

P. Runeson, and C. Wohlin, "Statistical Usage Testing for Software Reliability
Certification and Control", Proceedings 1st European International Conference on

Software Testing, Analysis and Review, pp. 309-323, London, UK, 1993.

© P. Runeson and C. Wohlin, 1993

Statistical Usage Testing for Software Reliability Certification and Control 45/1

EuroSTAR’93, 25–28 October 1993, Edwardian Hotel, London, U.K.

Statistical Usage Testing for Software Reliability
Certification and Control

Per Runeson and Claes Wohlin

Abstract

Software reliability is a frequently used term, but very seldom the reliability is under con-
trol during a software development project. This paper presents a method, Statistical
Usage Testing (SUT), which gives the possibility to estimate and predict, and hence con-
trol the software reliability. SUT is the reliability certification method described as a part
of Cleanroom software engineering. The main objective of SUT is to certify the software
reliability and to find the faults with high influence on the reliability. SUT provides statis-
tically based stopping rules during test as well as an effective use of test resources, which
is shown by practical application of this and similar methods. This paper presents the
basic ideas behind SUT and briefly discusses the theoretical basis as well as the applica-
tion of the method.

Topic Descriptors: Statistical Usage Testing, Software Reliability, Certification, Usage
Profile, Operational Profile.

Q-Labs
IDEON Research Park

S-223 70 LUND
SWEDEN

Phone: +46-46 18 29 80
Fax: +46-46 15 28 80
e-mail: pr@q-labs.se

Department of Communication Sys-
tems, Lund University

Box 118, S-221 00 LUND
SWEDEN

Phone: +46-46 10 33 29
Fax: +46-46 14 58 23

e-mail: claesw@tts.lth.se

© P. Runeson and C. Wohlin, 1993

45/2 Statistical Usage Testing for Software Reliability Certification and Control

1. Introduction

The software development community is not in control of the software reliability. This
can be stated based on a quote from Tom DeMarco, [DeMarco82]: “You can’t control
what you can’t measure”. It is not possible based on traditional development techniques to
actually measure the software reliability hence the reliability is out of control.

Software reliability engineering is currently a fast growing area. Therefore the situation is
not hopeless; the techniques are becoming available to control the reliability. The soft-
ware process will become more and more controlled which means that methods to esti-
mate, predict and certify the fault content and reliability will be introduced. This is the
only way towards managing the process of actually engineering reliable software, instead
of crafting unreliable software.

The testing techniques normally applied are aimed at finding faults. This is a devastating
point of view since it implicitly accepts that errors are made and that the testers have to
remove them. This reasoning may be philosophical, but it is believed to be one of the key
issues in controlling the software reliability. One of the most important aspects in the
development is the motivation and belief in being able to do something, in this case
develop software with few or no defects. Therefore it is essential to provide techniques so
that the software developers can believe in developing zero-defect software, which also
includes methods to certify the actual reliability level.

Cleanroom Software Engineering [Mills87, Mills88, Cobb90, Dyer92] emphasizes the
intellectual control in the software development. Cleanroom is a collection of several
sound management and engineering techniques, in particular it is emphasized that it is
possible to develop nearly zero-defect software. One of the engineering techniques
emphasized in Cleanroom is Statistical Usage Testing, [Whittaker92], which is a method
for statistical control of the software reliability during the system or acceptance testing
phase. The requirement on the testing phase is that it resembles the operational phase to
be able to apply the techniques to actually remove failures most critical for the user and
certify a particular reliability level.

The objective with Statistical Usage Testing is not as in traditional testing to remove
faults, but to certify a specific predetermined reliability level. Statistical Usage Testing
and its opportunities to promote statistical control of the software reliability will be dis-
cussed in this paper. The usage testing technique will provide a basis to certify a reliability
requirement, see section 2. The method for reliability certification provides an opportu-
nity to formulate a stopping criterion for the testing, where the criterion is based on the
fulfilment of the requirement. The objective of the testing technique is to remove the
faults which affect the reliability the most first. This objective also means that the test cost
is minimized as well as the losses during operation due to that the most critical failures in
terms of usage are located during the testing phase, [Adams84].

The principles behind Statistical Usage Testing are discussed in section 3, while the tech-
niques within usage testing are further described in section 4, i.e. usage descriptions and
reliability certification. In section 5 a minor example is presented to illustrate the usage
testing technique described. Section 6 presents some practical experiences with usage
testing techniques. Finally in section 7 some conclusions are presented.

© P. Runeson and C. Wohlin, 1993

Statistical Usage Testing for Software Reliability Certification and Control 45/3

2. Reliability requirement

The requirement specification contains normally both functional requirements and quality
requirements; in particular reliability or availability requirements are put into the specifi-
cation. The fulfilment of the functional requirements is evaluated through using the func-
tions specified in the requirements, but the other requirements ought to be fulfilled as
well. The methods for reliability certification have, however, not been available or the
available techniques have not been applied. This must change, either it is no use formulat-
ing reliability requirements or methods to evaluate/certify the reliability must be applied.

Statistical Usage Testing is a method to actually certify the reliability requirement. This
type of method must be applied, since it is not possible to keep applying traditional sys-
tematic testing techniques and then see the system fail in operation. This is a result of not
certifying the reliability requirement. The society can not afford software system failures,
neither in safety critical systems nor in other cost intensive systems.

The reliability requirement aims at the reliability as perceived by the users when the soft-
ware system goes into operation. Therefore usage testing must be applied, since reliability
is not only the number of faults but also the actual location of them compared with usage
of the software system.

The method being presented will allow for certification of the reliability requirement,
which means that we will be in control of the reliability before releasing the software
product instead of being surprised as the system fails in operation.

3. Statistical Usage Testing

3.1. Cleanroom

Statistical Usage Testing (SUT) is the certification part of Cleanroom Software Engineer-
ing. Cleanroom is a methodology which consists of a set of software engineering and
management principles as well as practices according to which software can be developed
with very high quality and productivity [Mills87, Mills88, Cobb90]. The methodology
has proven to be very successful when applied in software development companies in
Europe as well as in the USA [Selby87, NASA90, OS-32]. Cleanroom is developed at
IBM and Software Engineering Technology in the USA and further development and
applications in Europe are performed by Q-Labs.

Cleanroom aims at development of almost zero-defect software with measurable reliabil-
ity. The basic idea is to do things right from the beginning instead of first introducing and
then correcting errors. Management and engineering techniques in Cleanroom are:

• The software is developed by small teams (3–5 people) with clearly defined
responsibilities. There are three types of teams, specification, development and
certification teams. The teams are jointly responsible for the produced result.

• Very much emphasis is put on rigorous specifications which are the basis for the
development.

• The development is done in increments, each of which is executable. By parti-
tioning the software into increments each increment may be handled by different

© P. Runeson and C. Wohlin, 1993

45/4 Statistical Usage Testing for Software Reliability Certification and Control

teams and developed in parallel. Furthermore the increments are small enough to
be held under intellectual control.

• The software is developed in small steps from specification to design according
to a step by step algorithm. Each step is a refinement of the prior. For each step
more details are added and finally it ends up in executable code.

• Each of the development steps is rigorously verified towards the previous steps.
The verification is mainly performed by reviews, supported by a theoretically
based method called “functional verification”.

• Traditional testing is replaced by certification of the software reliability by Sta-
tistical Usage Testing.

Most of the techniques are well-known but the combination of these and the management
attitudes have given encouraging results concerning software quality as well as productiv-
ity and lead time control. In this paper we concentrate on the certification part of Clean-
room, Statistical Usage Testing.

3.2. Usage based testing

Traditional testing is often concerned with the technical details in the implementation, for
example branch coverage, path coverage and boundary-value testing, [Myers79]. SUT on
the contrary takes the view of the end user. The focus is not to test how the software is
implemented, but how it fulfils its intended purpose from the users’ perspective. SUT is
hence a black box testing technique. It treats the software as being a black box and is only
concerned with the interfaces to the users.

SUT has two main objectives:

• To find the faults which have most influence on the reliability from the users’
perspective.

• To produce data which makes it possible to certify and predict the software relia-
bility and thus know when to stop testing and to accept the product.

3.3. Cost effectiveness

Studies show that usage based testing is an efficient way to find the faults which have
most impact on the reliability [Adams84]. The referenced study shows a gain with a factor
20. From seven software development projects at IBM it is concluded that 1.6% percent
of the faults cause 58% percent of the failures during operation, while 61% percent of the
faults cause only 2.8% percent of the failures. Thus it is more efficient to remove the 1.6%
of the faults.

Software reliability depends not only on the number of faults in the software, but also on
how the software is used. A fault in a part of the software which is frequently used has
larger impact on the reliability than a fault in a less frequently executed part.

As the study by Adams shows, the most efficient way to improve software reliability is to
remove the faults causing most of the failures, and not those which occur very seldom. In

© P. Runeson and C. Wohlin, 1993

Statistical Usage Testing for Software Reliability Certification and Control 45/5

SUT test cases are selected to test according to the operational usage and are hence effec-
tive in order to find the faults which affect software reliability.

3.4. Software reliability certification

The other objective of SUT is reliability certification, i.e. getting a reliability measure cor-
responding to the intended operational usage. To certify the software reliability there is a
need for a reliability model which based on failure data from testing can estimate and pre-
dict the software reliability.

Most reliability growth models which can be used for reliability certification and predic-
tion have a common prerequisite: usage based testing [Goel79, Jeliniski72, Musa87]. This
prerequisite has been overlooked during the years, but has come into focus during the last
years [Musa93, Runeson92].

3.5. Software acceptance

The software reliability measure obtained in usage based testing can be used as a criterion
for software acceptance as well as a stopping rule for the testing.

The contract between a supplier and a purchaser often includes a software reliability
requirement to be fulfilled at delivery. Neither the supplier nor the purchaser however can
prove that the requirement is fulfilled or not. SUT is a possibility for both parts to get
objective measures which may be used for judgement about the requirement fulfilment.

From the supplier’s side a question of interest is when to stop testing. Large parts of a
software development project costs are spent on testing. There is a need for saving testing
costs. However it can cost money for a supplier to deliver bad products as well in terms of
damages or bad reputation. This emphasizes a need for controlling software reliability by
using reliability measures as stopping criteria for software testing, which is provided by
SUT.

4. SUT models and methods

When applying SUT two kinds of models are needed, a model to describe the usage and a
reliability model. In section 4.1 the usage description is presented while the reliability
models are treated in section 4.2. A method describing how to use the models during Sta-
tistical Usage Testing is presented in section 4.3.

4.1. Usage description

The usage description is a model which describes how the software is intended to be used
during operation. Different types of models have been presented in the literature:

• Tree-structure models, which assign probabilities to sequences of events
[Musa93].

© P. Runeson and C. Wohlin, 1993

45/6 Statistical Usage Testing for Software Reliability Certification and Control

• Markov based models, which can describe more complex usage and model sin-
gle events [Whittaker92, Runeson92].

The primary purpose of a usage description is to describe the usage to get a basis for how
to select test cases for the usage based testing. It can however be used for analysis of the
intended software usage as well, to plan the software development. Frequently used parts
can be developed in earlier increments and thus be certified with higher confidence.

In this paper the State Hierarchy (SHY) usage description is briefly presented
[Runeson92]. It consists of a usage model, which is the structural part, and a usage pro-
file, which is the statistical part.

4.1.1. Usage model

The SHY usage model is a hierarchical Markov chain which copes with description of the
usage of large multi-user software systems. The basic concept of the SHY model is shown
in figure 1. Examples below are taken from the telecommunications field.

Figure 1. SHY model

The usage is described as a hierarchy. The state on the top represents all the usage. The
users can be divided into different user types or categories, for example for a small busi-
ness exchange, secretaries, other employees and modem connections. Note that this
example shows that a user must not be human.

For each of the user types, a number of individuals are described on the user level, for
example one secretary, four other employees and one modem connection.

Each user individual can use a number of services, which are described on the service
level, for example basic call and call forward.

The usage of the services is then described as plain Markov chains on the behaviour level.

The SHY model can be applied with different levels of detail depending on the actual
application. The behaviour level can for example be excluded if less details are to be
described in the usage model.

Usage

User
type

User
type

User User User

Service Service Service Service

Usage level

User type level

User level

Service level

Behaviour level

© P. Runeson and C. Wohlin, 1993

Statistical Usage Testing for Software Reliability Certification and Control 45/7

4.1.2. Usage profile

The usage profile adds the probabilities for selection of the branches to the usage model.
Probabilities are assigned to the transitions in the behaviour level Markov chains as well.

The probabilities are assigned based on measurement on usage of earlier releases or on
expert knowledge. The SHY model makes it possible to analyse parts of the usage and
assign probabilities for only that part of the model at a time, for example a user type.

The assignment must not be in absolute figures. Classes of usage frequency can be used,
for example very frequently, frequently and seldom used. These classes can be assigned
relative probabilities which may be an easier task than to assign every single probability.

4.2. Reliability model

To analyse the failure data collected during the statistical testing a reliability model is
needed. Several models have been published over the last 20 years, see [Goel85] for an
overview. Models of different complexity and possibility to estimate the software reliabil-
ity have been presented.

One very simple model which is suitable for software certification is the hypothesis test-
ing control chart model [Musa87]. It is based on a traditional quality control technique:
sequential sampling [Grant88].

The model is based on a control chart with three regions, reject, continue and accept, see
figure 2. The control chart is constructed based on the required level of confidence in the
estimation.

Figure 2. Hypothesis testing control chart.

The failure data is plotted in the chart, failure number towards weighted time between
failure1. As long as the plots fall in the continue region, the testing has to continue. If the
plot falls in the rejection region, the software reliability is so bad that it has to be rejected
and re-engineered. If the plots fall in the acceptance region, the software can be accepted
based on the required MTBF with given confidence and the testing can be stopped.

1. Weighted time between failure means the measured time divided by the MTBF objective.

Reject

Continue

Accept

failures

MTBFw

© P. Runeson and C. Wohlin, 1993

45/8 Statistical Usage Testing for Software Reliability Certification and Control

Thus the hypothesis certification model provides a means for certifying the software and
giving a reliability measure for the software as well as a means for controlling the testing
effort.

4.3. SUT method outline

The models presented above can be applied according the following method:

During specification:

1. Produce the usage model.

2. Assign the usage profile.

During test:

3. Select test cases from the usage description.

4. Run the test cases and collect failure data.

5. Certify the software.

During step 5 a decision is made based on the certification model outcome. If the failure
data plots fall in the continue region, the method is repeated from 3 to 5 again. If the soft-
ware is rejected, it is put back for redesign and finally if the failure data fall in the accept-
ance region, the certification is stopped and the software is accepted.

5. Example

This section contains an example which purpose is to make the models and methods pre-
sented in section 4 easier to understand and to apply. The method followed is the one pre-
sented in section 4.3. The subsections below are numbered according to the method
outline. Most emphasis is put on section 5.1 while section 5.2 to section 5.5 are more
briefly described since the techniques for usage description are less known than the other
techniques.

The example on which the test method is applied is a private branch exchange (PBX) for
a small office, see figure 3. Five human users are connected to the PBX, one secretary and
four other employees. Furthermore there is one modem line. The connection with the
outer world is through two lines. More details about the example specifications are given
throughout the example.

Figure 3. The example PBX system structure.

PBX

© P. Runeson and C. Wohlin, 1993

Statistical Usage Testing for Software Reliability Certification and Control 45/9

5.1. Produce the usage model

The SHY usage model, see figure 1, is produced in a number of steps, each of which is
small and rather easy to perform. The steps are:

1. Identify the user types.

2. Determine the number of individuals for each type.

3. Identify the services available for the users of a specific type.

4. Describe the behaviour Markov chain for each service.

5. Instantiate the services for the users.

In the actual example the first three steps are fully shown, while the last is only partially
performed in this paper.

The usage model is produced starting with identification of the different types of users. In
this example there are four: Secretary, employee, modem and in/out line.

The different individuals of the user types are identified. There is one secretary, four
employees, one modem and two in/out lines in the actual example.

The users have access to a set of services. The employees have internal and external basic
call and internal call forward. The secretary has furthermore internal call transfer. The
modem line has only external basic call. The in/out lines can only handle calls. In table 1
the first three steps in preparing the usage model for the PBX are summarised.

The behaviour level Markov chains for the services are then described, see figure 4 and
figure 5. For the internal basic call the stimuli are selected to be: Off Hook (OfH) (lift the
receiver), Dial Internal Number (DIN), On Hook (OnH). There is also an asterisk (*)
stimulus which means that the transition is forced by another behaviour level Markov
chain. The state with thicker line is the start state. Note that the IBC service referenced in
the link table is another instantiation of the service (another user).

Table 1: PBX usage

User type Instances Services

Secretary 1 Internal basic call (IBC)
External basic call (EBC)
Internal call transfer (ICT)

Employee 4 Internal basic call (IBC)
External basic call (EBC)
Internal call forward (ICF)

Modem 1 External basic call (EBC)

In/Out-line 2 Call (C)

© P. Runeson and C. Wohlin, 1993

45/10 Statistical Usage Testing for Software Reliability Certification and Control

Figure 4. Behaviour Markov chain for internal basic call (IBC).

The behaviour level Markov chain for the internal call transfer service is described in
figure 5. The stimuli are: Activate Call Transfer (ACT), Dial Internal Number (DIN) and
Transfer The Call (TTC). The linked transitions are forced by an instance of the Internal
Basic Call (IBC) service.

Figure 5. Behaviour Markov chain for internal call transfer (ICT).

In this manner all the services are described; in this example however only these two are
described. Finally the state hierarchy model is compounded by its parts. The usage model
for the example as a whole is presented in figure 6.

Figure 6. Usage model for the PBX example.

Idle
Dial-
tone

Ring-
tone

Error-
tone

Busy-
tone

Talk

OfH
OnH

OnH
OnHOnH

OnH

DIN DIN
DIN

Ring

OfH

*1

*2

*3

Table 2: Link table

Link Forced by
1 IBC: Dialtone–DIN
2 IBC: Ringtone–OnH
3 IBC, ICT: Ring–OfH

Idle
Dial-
tone

Ring-
tone

Error-
tone

Busy-
tone

Talk

ACT
TTC

ACTACT
ACT

DIN DIN
DIN

*1
*2

*3

BlockACT Table 3: Link table

Link Forced by
1 IBC: Idle–OfH
2 IBC: OnH
3 IBC: Ring–OfH

IdleDial-tone

Ring-tone
Error-tone Busy-tone

Talk

ACT
TTC

ACTACTACT
DINDIN

DIN

*1
*2

*3

BlockACT

Usage

Secr. Empl. Mod. In/
Out

Sec1 Emp1 Emp2 Emp3 Emp4 Mod1 I/O1 I/O2

EBC IBC ICT EBC IBC ICT EBC C C

IdleDial-tone

Ring-tone
Error-tone Busy-tone

Talk

ACT TTC
ACTACTACT

DINDIN
DIN

*1
*2

*3

BlockACT

…etc.

…etc.

© P. Runeson and C. Wohlin, 1993

Statistical Usage Testing for Software Reliability Certification and Control 45/11

5.2. Assign the usage profile

When the usage model is produced the probabilities for the arcs have to be assigned, i.e.
the usage profile is assigned.

The assignment starts on the user level which corresponds to what is well-known, at least
in terms of relations between the usage. In the example it is assumed that one out of five
of the events origin from each of the in/out-lines. Among the other users it is assumed that
an event from the secretary is three times as probable as events from three of the employ-
ees and equally probable as events from the fourth employee. Modem line events are
equally probable as events from one of the three least probable employees.

Based on this information, an equation can be set up which gives the absolute probabili-
ties for the users (Pa):

Pa(In/out1) = Pa(In/out2) = 0.2;
Pa(Secr) = 0.18;
Pa(Emp1) = Pa(Emp2) = Pa(Emp3) = 0.06; Pa(Emp4) = 0.18;
Pa(Modem) = 0.06.

To apply these figures on the SHY usage model, they have to be divided on the user types
and the user individuals. The user level probabilities (Pul) are given by the relations
between the individuals. Since the sum of the probabilities equals one, the calculations for
the employees are:

Pul(Emp1) = Pul(Emp2) = Pul(Emp3) = 0.06/(0.06+0.06+0.06+0.18) = 0.166;
Pul(Emp4) = 0.18/(0.06+0.06+0.06+0.18) = 0.5;

The sum of the absolute probabilities of a user type gives the user type level probabilities
(Putl):

Putl(Emp) = 0.06+0.06+0.06+0.18 = 0.36;

When all of the calculations are performed the usage profile applied on the SHY model is
according to figure 7:

Figure 7. Usage profile for the upper levels of the example.

The transitions in the behaviour Markov chains are assigned probabilities as well, except
for the transitions forced by other services. This gives a complete usage description from
which test cases can be generated.

Usage

Secr. Empl. Mod. In/
Out

Sec1 Emp1 Emp2 Emp3 Emp4 Mod1 I/O1 I/O2

0.18
0.36 0.06

0.4

1.0 0.166 0.166 0.166 0.5 0.5 0.51.0

User type level

User level

© P. Runeson and C. Wohlin, 1993

45/12 Statistical Usage Testing for Software Reliability Certification and Control

5.3. Select test cases

The test cases are selected from the usage description by traversing it beginning from the
usage state and down to a single event. The actual path through the model is controlled by
a random number sequence. For each event in a test case the description is traversed once.
An example test case can start according to table 4:

5.4. Run test cases

The test cases are run as during any other type of testing. During testing, failure data is
collected. This data forms the basis for the certification, and is thus very important.

5.5. Certify the software

The failure data is input to the hypothesis testing model, see figure 2, which is used to cer-
tify a particular reliability level. The reliability is measured in terms of MTBF, and the
certification is done with a given statistical confidence. The outcome from the certifica-
tion is reject, continue or accept. In the case of reject, the software is sent back for rede-
sign, in the case of continue, new test cases are selected and run, see section 5.3 and 5.4
above. If the outcome is accept the reliability level is certified and the testing can be
stopped.

6. Practical experience

Statistical Usage Testing can be applied at different phases in the software life cycle. The
testing can be applied during system testing or acceptance testing, but it may also be
applied on software components, [Wohlin93], which then can be put into a repository for
future reuse. The reuse of components is one important aspect in the future to cope with
the cost of software development. Reuse requires that reliability measures of the reusable
components are stored with the component. Reliability measures must be stored together
with the usage profile which has been used in the certification process. Based on the relia-
bility of components it must be possible to calculate the system reliability. This issue is
further discussed in [Poore93].

It can from this reasoning be concluded that usage testing is a useful technique, which can
be applied at different phases in the life cycle with the common denominator that reliabil-
ity certification is needed to stay in control of the reliability.

Application of Statistical Usage Testing or similar techniques have started at different
companies. AT & T has reported that they have lowered the cost for system testing by

Table 4: Beginning of example test case

Event no. Event
1 Emp3: Off Hook
2 Emp3: Dial Internal Number
3 In/Out2: Call Subscriber

© P. Runeson and C. Wohlin, 1993

Statistical Usage Testing for Software Reliability Certification and Control 45/13

56% and the total cost in the project by 11.5% by applying Operational Profile Testing,
[Musa92, Musa93, Abramson92, Juhlin92]. The objective with Operational Profile Test-
ing is the same as for Statistical Usage Testing even if some of the techniques to describe
the usage are different.

Statistical Usage Testing was originally proposed by IBM and SET (Software Engineer-
ing Technology) in the USA. Both IBM, [Linger92], and SET, [Whittaker92], are apply-
ing the testing technique. The usage testing technique is starting to spread in Europe as
well. Q-Labs has adopted and adapted the ideas from Cleanroom to some of its customer.

Q-Labs is currently applying Statistical Usage Testing principles at a number of custom-
ers. Some examples are:

• Statistical Usage Testing principles are currently being put into a requirement
specification at one large customer. The objective is to apply the principles in
usage testing during acceptance to be able to either accept or reject the software
product being procured.

• Another customer, a large supplier of software, will use usage testing as a way
for communication and understanding with its customer. In particular, to under-
stand and thereby correct the type of failures the customers tend to experience
during operation. Therefore the supplier will be able to increase the perceived
reliability today and hence be able to deliver more reliable software in the future.
The application of usage testing will allow the developer to find the faults which
give rise to complaints from the purchaser of the software.

• Finally, a third customer to Q-Labs will try to, based on a grouping of functions
in the system according to expected usage, certify a specific reliability level dur-
ing system test before releasing the software.

The examples above show that usage testing is beginning to get used and the benefits of
applying usage testing will continually grow. Therefore it is believed that usage testing
will be one important asset in the work to get in control of the software reliability.

7. Conclusions

It is a fact that reliability or availability requirements are formulated as a part of the
requirement specification, but it is also clear that neither the developer nor the procurer of
the software is capable of evaluating these requirements. This is not satisfactorily; the
society depends so heavily on the systems that it is of outermost importance to be able to
certify the software systems. A failure in operation may cause injuries either in terms of
humans or at least in terms of financial losses.

A model to describe the usage has been presented and a reliability model based on
hypothesis testing control chart has been described briefly. These techniques together
have made it possible to formulate a method, which can be applied during the testing
phase to actually evaluate the reliability requirements. The application of the proposed
method has been illustrated in an example.

Some practical experiences reported in the literature as well as experience obtained while
applying the proposed techniques have been presented. The overall conclusion is that, the

© P. Runeson and C. Wohlin, 1993

45/14 Statistical Usage Testing for Software Reliability Certification and Control

only way towards control of the reliability before releasing a software product is through
application of usage testing techniques. It is the only technique that has shown to be able
to certify the reliability requirement in the same time as it is cost effective. The applica-
tion of the testing technique facilitates the formulation of a stopping criterion for the soft-
ware testing, i.e. the testing can stop as the required reliability level has been reached.

The time has come to change the way of testing software. The objective must not be to
find faults, but to show that the reliability requirements have been met. The test technique
aims at finding the faults influencing the reliability the most, instead of just removing
arbitrary faults. The technique is mature enough to be used and those managing the transi-
tion first will probably be the ones delivering the products with the right reliability, which
not necessarily is the highest.

8. References

[Abramson92] Abramson, S. R., Jensen, B. D., Juhlin, B. D. and Spudic, C. L., “Inter-
national DEFINITY Quality Program”, Proceedings International
Switching Symposium, Yokohama, Japan, 1992.

[Adams84] Adams, E. N., “Optimizing Preventive Service of Software Products”,
IBM Journal of Research and Development, January 1984.

[DeMarco82] DeMarco, T., “Controlling Software Projects”, Yourdon Press, New
York, USA, 1982.

[Cobb90] Cobb, R. H., and Mills, H. D., “Engineering Software Under Statistical
Quality Control”, IEEE Software, pp. 44-54, November 1990.

[Dyer92] Dyer, M., “The Cleanroom Approach to Quality Software Develop-
ment”, John Wiley & Sons, 1992.

[Goel79] Goel, A.L., and Okumoto, K., “Time-Dependent Error-Detection Rate
Model for Software Reliability and Other Performance Measures, IEEE
Transactions on Reliability, R-28(3):206-211, 1979.

[Goel85] A. L. Goel, “Software Reliability Models: Assumptions, Limitations
and Applicability”, IEEE Transactions on Software Engineering, SE-
11(12):1411-1423, 1985.

[Grant88] Grant, E., and Leavenworth, R. S., “Statistically Quality Control” Sixth
edition, McGraw-Hill int., 1988.

[Jelinski72] Jelinski, Z., and Moranda, P., “Software Reliability Research”, Statisti-
cal Computer Performance Evaluation, 465-484, 1972.

[Juhlin92] Juhlin, B. D., “Implementing Operational Profiles to Measure System
Reliability”, Proceedings 3rd International Symposium on Software
Reliability Engineering, pp. 286-295, 1992.

© P. Runeson and C. Wohlin, 1993

Statistical Usage Testing for Software Reliability Certification and Control 45/15

[Linger92] Linger, R. C., and Spangler, A., “The IBM Cleanroom Software Engi-
neering Technology Transfer Program”, Proceedings 6th SEI Confer-
ence on Software Engineering Education, San Diego, CA USA, 1992.

[Mills87] Mills, H. D., Dyer, M. and Linger, R. C., “Cleanroom Software Engi-
neering”, IEEE Software, pp. 19-24, September 1987.

[Mills88] Mills, H. D., and Poore, J. H., “Bringing Software Under Statistical
Quality Control”, Quality Progress, pp. 52-55, November 1988.

[Musa87] Musa, J. D., Iannino, A. and Okumoto, K., “Software Reliability, Meas-
urement, Prediction and Application”, McGraw-Hill Int. 1987.

[Musa92] Musa, J. D., “Software Reliability Engineering: Determining the Opera-
tional Profile”, Technical Report AT & T Bell Laboratories, Murray
Hill, NJ 07974, New Jersey, USA, 1992.

[Musa93] Musa, John D., “Operational Profiles in Software Reliability Engineer-
ing”, IEEE Software, March 1993, pp. 14-32, 1993.

[Myers79] Myers, G. J., “The Art of Software Testing”, Wiley Interscience 1979.

[NASA90] “The Cleanroom Case Study in the Software Engineering Laboratory –
SEL 90-002”, Software Engineering Laboratory, 1990.

[OS-32] Presentation material from the OS-32 project, Ellemtel, Sweden, 1992.

[Poore93] Poore, J. H., Mills, H. D., and Mutchler, D., “Planning and Certifying
Software System Reliability”, IEEE Software, pp. 88-99, January 1993.

[Runeson92] Runeson, P., and Wohlin, C., “Usage Modelling: The Basis for Statisti-
cal Quality Control”, Proceedings from 10th Annual Software Reliabil-
ity Symposium’, Denver, USA, pp.77–84, 1992.

[Selby87] Selby, R. W., Basili, V. R., and Baker, F. T., “Cleanroom Software
Development: An Empirical Evaluation”, IEEE Transactions on Soft-
ware Engineering, Vol. SE-13, No. 9, September 1987.

[Whittaker92] Whittaker, J. A., and Poore, J. H.,“Statistical Testing for Cleanroom
Software Engineering”, Proceedings 25th Annual Hawaii International
Conference on System Sciences, pp. 428-436, 1992.

[Wohlin93] Wohlin, C., and Runeson, P., “Certification of Software Components”,
Submitted to IEEE Transaction on Software Engineering, 1993.

