
Foreword

Prof. Claes Wohlin, Blekinge Institute of Technology, Sweden

As the name of the field indicates, software engineering is expected to be an engineering
discipline. However, it is not governed, to the same extent, by underlying mathematical
models as many other engineering disciplines, in particular, those addressing physical artifacts
as in electrical engineering or mechanical engineering. Thus, mathematics is insufficient to
conduct research and improve in software engineering, although it is vital for some sub-areas
within software engineering. There are several reasons for this insufficiency.

First of all, the software is invisible1. We can read the code, but we cannot see it in use. We
can only observe the effect of the software being executed. Furthermore, software
engineering is intrinsically complex since it is, to a considerable extent, dependent on the
knowledge and capability of humans developing the software. Moreover, the ability of the
individuals to work in a team contributing to the same software system is essential. The
development is supported by different processes, methods, techniques, languages, and tools,
which, in one way or another, are used by the organization developing the software. Thus,
software engineering is an interplay between human knowledge, social networks of the
individuals, and available assets in the organization developing the software2.

To be able to study and improve the way software is engineered, many researchers have
embraced and promoted software engineering as an empirical engineering discipline.
Empirical studies were conducted early in the discipline, but they were quite rare. In 1986, an
article describing experimentation in software engineering was published3 outlining software
engineering as an experimental science. The establishment of empirical software engineering
was done to a large extent in the 1990ies. At the beginning of the 21st century, two books on
experimentation in software engineering were published4,5. The former book came in a
second edition in 20124, and it was published in Chinese in 2015.

In 2004, the concept of evidence-based software engineering was established in software
engineering6. The evidence is most often generated from empirical studies, and hence, it was
a natural continuation of the previous work on empirical software engineering. As the area of
empirical software engineering became well-established, the need for advances in our

1 F. P. Brooks, Jr, “No Silver Bullet – Essence and Accidents of Software Engineering,” IEEE Computer, Vol. 20,
Issue 4, pp. 10-19, 1987.
2 C. Wohlin, D. Šmite, and N. B. Moe, “A General Theory of Software Engineering: Balancing Human, Social and
Organizational Capitals,” Journal of Systems and Software, Volume 109, pp. 229-242, 2015.
3 V. R. Basili, R. W. Selby, and D. H. Hutchens, “Experimentation in Software Engineering,” IEEE Transactions on
Software Engineering, Vol. SE-12, Issue 7, pp. 733-743, 1986.
4 C. Wohlin, P. Runeson, M. Höst, B. Regnell, M. C. Ohlsson and A. Wesslén, “Experimentation in Software
Engineering”, Springer-Verlag Berlin Heidelberg, 2012.
5 N. Juristo and A. M. Moreno, “Basics of Software Engineering Experimentation,” Springer US, 2001.
6 B. A. Kitchenham, T. Dybå, and M. Jørgensen, “Evidence-based Software Engineering,” Proceedings. 26th
International Conference on Software Engineering, Edinburgh, UK, pp. 273-281, 2004.

conduct of empirical studies grew7. Given the applied nature of software engineering, the
need to conduct empirical studies in a real-life context was strengthened by the publication
of guidelines for conducting case studies8.

As a continuation concerning the focus on evidence in software engineering, a book on
evidence-based software engineering was published in 20159. Furthermore, empirical
software engineering has gone from being a sub-area of software engineering to be an integral
part of software engineering. Nowadays, it is expected that research is evaluated and assessed
using empirical methods. Thus, it is, in most cases, insufficient to present an idea or a solution
without empirical evidence. In summary, software engineering has moved into truly being an
engineering discipline.

The current book “Contemporary Empirical Methods in Software Engineering,” edited by Prof.
Michael Felderer and Prof. Guilherme Horta Travassos takes the next step by including
chapters on essential and timely topics in empirical software engineering. The chapters are
written by some of the world-leading experts on empirical methods in software engineering.
The editors have done an excellent job of attracting experts in the field who contribute with
essential topics concerning the empirical software engineering of today.

The book follows up on the previous books and articles on empirical and evidence-based
software engineering. As the title of the book indicates, the book takes a timely step in
including a set of chapters addressing emerging areas in empirical software engineering. It
provides an excellent combination of chapters addressing contemporary areas of interest for
anyone conducting research in software engineering and in particular, for those with a strong
focus on empirical software engineering. The book is highly recommended to read for, in
particular, Ph.D. students and researchers interested in conducting high-quality software
engineering research aspiring to apply empirical research methods for today and the future.

7 F. Shull, J, Singer and D. I. K. Sjøberg (editors), “Guide to Advanced Empirical Software Engineering,” Springer-
Verlag London, 2008.
8 P. Runeson, M. Höst, A. Rainer and B. Regnell, "Case Study Research in Software Engineering – Guidelines and
Examples," John Wiley & Sons, Inc., 2012.
9 B. A. Kitchenham, D. Budgen and P. Brereton, “Evidence-based Software Engineering and Systematic
Reviews,” Chapman and Hall/CRC, 2015.

