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Abstract

Software reliability is traditionally estimated by analyzing failure data
collected during software testing. There are many software reliability
models available, but the estimation of model parameters usually requires a
large number of failure data which might not be available. Hence the
estimated parameters are not accurate and frequent revisions are needed as
more failure data become available. In this paper, we study the use of
interval estimation in software reliability prediction. For a commonly used
software reliability model, we present the interval estimates of the
parameters and their uses for a better planning during reliability testing.
Confidence limits for the reliability and failure intensity function are
presented. The results are useful, for example, in the determination of

software release time which is a difficult problem in practice.
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1. Introduction

One basic problem in software development is that software systems have become more
complex and larger than ever. This is due to the complexity of the tasks which the
software must perform. It is important to produce reliable software systems since software
failures may cause the breakdown of computer system that can result in tremendous loss to
the society. Several software reliability models have been proposed to estimate and predict

software reliability during the testing phase, see Xie(1991) and Lyu(1996).

In the recent years, probabilistic models are employed to predict the reliability level
achieved in the software so that the developers can predict the amount of testing nceded
and estimate the release time at which the reliability target is met. Software reliability is
traditionally evaluated using a point estimate which is a single numerical value that results
from the analysis of the failure data collected during software testing. However, most of
the studies assume that the parameters of the underlying software rcliability models are
known accurately. This may not be true since the estimation of the model parameters are
based on the number of failures discovered during the testing, and the estimation of model
parameters are usually different according to different estimation methods. Furthermore,

an accurate parameter estimation requires a large number of failure data which might not



be available. Hence the estimated parameters are not accurate and they may change

frequently when more failure data are collected.

To solve this problem, we present in this paper interval estimates of software reliability
model parameters. This result is useful for a better planning during reliability testing. In
Section 2, the Goel-Okumoto model and the estimation problems are discussed. In Section
3, the interval estimation methods of the model parameters are proposed. Confidence
limits for the reliability and failure intensity function are presented. An example is given

to illustrate the method in Section 4.

2. The Goel-Okumoto Model and the Estimation Problem

A software reliability growth model characterizes how the reliability of that software
varies with execution time. These models have gained considerable acceptance in software
reliability analysis, but the accuracy of each model varies and no single model is superior
above all the other models(Azem 1995). For illustration, Goel-Okumoto model is used
here in the analysis. The Goel-Okumoto model is a simple non-homogeneous Poisson

process (NHPP) model. Similar analysis can be carried out using other reliability models.

The Goel-Okumoto model has the following mean value function x(t) and failure

intensity function A(¢):



u(®) =a(l—e™). (1)

A (t) = abe™ (2)

The parameter a is interpreted as the number of initial faults in the software and the
parameter b is related to the reliability growth rate of the testing process. The software
reliability R(x|¢) is defined as the probability of a failure-free operation of a computer

software for a specified time interval (7,7+x] in a specified environment. We have

R(x[t) = expi-{ p(t +x) = u (D]} 3)

The most common method for the estimation of the parameters is the maximum likelihood
(ML) method. Detailed discussion about ML method can already be found in the literature.
For example, in Knafl (1992), ML estimates of a broad collection of software reliability
models for grouped data are discussed in detail. In Knafl (1996), for ungrouped data set,
the ML estimates are summarized. Because of the random nature of testing data, there are

some problems with the stability especially for grouped software failure data.

The parameters of (1) can be estimated using the maximum likelihood method based on

numbers of failures per interval. Suppose that an observation interval (0, ;] is divided
into a set of subintervals (0, ti1,(t, 6] (tg—y5 2, ], the number of failures per
subinterval is recorded as n;(i =1,2,...,k) with respect to the number of failures in

(#;_1,t;]. The likelihood function is
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To solve equation (4), we take the logarithm of both sides:
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For the Goel-Okumoto model, in order to estimate the parameter ¢ and b, we can take the

derivative of /nL with respect to @ and b. To find the location of the maximum, we

compute
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Equating these derivatives to zero and solving the resulting equations for @ and b, we find

the estimates as follows:
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The value of parameter a can be obtained using the first equation of (7) after getting the
estimate of parameter b. Since the second equation of (7) for estimating parameter b is

nonlinear, we can not find an analytic solution and must obtain it numerically.

In practice, we need a large number of failure data for the estimates to be accurate. In an
early stage of testing, the estimates are usually not accurate at all and hence the estimated
release time may not be accurate either. As this is the case, a confidence interval

estimation has more advantages than a point estimation only.

3. Interval Estimation of the Parameters

In this section, we discuss the interval estimation of the parameters of the Goel-Okumoto
model. In order to obtain the confidence limits for parameter ¢ and b, we can calculate the
Fisher information matrix to obtain the asymptotic variances and covariance of the ML
estimates of the parameter. The Fisher information matrix is symmetric. It uses the matrix

of negative second partial derivatives of the log likelihood function which is
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The asymptotic covariance matrix V of the ML estimators @ and b is the inverse of the

Fisher information matrix:
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Here the negative second partial derivatives of the log likelihood function can be derived

using the ML estimator 4 and b as follows:
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Since A (¢) is a continuous function of parameter ¢ and b, its maximum likelihood

estimate is A (r) = dbe™® which is called the invariance property of ML estimators. The

estimate of Var(/i\) is obtained by



Var(2) = (41 3 a)? ues Var(8) + (G 1 O b) %y Var(h)
+2(A! 3a) AR/ D) _,,_; Cov(d,b) (11)

= 52721 Yar(g) + a2 (1- bty 2 Var (B) + 2abe2 (1= bt)Cov(a, b)

Similarly, the maximum likelihood estimate of the reliability function R(x|t) is
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The two sided approximate 100« % confidence limits for the parameter a and b are

A ~\11/2 ~ ~\q1/2
Aupper = A+ Z,[Var(@)] QAlower = —Z, [Var(d)]

(13)

bupper = b+ Zo [Var(B)]"  biper = b — Z, [Var($)]"?

where Z, is the (1-) quartile of the standard normal distribution.

We employ the large-sample normal distribution of A (¢) and R(x|¢) and get the two sided

approximate 100a % confidence limits for the true values:



Aupper= A+ Zy War(OI" A ppser= A= Z,, Var(A)]"? (14)

R pper=R+Z [Var(R)"™ R 1pper= R Z,, [Var(R)]"? (15)

where Z,, is the (1—¢) quartile of the standard normal distribution.

4. An Example of Application

An example is given in this section to illustrate the applicability of the interval estimation.
A software was developed and then tested for 28 weeks. The complete failure data were

recorded and given in Table 1.

Table 1. Number of failures per month

3 | 38 | 10| 8 | 77 2 | 2 1

& | 19 | 11| 1 |8 3 | B 2
52 2| 18 2z | % |

| :5 |
6 | 13 | 138 7 |2 | 5 | 27 | o




In order to predict the rcliability behavior of the software system, we apply the Goel-
Okumoto model. To estimate parameter a and b of equation (1), we use the maximum
likelihood method discussed in Section 2. The results of the last few weeks are listed in
Table 2. The 95% confidence intervals for parameter a and b are listed in Table 3. The
95% confidence intervals for the software failure intensity and reliability predicted in the

following months are listed in Table 4.

Table 2. The estimation of parameter a and b using ML methods

258,

" 0.09472
21 | 2 222 2563 ~0.09578
2 3 225 256.3 0.095597
23 | 4 229 2685 0.083328
24 1 230 2558 0.095575
25 z 232 | 2553 ~ 0.095751
26 1 233 256.3 0.092254
27 _ 0 233  250.2 ~0.099146
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23 268.5 233.7 303.3 0.08333 0.06548 0.1012
24 255.8 2227 288.9 0.09558 0.07626 0.1149
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Table 4. 95% confidence intervals for the failure intensity

and software reliability predicted for the following months

5. Discussion

1.38 192 083 076 | 084 0.68
"""""" 30 124 175 | 074 078 | 0.86 0.70
31 L13 159 0.66 0.80 | 087 0.73
\ |

In this paper, we have discussed the interval estimation of the software reliability model

parameters. The Goel-Okumoto model is used to illustrate the parameter estimation

problems. The confidence limits for the reliability prediction is obtained. The results are

useful in practice because we can provide an interval estimates with confidence limits

rather than just a point estimate. The approach in our study can be extended to many other

models.
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