

M. C. Ohlsson and C. Wohlin, "Identification of Green, Yellow and Red Legacy
Components", Proceedings International Conference on Software Maintenance, pp.

6-15, Washington, USA, 1998.

Abstract

Software systems are often getting older than expected,
and it is a challenge to try to make sure that they grow old
gracefully. This implies that methods are needed to ensure
that system components are possible to maintain. In this
paper, the need to investigate, classify and study software
components is emphasized. A classification method is
proposed. It is based on classifying the software
components into green, yellow and red components. The
classification scheme is complemented with a discussion of
suitable models to identify problematic components. The
scheme and the models are illustrated in a minor case
study to highlight the opportunities. The long term
objective of the work is to define methods, models and
metrics which are suitable to use in order to identify
software components which have to be taken care of
through either tailored processes (e.g. additional focus on
verification and validation) or reengineering. The case
study indicates that the long term objective is realistic and
worthwhile.

1. Introduction

As a system evolves and goes through a number of
maintenance releases [1], it naturally inherits functionality
and characteristics from previous releases [2] and [3], and
therefore becomes what we refer to as a legacy system. As
new functionality and features are added over and over
again, the complexity may increase and impact the main-
tainability of the system and its components. It is hence
important to track the evolution of a system and its compo-
nents. The objective must be to enable us to identify com-
ponents which are getting more and more difficult to

maintain due to the changes made. We must be able to take
actions prior to having a component which is almost
impossible to change, or at least it takes a lot of time to
update the component due to poor understanding of the
component and its functionality.

Experiments have been presented [4] to provide insight
into the area [5], and some solutions have been suggested
to be able to address these issues [6] and [7]. Models trying
to detect and predict fault-prone components have been
presented with the objective of identifying the most fault-
prone components within a specific project. The models
have been created based on the outcome from one project,
validated for a second project [8] and finally used in a third
project and refined based on the outcome [9] and [10].
Another approach has been to take the outcome from one
project and divide the data set into two parts and build the
model based on one half and validate it for the other half
[11] or build the model in one iteration and test it in the
subsequent [12]. This type of models for predicting and
classifying fault-prone components is one important input
to identify component decay. We use the word decay to
denote code which in some way is becoming worse and
worse for each software release, and which potentially will
be unmaintainable some time in the future.

The objective of this paper is to focus on the evolution
of software components. We need models and methods to
identify components which are on their way of becoming
extremely difficult to change. The identification of these
components may serve two major objectives. First, the
information can be used to direct the efforts when a new
system release should be developed. This could mean
applying a more thorough development process or assign-
ing the most experienced developers to these components.
Secondly, the information can be used when determining
which components need to be reengineered in the long run.

Identification of Green, Yellow and Red Legacy Components

Magnus C. Ohlsson and Claes Wohlin
Department of Communication Systems

Lund University, Box 118
S-221 00 Lund, Sweden

E-mail: (magnuso, claesw)@tts.lth.se

Components which are difficult to maintain are certainly
the main candidates for reengineering efforts.

The basic idea is to use the historical data of the compo-
nents. The data may include fault and failure data, and
product and process measures when available. In our
approach, we view fault-proneness as being an indication
that something has been difficult to change or is going to
be difficult to change. The product and process measures
may be difficult to relate to change directly, hence we are
trying to identify major changes in the components, for
example, in terms of major changes in the structure of the
components. The hypothesis is that these type of measures
are indicators of potential maintenance problems. Thus,
although we are interested in fault-proneness, it is with the
long-term view that components which are fault-prone will
be difficult to maintain in the future.

The data are then used for building models which can
be used to identify components which perform worse than
the rest. We would like to address code or component
decay using models and historical data. Based on the his-
torical data, we would like to create models to classify
components as green, yellow or red, depending on the
amount of decay. These component categories are further
discussed in Section 2.2. We do not believe that it is possi-
ble to formulate general rules of what constitutes a green,
yellow and red component respectively. The actual limits
between the classes must be determined based on the spe-
cific situation, including, for example, requirements and
system type.

The intention of using historical data is to find trends
and react early on warnings. Also, it provides an opportu-
nity to predict and plan the necessary activities. In this
paper, we propose some possible models for identification
of trends for components, i.e. are they on their way of
becoming critical components from a maintenance per-
spective? The objective is that we should be able to iden-
tify the components before they cause any major problems
in the projects (or different system releases).

The proposed models are illustrated for a data set con-
taining two system releases. The objective is to show how
the models can be used to identify the potentially problem-
atic components.

The paper is organized as follows. In Section 2, we dis-
cuss models for identification of decaying software com-
ponents. Several models are proposed as being candidate
models for identification of decaying components. The
proposed models are illustrated in a minor case study in
Section 3. Finally, some conclusions are presented in
Section 4.

2. Models for Identification of Code Decay

2.1. Introduction

The objective of our research is to identify measures
and to build models which depict particularly problematic
legacy components before they cause any major problems.
The intention is to identify relationships between measures
and component behaviour, in terms of maintenance diffi-
culty. Based on these relationships, we would like to build
prediction models to identify problematic components
before the actually become really problematic.

It is important to note that we do not anticipate to derive
a stable model. On the contrary, it is important to update
the model as new releases are available. Thus, by doing
this, the model takes, for example, changes into the devel-
opment process into account. This implies the following
process [10]:
• Build - based on certain measures build a prediction

model.
• Validate - test if the model provides significant

results.
• Use - apply the model to its intended domain.
Due to the fact that the components are included in a
number of releases, this means that the model should be
improved after each release, according to the outcome of
the projects. Otherwise, the model will become invalid as
the prerequisites change. By continuously measure and
collect data for improvement of the models for identifica-
tion of problematic legacy components, we infer the Expe-
rience Base, derived from the Experience Factory concept
[13]. Based on historical data, we would like to predict and
plan for the problematic legacy components and support
the development organization during project execution.

2.2. Component Types

To enable identification of the problematic legacy com-
ponents, we would like to introduce a model for classifica-
tion of software components based on fault-proneness,
which we view as a problem of maintaining the software
components. The components are classified according to a
colour code, like a traffic light, depending on the amount
of decay (see Figure 1). The components should be classi-
fied as green, yellow or red. The amount of decay must be
judged based on the outcome of previous releases, and the
criteria may be number of faults, time to perform certain
types of maintenance activities or that the structure of the
component is becoming more and more difficult to under-
stand and handle. The colouring scheme should be inter-
preted as follows:
• Green components (normal evolution)

Green represents normal evolution and some amount

of fluctuation is normal. These components are easily
updated, i.e. new functionality may be added and
faults corrected without too much effort. Furthermore,
we do not need system experts to maintain the com-
ponents. The components should be traced from
release to release to be able to find trends and when a
component exceeds a certain limit (referred to as the
lower limit), it becomes yellow.

• Yellow components (code decay)
As a component exceeds the lower limit, it is classi-
fied as yellow, and particular attention has to be paid
to this component to avoid future problems. Compo-
nents in the yellow region are candidates for specific
directed actions. These may include launching a more
thorough development process or the component is
identified as a candidate for reengineering. If the yel-
low components are not treated properly, the compo-
nents may exceed the upper limit and become a red
component.

• Red components (“mission impossible”)
A red component is difficult and costly to maintain. It
is often the driving factor for schedules and cost. In
other words, the red components have a tendency to
end up on the critical path of a software project. In
order to change the components, we need experts, and
the components are often viewed as “mission impos-
sible” tasks. The components are no longer candidates
for reengineering; they need reengineering.

The classification scheme is illustrated in Figure 1.

Figure 1. Growing amount of decay for a legacy
component.

The lower and upper limit should be determined based
on the historical data and continuously updated according
to the fact that we improve the quality of the components.
It is, of course, not possible to state generally where the
limits are located. The limits are governed by our interpre-
tations of green, yellow and red legacy components, and
they are dependent on factors which must be determined
for each case separately. The interpretation may depend
on, for example, company, application domain, system and
customer requirements.

It is necessary to be aware of that even if some compo-
nents indicate a high level of decay, it may depend on the
release as a whole, e.g. lack of resources, unsatisfactory
process etc. For example, we may have found that compo-
nents with more than a certain number of faults in testing
should be classified as yellow, but when looking at the sys-
tem as a whole we realize that the total number of faults is
very high. This may indicate that the component as such is
not the problem, we may have a problem with the release
as a whole. Therefore, the whole system must be studied in
conjunction with the individual components prior to finally
identifying certain components as being of a specific class.

Another advantage of building models for decay is that
it provides a focus on the reasons for decay. The reasons
for decay are implicitly part of the prediction models,
hence providing important input to the design organisation
so that they can try to avoid these problems in the future
when they add functionality, correct programs or even
reengineer them.

2.3. Measures

The key to prediction is the collection of proper meas-
ures capturing the aspects which influence the behaviour
we want to predict. In this particular case, the prediction
means identifying components which are on there way of
becoming a red component. Therefore, it is necessary to
decide, as early in the model building as possible, what to
measure and what these measures should be used for.

According to our previously presented classification
model, we need some useful measures to be able to trace
the components. These measures should be possible to use
to characterize the components, and in particular to
describe the level of decay. We must be able to judge if the
components are green, yellow or red components.

The measures should, if possible, cover product, proc-
ess and resource measures. It is important that the meas-
ures are related to both components and the system as a
whole. The main focus here is on quantitative measures.
Some important aspects and measures to cover are (see
also [14] and [15]):
• Size measures

For example: Lines of code or number of if-state-
ments. The if-statements are included as a size meas-
ure, since the number of statements contribute to the
size of the software. Another possibility is to choose
to use it as a structural measure. The actual placing of
the different measures is best done after, for example,
a principal component analysis, which groups differ-
ent variables into factors or components.

• Structural measures
For example: Cyclomatic complexity, amount of
modified code or interface characteristics. The
amount of modified code may be viewed as a struc-

Release

Decay

Green

Red

Yellow

“Mission impossible”

Code decay

Normal evolution

Lower limit

Upper limit

tural measures since it indicates the amount of struc-
tural change in the software.

• Process measures
For example: Number of occurrences of different
events in different phases, or time to perform certain
changes. The latter requires that we are able to define
some “benchmark” changes.

• Fault data
For example: Classification of different type of faults.

These measures could be combined to calculate interesting
figures and norms. For example, it is possible to combine
number of faults with LOC to find the fault density. This
figure could be combined with amount of modified code in
a component to see how the degree of modification affects
the fault density.

Finally, one dimension we have left out is the qualita-
tive measures, the subjective opinions. They can provide
different aspects and clarify certain indistinctions and find
answers to certain circumstances. The problem is that it is
difficult and time consuming to collect this information
and is therefore not within our scope.

2.4. Analysis

The basis for the analysis should be made through col-
lection of measures applying a goal-oriented approach,
hence we are now able to analyse the data using models
which pin-points different types of components. The anal-
ysis forms the basis for taking the appropriate decisions
regarding the components. There are many different kinds
of analysis methods available. The simplest just creates a
plot while the more complicated includes multivariate
analysis. Within the software engineering area, some of the
most used statistical methods are [14] and [16]: plots (box
and scatter), correlation (Pearson, Spearman and Kendall),
regression (linear, non-linear and multiple), principal com-
ponent analysis (PCA) and ranking.

These methods are easy to understand and provide dif-
ferent opportunities for analysis. Some of these are often
used in combination, for example, a correlation calculation
is often done before a linear regression calculation and
principal component analysis could be used together with
ranking. Different statistical tests could also be applied to
determine whether a relationship is statistically significant
or not.

The statistical methods are used to build different types
of prediction models using the data collected. Some possi-
ble models are:
• Faults models

- Rank the components according to fault content, and
study the pattern in order to identify the most fault-
prone components over time.
- Divide the components into different fault classes,

and investigate if some components always are
among the most fault-prone.

• Structural models
- Investigation of stability of principal components,
where the principal components are derived from dif-
ferent product measures.

• Size models
- Major changes in size.

In our models we are interested in trends and this could be
analysed in several different ways. One possibility is to
plot the degree of decay for each release and graphically
make a decision (see Figure 2).

Figure 2. Trend for a number of different releases.

For this type of diagram, it is possible to apply regres-
sion analysis and predict the outcome for the following
releases.

3. Case Study

3.1. Data Description

This case study is incorporated to illustrate some of the
underlying ideas. Unfortunately, the data have been col-
lected in retrospect. This implies that we have been unable
to apply a goal-oriented approach for data collection. We
have been forced to settle for the data which were available
or could be made available. Furthermore, all data have
been collected manually, hence restricting the data collec-
tion. The actual objective of the data collection was to
increase the understanding and evaluate how to continue
with data collection and how to use the data for systematic
improvement. In particular, the data were primarily col-
lected from design descriptions since the intention was to
apply early predictions of quality problems. Code meas-
ures are only available for one of the releases. Thus, the
data collection has not been targeted at the type of models
discussed in this paper.

The study is based on an investigation of 28 software
components for two releases of a large real time system in

Release

Decay

Green

Red

Yellow

Lower limit

Upper limit

*
*

*
*

*

*

*

*

the telecommunication domain. The system studied is one
of the company’s main products. The actual releases inves-
tigated are considered typical for releases of this particular
system, although the choice of system and releases was
based on availability.

The system consists of approximately 100 components.
28 of these components had full documentation required
for this study, and were therefore included in this study.
Other models were typically not updated to the actual
implementation and could therefore not be used. The size
of the components is between 270 and 1900 lines of code.
The programming language used is a company internal
language targeted at their specific hardware platform. For
each of the components, the number of fault reports from
test and operation were counted and several design and
code measures were collected. These types of measures are
frequently referred to as complexity measures, but prima-
rily they describe different aspects of the software and no
measure can really be considered to capture the actual
complexity. In total, 19 different measures were collected,
with 10 measures originating from the design documenta-
tion and 9 measures (including the number of lines of
code) being collected from the resulting code. The code
measures are however not used in this study, since they are
only available for one of the releases. Please note, all
measures have been scaled due to confidentiality. This also
includes the number of faults reported.

The lack of documentation and information from a large
number of the components, of course, implies that the con-

clusions from this study are difficult to generalize to all
components in the system. But, on the other hand, the main
objective here is to illustrate the approach for identification
of green, yellow and red components, rather than actually
using the models in practice. The latter is, of course, an
objective in the future.

The design data collected were primarily a count of the
number of symbols of different types. The language used
during design is a predecessor to SDL, (Specification and
Description Language) Figure 17, and it is basically a
finite-state-machine with states and signals. A modified
version of McCabe’s Cyclomatic Complexity, Figure 18
was used as well. The modification was simply due to
being able to handle signal sending and reception respec-
tively. The design measures are listed in Table 1.

3.2. Analysis

3.2.1 Faults
The number of faults found in the components are pre-

sented in Table and Table . It varies between 0 and 32
faults in release n and between 0 and 30 in release n+1. In
Table , the ranks for the components in release n+1 could
be found. The components are ranked according to the
number of faults. The components in Table are already
sorted according to their rankings. Ranking of components
allows us to make comparisons and to make some simple
predictions. Our hypothesis is that the same components
always are among the most fault-prone in every release.

Measure Description

SDL-pages Number of design pages in terms of SDL diagrams.

Tasks Number of task symbols in the SDL descriptions.

Outputs Number of output symbols in the SDL descriptions.

Inputs Number of input symbols in the SDL descriptions.

If Number of if-boxes in the SDL descriptions.

States Number of state symbols in the SDL descriptions.

McCabe This measure is an adaptation of the original proposal by McCabe. The measure is
adapted to enable measurement on design and in particular to include the signalling con-
cept used in SDL.

External inputs Number of unique external inputs to a component.

External outputs Number of unique external outputs to a component.

Internal signals Number of unique internal signals within a component.

Table 1. Design measures collected.

Component A B C D E F G H I J K L M N

Faults 0 0 0 0 0 0 1 2 2 2 3 4 4 5

Rank 1 1 1 1 1 1 7 8 8 8 11 12 12 14

Component O P Q R S T U V W X Y Z AA AB

Faults 7 7 7 8 9 9 9 9 10 11 15 20 22 32

Rank 15 15 15 18 19 19 19 19 23 24 25 26 27 28

Table 2. Faults in release n.

Component A B C D E F G H I J K L M N

Faults 8 18 0 0 3 4 7 3 8 0 9 2 12 14

Rank 15 25 1 1 9 11 14 9 15 1 17 8 21 23

Component O P Q R S T U V W X Y Z AA AB

Faults 0 0 10 11 1 0 22 30 23 11 15 6 5 12

Rank 1 1 18 19 7 1 26 28 27 19 24 13 12 21

Table 3. Faults in release n+1.

This means that we are be able to pin-point or identify the
most fault-prone components in each release according to
the ranking of the components. Let us assume that we
would like to focus on the most fault-prone quartile.

In this case we should identify seven components from
release n with the highest ranks and use them as our pre-
diction of the most fault-prone components in release n+1.
It should be remembered that the prediction of fault-prone-
ness is primarily used to identify components which are
difficult to change and hence are on their way of becoming
difficult to maintain.

The seven components from release n should then be
compared with the seven components with the highest
ranks in release n+1 to see if they match. Due to the fact
that four of the components in Table have the rank 19, we
have chosen one of them at random. The result is presented

in Table . Three components are correctly identified, but
four components are incorrectly depicted as fault-prone.A
potentially successfully way of using this model is to
define green, yellow and red components as follows:
• Green - not in the fault-prone quartile for the two con-

secutive releases.
• Yellow - in the fault-prone quartile for one of the two

releases.
• Red - in the fault-prone quartile for both releases.
In our study, these criteria would mean that components V,
W and Y are classified as red components. If we have
more than two releases, we could probably formulate bet-
ter criteria to determine the colour of the components.
With better we mean that we may take more than two
releases into account, hence facilitating the ability to estab-
lish patterns in the behaviour of the models.

Another approach is to use the accumulated ranks to
identify those components that need special attention. It
should be noted that since the ranks are on an ordinal scale,
addition it is not considered to be a meaningful operation.
We have, however, chosen to use it as a model irrespec-
tively of this, since we believe that a component, which is
consistently among the components with most faults, is
bound to continue to cause problems. Furthermore, it
should be remembered that we add ranks for components
in one system, hence the components being ranked are the
same. We do not add ranks for components from different
systems.

25%
Prediction (Release n)

Fault-prone Normal

Outcome
(Release n+1)

Fault-prone 3 4

Normal 4 17

Table 4. Result from identification of the 25 percent most
fault-prone components.

In Table 5, we have added the ranks from release n and
n+1. This gives an indication of which of the components
that are among those with most faults over both releases.

We may now use the accumulated rank to determine the
lower and upper limits (see Figure 1) that differentiate
between green, yellow and red components. For example,
we may regard a value above 45 as being critical hence
judging components with an accumulated rank of 45 or
higher as being red components. A yellow component may
be those that have a accumulated rank above 35. We may
choose any threshold values we want to. It is not possible
to provide any general rules. The limits must be deter-
mined for every specific case. In other words, the limits
may depend on application and the subjective judgements
which have provided us with a guideline, for example, the
ones used above for illustration.

Another possibility would have been to utilise the dif-
ference between the ranks to identify those with large devi-
ations between releases. For example, we may see that a
component increases its rank from release to release, and
hence it may be a component to watch in the future.

These analyses provide information focusing on the
components and not on the system as a whole. Therefore,
before making decisions about corrective actions the
release as a whole has to be analysed.

3.2.2 Structure
Analysis of structural changes provides an ability to

react on major changes in the components. Changes in the
components’ structure might be indicators of future prob-
lems regarding the ability to change the component. Inter-
esting indications may be when the number of principal
components increase or decrease, or when some variables
switch from one group of variables to another. The basic
idea behind using this approach is that a major change in
the structure may be a potential source of future problems.
It should, however, be remembered that we do not expect
that this type of model gives us necessarily the optimal
prediction in terms of problematic components. A major
structural change may be that we have reengineered the
components, hence (hopefully) made it better than before.
The objective of the models must be to identify and pin-
point the changes relative each other, then an expert must

take a closer look at the components being depicted with
this type of model or for that matter any other model. We
do not expect to replace the expert, but to point the expert
in the right direction.

The outcome of the analysis of the variables in our
study is presented in Table . We used a normal principal
component analysis with a orthotran/varimax transforma-
tion. There exist two distinct groups of variables, those
related to communication (output, input, external input,
external output and internal signal) and those related to
size (SDL-page, task and if-statement). These two groups
are stable across the releases even though their propor-
tional variance contribution differs slightly. The other two
variables are states and McCabe. These two have switched
from one group to another. One reason might be that these
variables are correlated with both communication and size
and, depending on the release as a whole, they are placed
in different principal components.

The change in the principal components indicates that
some variables have changed differently than others. The
indication means that focus has to be set on variables
which differ from the common pattern. In this particular
case, the variables state and McCabe have switched princi-
pal components. Hence, we should study the components
which have changed most with regard to these variables.
For example, we may choose to study the quartile with the
largest increasing change in ranks, from release n to n+1,
with regard to these two variables. Thus, we have eight
components depicted with states (two components had the
same ranking) and seven components pin-pointed with
McCabe.

The total number of components pin-pointed is 14, i.e.
only one component is the same for the two variables. This
may be too many to study in detail, but the main objective
here is to illustrate how the changes in principal compo-
nents can be used to understand fault-proneness. In other
words, you may choose to study only 10% of the compo-
nents for each variable. In our particular case, the two vari-
ables pin-point half of the components which may be too
many. Another approach would be to only focus on com-
ponents, which are pin-pointed by both measures (McCabe
and States).

Component A B C D E F G H I J K L M N

Accumulated
Rank

16 26 2 2 10 12 21 17 23 9 28 20 33 37

Component O P Q R S T U V W X Y Z AA AB

Accumulated
Rank

16 16 33 37 26 20 45 47 50 43 49 39 39 49

Table 5. Accumulated ranks for the components.

If focusing on the components with the largest changes
in ranking for McCabe, we would actually identify five out
of the seven components with the largest increasing fault-
proneness for release n+1. A similar study of the state var-
iable identifies three out of the eight components with the
largest increasing fault-proneness. It is interesting to note
that two of the components identified by the state variable
were not identified by the McCabe variable, hence by
combining the state and McCabe variables we are able to
identify all the seven most fault-prone components.

Thus, changes in principal components may be one
fruitful way of identifying fault-prone components. We
must, however, learn how to interpret the information we
obtain. Is the McCabe measure, when it has changed prin-
cipal component, a good measure to identify fault-prone-
ness, and in the long run maintenance problems in general?
Is it a good approach to only focus on the components
depicted by all measures which have changed principal
components? One thing is clear and that is that further
studies are needed if we want to be able to predict compo-
nents on their way to become red components.

3.2.3 Size
Information about the degree of modification and infor-

mation about major changes in size are two important
measures in the identification of problematic components.
These two are often closely related. When a major change
in size occurs, the degree of modification also increases.

Therefore, these could be treated together. If the degree of
modification is related to the number of faults, it may be
possible to identify causes which have increased the
number of faults. Thus, it is essential to understand the
relations between fault-proneness, degree of modification
and long-term maintenance problems.

Even if a component has a remarkably large amount of
faults in a release, it does not necessarily mean that it is
fault-prone in general. The reason might be that it has a
quite large degree of modification in this release. The
problems arise when we have a large amount of faults and
a small degree of modification. This should be interpreted
as even when a small part is changed, the effects are wide
spread in the component and cause many faults, due to the
complexity of the component.

Information about the degree of modification is not
available for the components in these two releases. In our
study, the best size measure, is the number of SDL-pages
for each component. Unfortunately, we have not been able
to find any strong correlation between changes in size and
fault density. The size measures have to be further investi-
gated, and in particular the degree of modification must be
studied in conjunction with the number of faults.

4. Conclusions

Maintenance of software components often means that
the complexity of the components increases. The increase

Release n Release n+1

Variable Factor 1 Factor 2 Factor 1 Factor 2

Outputs .863 .381 .38 .889

Inputs .806 .504 .346 .852

External inputs .962 .218 .402 .833

External outputs .914 .317 .402 .841

Internal signals .532 .262 .008 .503

States .836 .206 .846 .108

McCabe .481 .86 .626 .656

SDL-pages .587 .771 .918 .364

Tasks .128 .974 .891 .324

If .352 .898 .848 .333

Proportional
variance
contributions .564 .436 .506 .494

Table 6. Results from analysis of principal components.

in complexity means that the components become harder
to maintain. The code is decaying. To avoid these prob-
lems, preventive actions have to be applied to the affected
components. One problem is the identification of compo-
nents, and in particular the ability to identify the compo-
nents before they cause major problems. A classification
scheme for components has been proposed which divides
the components into green, yellow and red categories.

The underlying hypothesis in our work is that fault-
proneness and structural changes are indicators of mainte-
nance problems, and that components which are pin-
pointed by the proposed models are potential candidates
for reengineering or other actions to raise the quality and in
particular the maintainability of the components.

In our case study, we have used data from two releases
to illustrate the identification of fault-prone components by
using historical data. The data consists of a number of dif-
ferent design metrics and the number of faults for each
component. By applying different analysis methods, we
have shown that it is possible to classify components as
green, yellow or red depending on the outcome of these
analyses. Simple, but yet useful, methods as ranking of
components based on different criteria, have provided sat-
isfying results. For example, the accumulated ranks pro-
vided important information regarding the components in
the long run.

Principal component analysis has also shown potential
to be useful for finding structural changes that might have
affected the number of faults. In our case, two variables
shifted components. Further investigation indicated that
large changes in complexity affected the number of faults
in a component. This kind of analysis is useful to be able to
pin-point components which may need special attention.

The case study only used data from two releases. To
further investigate the usefulness of these models and to be
able to see long term trends, it is necessary to use data
from more releases. The presented case study is a pre-
study to a larger study based on component data for several
releases of a large software system.

The case study has provided valuable insight into some
of the problems and it will form the basis for the continued
studies.

5. Acknowledgement

This work was partly funded by The Swedish National
Board for Industrial and Technical Development
(NUTEK), grant 1K1P-97-09673.

6. References

1. D. Gefen and S. L. Schneberger, “The Non-Homoge-
neous Maintenance Periods: A Case Study of Soft-
ware Modifications”, Proceedings of the International
Conference on Software Maintenance, ICSM’96, pp.
134-141, November 1996, Monterey, California.

2. N. H. Minsky, “Controlling the Evolution of Large
Scale Software Systems”, Proceedings of the Interna-
tional Conference on Software Maintenance,
ICSM’85, pp. 50-58, November 1985, Washington,
USA.

3. M. M. Lehman and L. A. Belady, “Program Evolu-
tion: Processes of Software Change”, Academic
Press, Austin, 1985.

4. A. Karr, A. Porter and L. Votta, “A Testbed for
Understanding Code Decay”, Progress Report from
The International Software Engineering Research
Network meeting, ISERN’96, August 1996, Sydney,
Australia.

5. D. A. Gustavsson, A. Melton and C. S. Hsieh, “An
Analysis of Software Changes During Maintenance
and Enhancement”, Proceedings of the International
Conference on Software Maintenance, ICSM’85, pp.
92- 95, November 1985, Washington, USA.

6. V. Basili, L. Briand, S. Condon, Y. M. Kim, W. L.
Melo and J. D. Vallet, “Understanding and Predicting
the Process of Software Maintenance Releases”, Pro-
ceedings of the 18th International Conference on
Software Engineering, ICSE’96, pp. 464-474, March
1996, Berlin, Germany.

7. D. L. Parnas, “Software Aging”, Proceedings of the
16th International Conference on Software Engineer-
ing, ICSE’94, pp. 279-287, May 1994, Sorrento, Italy.

8. T. M. Khoshgoftaar, E. B. Allen, N. Goel, A. Nandi
and J. McMullan, “Detection of Software Modules
with High Debug Code Churn in a Very Large Legacy
System”, Proceedings of the International Sympo-
sium on Software Reliability Engineering, ISSRE’96,
pp. 364-371, October-November 1996, White Plains,
New York, USA.

9. N. Ohlsson and H. Alberg, “Predicting Fault-prone
Software Modules in Telephone Switches”, IEEE
Transactions on Software Engineering, 22(12), pp.
886-894, December 1996.

10. N. Ohlsson, M. Helander and C. Wohlin, “Quality
Improvement by Identification of Fault-prone Mod-
ules Using Software Design Metrics”, Proceedings of
the 6th International Conference on Software Quality,
ICSQ’96, pp. 1-13, 1996, Ottawa, Canada.

11. T. M. Khoshgoftaar, E. B. Allen, K. S. Kalaichelvan,
N. Goel, J. P. Hudepohl and J. Mayrand, “Detection
of Fault-Prone Program Modules in a Very Large Tel-
ecommunications System”, Proceedings of the Inter-
national Symposium on Software Reliability
Engineering, ISSRE’95, pp. 24-33, October 1995,
Toulouse, France.

12. T. M. Khoshgoftaar, E. B. Allen, R. Halstead and G. P.
Trio, “Detection of Fault-prone Software Modules
During a Spiral Life Cycle”, Proceedings of the Inter-
national Conference on Software Maintenance,
ICSM’96, pp. 69-76, November 1996, Monterey, Cal-
ifornia.

13. V. Basili, G. Caldiera and D. Rombach, “Experience
Factory”, in Encyclopedia of Software Engineering,
Vol. 1, edited by J.J. Marciniak, pp. 469-476, John
Wiley & Sons, New York, 1994.

14. N. Fenton, and S. L. Pfleeger, “Software Metrics: A
Rigorous & Practical Approach”, 2nd edition, Inter-
national Thomson Computer Press, Cambridge, 1996.

15. T. Pearse and P. Oman, “Maintainability Measure-
ments on Industrial Source Code Maintenance Activi-
ties”, Proceedings of the International Conference on
Software Maintenance, ICSM’95, pp. 295-303, Octo-
ber 1995, Opio, France.

16. T. M. Khoshgoftaar and D. L. Lanning, “Are the Prin-
cipal Components of Software Complexity Stable
Across Software Products?”, Proceedings of the Inter-
national Symposium on Software Metrics, Metrics'94,
pp. 61-72. October 1994, London, United Kingdom.

17. ITU, “Recommendation Z.100: SDL - Specification
and Description Language”, 1988.

18. T. J. McCabe, “A Complexity Measure”, IEEE Trans-
actions on Software Engineering, 4(2), pp. 308-320,
1976.

