Determine c, i.e. the ratio between the total number of failures and the number of
dynamic failures found by the tool. The ¢ value must be based on metrics from ear-
lier projects. The value can differ within programs with heterogeneous characteris-
tics. These parts have to be analysed separately.

3. Determine the number of failures to occur in every interval. If ¢ is not an integer, the
number of failures in an interval is selected from a two-point distribution with the
possible values trunc(c-1) and trunc(c), and a mean value c-1. If ¢ is an integer, c-1
failures occur in each interval.

Software Reliability Estimations through Usage Analysis of Specifications and Designs29 December 2007 9

4. Re-scale the time axis to transform number of states to real time. Failure times
within the interval are then selected. The times are denoted tla, t2a, t2b etc. in Fig.
6. These failure times are chosen randomly within the interval. Further work has to
be done to find a more realistic way to resemble the failure behaviour. The time
scaling factor has to be based on experience in a similar way as c.

5. Estimate MTBF for the analysed and the calculated failure data, tla, t1, t2a, t2b, t2
etc. shown in Fig. 6. This is now an estimation of the MTBF for all failure types.

The actual value of the analysis and its potential ought to be further investigated both
theoretically as well as through practical application. It can however be concluded that
as a first estimate it is relevant to consider the dynamic failures found during dynamic
analysis of a software specification or design.

This estimation ought to be possible to use for planning and controlling the statistical
usage testing phase, as well as necessary actions to take to achieve the quality required
in operation.

7. An Example

Unfortunately, it is not possible to provide an extensive example of the method includ-
ing a complete usage model of different services. Therefore, only a minor illustration is
given through an example, where the objective is to illustrate the application of the dif-
ferent steps in the method, that is usage modelling, generation of usage cases, usage
analysis, analysis of the failure data including estimation and prediction of software
reliability. The example is based on a very simple model of a telephone exchange,
which only has one user type and up to N users. All of the users can make ordinary tel-
ephone calls and they can also order and cancel call forwarding (CF).

Usage modelling

The first step is to model the usage and this must be a completely external view of the
system. The model is first created using the state hierarchy (SHY) model as it provides
an extremely simple notation. This model is then easily translated to a model in SDL,
where unnecessary levels in the hierarchy is removed, due to that the system only con-
sists of one user type. The SDL hierarchy is shown in Fig. 7. The SDL specifications of
the usage of the services are not shown in the figure, but they are easily derived from

Software Reliability Estimations through Usage Analysis of Specifications and Designs29 December 2007 10

the SHY model. The descriptions are not included as they lead to far into the applica-
tion domain of telecommunications, which is outside the scope of the paper.

(1.1)
User Type

(©,
Telephone
call

N) : Order (O'N)’
of CF

A

FIGURE 7. SDL hierarchy of the example.

Generation of usage cases

Usage cases are generated by executing the usage model in Fig. 7. The person perform-
ing the analysis must execute the model and act as the software system to be analysed.
The different inputs, given by the person, and the outputs from the usage model are
logged on a file in Message Sequence Charts format. The resulting file can then be
used when performing usage analysis. The important aspect in this step in the method
is that the person acts as the system, while the usage model is executed.

Usage analysis

The generated Message Sequence Charts can now be put together with the software
system being developed to perform the analysis and then also obtain relevant failure
data to perform the reliability estimation and prediction. The output data is received in
terms of number of states since the last failure encountered. The tool locates certain
types of dynamic failures as pointed out above. An example of failure data is shown in
Tab. 1.

TABLE 1. Failure data.
Failure number 1 2 3 4 5 6 7 8 9 10
Time between failures | 320 | 241 | 847 | 732 | 138 | 475 | 851 | 923 | 1664 | 1160

Reliability estimation and prediction of dynamic failures

The failure data from Tab. 1 are now input to the estimation and prediction procedure
described in Sec. 5. First the failure data are fed into a software reliability growth
model to get an estimation of the current reliability as well as a prediction of the future
reliability growth. The model used is presented in [19] and it is based on the following
formula:

MTBF(k) = AxB* ™Y

Software Reliability Estimations through Usage Analysis of Specifications and Designs29 December 2007 11

where A = MTBF(1) and Kk is the failure number. The parameters A and B can be esti-
mated from the failure data by taking the logarithm on the equation, and hence obtain-
ing a linear equation with parameters A and B. Thus, A and B can be estimated from
the failure data using the least square method. The estimation of the parameters is dis-
cussed in detail in [19].

Based on the available data, A becomes 278.7 and B is equal to 1.179. The outcome of
the model is presented in Tab. 2, where both the estimated current level and a predic-
tion of the five next failure occurrences are shown. The reliability growth model can,
however, be used to predict an infinite number of forthcoming failure occurrences.

TABLE 2. Predictions of future failure occurrences.
Failure number Current level 11 12 13 14 15
Time between failures 1270 1446 | 1705 | 2010 | 2370 | 2795

The software system being developed is now analysed fully by the tool, hence locating
all faults that the tool is capable of finding. The faults are transformed into normalized
failure times according to the procedure described in Sec. 5. That is, the dynamic anal-
ysis is done with the tool without controlling the analysis with the usage model. This is
actually the normal usage of the tool. The locations of the faults in the software are
noted as the faults are corrected. After having corrected the faults, the locations of the
faults are compared with the usage model. It is determined where in the usage model
the faults would have occurred, if we would have continued to analyse the software
based on the usage model. Thus, the states and inputs in the usage model that would
have caused the failures are identified. Since the usage model complemented with the
profile is a state machine with probabilities governing the transitions, we are able to
calculate the mean time until a certain state and a certain transition. The normalized
times are the mean times, hence it is possible to determine the expected time to failure.
The results of the procedure, i.e. the normalized times, are shown in Tab. 3.

TABLE 3. Normalized failure times.
Failure number 11 12 13 14 15
Time between failures | 1534 | 1712 | 1944 | 2290 | 2864

The normalized failure data are now compared with the predictions presented in Tab. 2.
The objective is to be able to perform an evaluation of how good the prediction from
the failure data is. This can then form the basis for determining how reliable the predic-
tions obtained from usage testing are in comparison from what can be expected when
entering the operational phase.

It can be seen, by comparing the relative mean errors between Tab. 2 and Tab. 3, that
the predictions from the dynamic usage analysis are good predictors of the actual out-
come when doing a full analysis. Therefore, it is expected that we will also obtain a
good prediction of the operational phase based on failure data from usage testing. The
failure data obtained during the dynamic analysis can also be used to plan the test
phase in terms of resources, that is number of test sites and test personnel. The failure
data from dynamic analysis must, however, be related to failures that can occur during
testing and the operational phase.

Software Reliability Estimations through Usage Analysis of Specifications and Designs29 December 2007 12

Relating the dynamic failures to arbitrary failures

The above procedure gives a view of how to estimate the time between failures during
dynamic analysis, but this is not enough for the testing and operational phases. The
failures from dynamic analysis must be mapped onto arbitrary failures, and the time
scale has to be changed to take real time into consideration and not just counting the
time between failures in terms of number of states. Therefore, two different measures
are needed, first the mapping factor c, see Sec. 6 and Fig. 6, and secondly a factor
describing how time between failures in terms of states are mapped into real time. The
c factor is assumed to be known based on experience and in this particular case it is
assigned the value 3.1, which means that for each dynamic failure found during
dynamic analysis, it is expected that 3.1 other failures are found on average during test-
ing and operation. The scaling factor between times is assumed to be 3, that is the times
resulting from applying the c factor, see Fig. 6, must be multiplied by 3 to obtain the
real time between failures.

Applying the procedure discussed in the Sec. 6.3 and then using the values discussed
here together with random numbers lead to the results presented in Tab. 4. More specif-
ically, the results in Tab. 4 are obtained as follows. First, random numbers are gener-
ated in order to put in some more failures among the failure data from the dynamic
analysis controlled by the usage model, see Tab. 1. The failures should be put in to cap-
ture failure types that the tool can not find. It is assumed that we know from experience
that 1 dynamic fault means 3.1 failures later on in the software life cycle. Thus, in aver-
age 2.1 failures should be put in between the failures logged in Tab. 1.

Second, random numbers are generated to give the failure times where the failures are
assumed to happen. This means, for example, that in average 2.1 failures are put in
prior to the first failure in Tab. 1. This changes the times between failures, hence the
time between failures in Tab. 1 are not relevant at this stage. After the failures have
been put into the failure history, new times between failures can be calculated. These
new times between failures are then scaled with the time factor, i.e. in this particular
case the figures are multiplied with 3. This results in the failure times presented in Tab.
4, which then are input to the software reliability model used above. The failure data, in
Tab. 4, is assumed to be one possible representation of failures during usage testing and
operation. It must, however, be noted that this particular outcome is of little interest,
but it is interesting to use the data to estimate the mean expected behaviour, i.e. to
apply a software reliability growth model.

TABLE 4. Prediction of failure times during usage testing and the operational phase (the table
should be read row by row and from left to right).

597 87 276 | 246 | 147 | 330 3 1284 | 1254 | 1674 | 324 | 198
204 180 30 63 639 | 723 | 171 | 1980 | 402 | 2328 3 438
768 | 3381 | 843 | 780 | 453 | 1260 | 487 - - - - -

The parameters in the model are estimated from the available data and we get:

MTBF(k) = 161,9 x 1,047~V

This formula can work as a predictor of the expected failures to find during usage test-
ing and then also in the operational phase. The limit between testing and the opera-

Software Reliability Estimations through Usage Analysis of Specifications and Designs29 December 2007 13

tional phase is determined from the available test time and in particular of the
reliability requirement. If it is assumed that the reliability requirement is 2000 time
units, then it is just to keep track of the total test time until the formula estimates that
MTBEF is equal or greater than 2000 time units. This may be of great help when plan-
ning the work and taking further development decisions.

It can based on this example be concluded that, the procedure provides a valuable input
to the planning of the testing phase and it also indicates the current reliability of the
software and through the prediction also the expected future reliability growth. The
current level is equal to MTBF(1), which is the estimation when we enter the testing
phase. The early prediction means that, a poor software product can be detected at an
early stage which allows for re-design instead of letting a poor design be handed over
to the implementation phase.

8. Conclusions

It can be concluded that the statistical quality control of software products is an impor-
tant issue. The certification process is central in this effort, in particular the earlier it is
applied. This process is highly dependent on relevant software reliability models and a
sound basis for estimation. The basis includes relevant failure data, i.e. data that is
obtained under circumstances fulfilling the assumptions of the reliability models. In
particular, this means that the failure data during testing and other type of analysis (for
example dynamic analysis) have to be similar to the failure data encountered during
operation.

A reliability estimation from dynamic analysis can be used either to estimate the relia-
bility of a software specification in SDL or as a first estimate of the design's reliability.
A specifier and purchaser of software systems can use both of these approaches, i.e.
estimating the reliability of its own specifications and requiring that a first estimate of
the reliability must be made during dynamic analysis of the design. The latter estima-
tion can be made either by the supplier or as a part of a programme for quality control
of suppliers made by the purchaser/customer.

Based on the presentation, a method for software certification can be formulated:

1. A usage model and profile must be formulated, first as a SHY model which then is
easily translated to an SDL model, see Sec. 2.

2. Usage cases are then generated based on the usage model in SDL and a person act-
ing as the system to be analysed, see Sec. 3.

3. The usage analysis can then be performed and the failure data logged, see Sec. 4.

4. The collected failure data can be used to estimate and predict software reliability at
the early stage of dynamic analysis of the software design or even the software spec-
ification, see Sec. 5.

5. Finally, the data from dynamic analysis must be transformed to get an estimation of
the behaviour for arbitrary failures during usage testing and operation, see Sec. 6.

The failure from the dynamic analysis and the prediction must be continuously moni-
tored and compared with the actual outcome during software testing and then ulti-
mately in the operational phase.

Software Reliability Estimations through Usage Analysis of Specifications and Designs29 December 2007 14

This new method is not fully developed, but it is beginning to be implemented and
evaluated. Currently, a case study is conducted to evaluate the procedure. The study
includes dynamic analysis, simulation and finally testing. The results from performing
usage analysis during all these activities will form the basis for a thorough evaluation
of usage analysis in the software life cycle. Furthermore, usage modelling with a state
hierarchy (SHY) model, which then is transformed into an SDL usage model (SHY-
SDL) has been used to generate usage test cases to the next release of the tool used here
[16]. It is concluded from this application, that both the SHY model and the transfor-
mation into SDL are useful concepts when generating usage cases.

The objective is that the proposed method shall work as a complement to Statistical
Usage Testing. In particular, the new method provides a basis for planning and control-
ling the forthcoming testing phase, the release of the product and finally the operational
phase. Thus the method is an important step in the risk management process, since it
gives early estimates and consequently early warnings, which leads to that the risks can
be managed and planned for.

References

1. H.D. Mills, M. Dyer and R. C. Linger, “Cleanroom Software Engineering”, IEEE
Software, September, 19 (1987).

no

R. C. Linger, “Cleanroom Process Model”, IEEE Software, March, 50 (1994).

3. C. Wohlin, “Software Reliability and Performance Modelling for Telecommunica-
tion Systems”, Dept. of Communication Systems, Lund, Sweden, ISSN 1101-
3931, Technical report - 106, 1991, Ph.D. Dissertation (unpublished).

4. J. D. Musa and W. W. Everett, “Software-Reliability Engineering: Technology for
the 1990s”, IEEE Software, November 36 (1990).

5. C. Wohlin and P. Runeson, “A Method Proposal for Early Software Reliability
Estimations”, in Proceedings of the 3rd International Symposium on Software Reli-
ability Engineering (1992), pp. 156-163.

6. ITU-T, Recommendation Z.100: Specification and Description Language, SDL,
Blue book, Volume X.1, (1988).

7. F. Belina, D. Hogrefe and A. Sarma, SDL with Applications from Protocol Specifi-
cations (Prentice-Hall, UK, 1991).

8. H. D. Mills and J. H. Poore, “Bringing Software Under Statistical Quality Con-
trol”, Quality Progress, November 52 (1988).

9. P.Runeson and C. Wohlin, “Statistical Usage Testing for Software Reliability Con-
trol”, Informatica, 19 2 (1995).

10. J. D. Musa, “Operational Profiles in Software Reliability Engineering”, IEEE Soft-
ware, March 14 (1993).

11. J. A. Whittaker and J. H. Poore, “Markov Analysis of Software Specifications”,
ACM Trans. on Software Eng. Methodology, 1 93 (1993).

Software Reliability Estimations through Usage Analysis of Specifications and Designs29 December 2007 15

12

13.

14.

15.

16.

17.

18.

19.

P. Runeson and C. Wohlin, “Usage Modelling: The Basis for Statistical Quality
Control”, in Proceedings Software Reliability Symposium (1992) pp. 77-84.

C. Wohlin and P. Runeson, “Certification of Software Components”, IEEE Trans.
on Software Eng., 6 494 (1994).

ITU-T, Recommendation Z.120: Message Sequence Charts (1993).

A. Wesslen and C. Wohlin, “Modelling and Generation of Software Usage”, in
Proceedings Fifth International Conference on Software Quality (1995) pp. 147-
159.

P. Runeson, A. Wesslén, J. Brantestam, and S. Sjdstedt, “Statistical Usage Testing
using SDL”, in SDL"95 with MSC in CASE (Elsevier Science B. V., 1995) pp. 323-
336.

J. D. Musa, A. lannino and K. Okumoto, Software Reliability: Measurement, Pre-
diction, Application (McGraw-Hill, New York, 1987).

M. Xie, Software Reliability Modelling, (World Scientific Publishing Co. Pte. Ltd.,
1991).

P. A. Currit, M. Dyer and H. D. Mills, “Certifying the Reliability of Software”,
IEEE Trans. on Software Eng., 1 3 (1986).

Software Reliability Estimations through Usage Analysis of Specifications and Designs29 December 2007 16

