

L-O. Damm, L. Lundberg and C. Wohlin, "Determining the Improvement Potential of
a Software Development Organization through Fault Analysis: A Method and a Case

Study", Proceedings of European Software Process Improvement Conference in
Lecture Notes in Computer Science Series, Editor: Torgeir Dingsöyr, Springer

Verlag, Heidelberg, Germany, 2004.

Determining the Improvement Potential of a Software
Development Organization through Fault Analysis:

A Method and a Case Study

Lars-Ola Damm1, 2, Lars Lundberg2, Claes Wohlin2

1 Ericsson AB, Ölandsgatan 1,
Box 518, SE-371 23, Karlskrona,

Lars-Ola.Damm@ericsson.com
2 School of Engineering, Blekinge Institute of Technology,

Box 520, SE-372 25 Ronneby,
{Lars-Ola.Damm, Lars.Lundberg, Claes.Wohlin}@bth.se

Abstract. Successful software process improvement depends on the ability
to analyze past projects and determine which parts of the process that could be-
come more efficient. One typical data source is the faults that are reported dur-
ing product development. From an industrial need, this paper provides a solu-
tion based on a measure called faults-slip-through, i.e. the measure tells which
faults that should have been found in earlier phases. From the measure, the im-
provement potential of different parts of the development process is estimated
by calculating the cost of the faults that slipped through the phase where they
should have been found. The usefulness of the method was demonstrated by
applying it on two completed development projects at Ericsson AB. The results
show that the implementation phase had the largest improvement potential
since it caused the largest faults-slip-through cost to later phases, i.e. 81 and 84
percent of the total improvement potential in the two studied projects.

1 Introduction

For many modern software development organizations it is of crucial importance to
reduce development cost and time-to-market while still maintaining a high level of
product quality. Such organizations seek specialized processes that could give them
rapid improvements. However, they often overlook existing routinely collected data
that can be used for process analysis [4]. One such data source is fault reports since
avoidable rework accounts for a significant percentage of the total development time,
i.e. between 20-80 percent depending on the maturity of the development process
[10]. In fact, related research states that fault analysis is the most promising approach
to software process improvement [5].

A software development department at Ericsson AB develops component-based
software for the mobile network. In order to stay competitive, they run a continuous
process improvement program where they regularly need to decide where to focus the
current improvement efforts. However, as considered a common reality in industry,
the department is already aware of potential improvement areas; the challenge is to

prioritize the areas to know where to focus the improvement work [12]. Without such
a decision support, it is common that improvements are not implemented because
organizations find them difficult to prioritize [12]. Further, if a suggested improve-
ment can be supported with data, it becomes easier to convince people to make
changes more quickly [5]. As stated above, fault statistics is one useful information
source in software process improvement; therefore, the general research question of
this paper is:

How can fault statistics be used for determining the improvement
potential of different phases/activities in the software development
process in an organization?

A commonly used approach for fault analysis is classification of faults from their
causes, e.g. root cause analysis [9]. Although root cause analysis can provide valuable
information about what types of faults the process is not good at prevent-
ing/removing, the technique is cost intensive and therefore not easy to apply on larger
populations of faults. Further, the classification procedure should not require ad-
vanced skills that normally only professional analysts have; ordinary developers must
be able to perform the classification [1]. Finally, and most importantly, root cause
analysis does not quantify what the improvement potential of different phases is.

In order to satisfy the above given requirements, this paper introduces a method in
which a central part is a ‘faults-slip-through’ measure. That is, the faults are classified
according to whether they slipped through the phase where they should have been
found. This approach to fault classification has been used before [1,6]; the main dif-
ference with the approach here is that it also calculates the improvement potential by
relating the result of the fault classification with the average cost of finding and re-
pairing the faults. From the classified faults, the method measures the improvement
potential by multiplying the faults-slip-through distribution with the average benefit
of finding a fault earlier. In order to verify the applicability of the method, the paper
also provides an empirical case study where the method is applied on the faults re-
ported in two finished development projects at Ericsson AB.

The paper is outlined as follows. Section 2 describes the proposed method for how
to determine the improvement potential of an organization. Section 3 demonstrates
the applicability of the method through an empirical case study. Section 4 discusses
the validity and implications of the results and Section 5 concludes the work.

2 Method

2.1 Estimation of Improvement Potential

The purpose of this paper is to demonstrate how to determine the improvement poten-
tial of a development process from historical fault data. This section describes the
selected method for how to achieve this through the following three steps:
(1) Determine which faults that could have been avoided or at least found earlier
(2) Determine the average cost of finding faults in different phases.

(3) Determine the improvement potential from the results in (1) and (2).
In this context, a fault is defined as an anomaly that causes a failure [7].
When using fault data as basis for determining the improvement potential of an or-

ganization’s development process, the essential analysis to perform is whether the
faults could have been avoided or at least have been found earlier. As previously
mentioned, the introduced measure for determining this is called ‘faults-slip-through’,
i.e. whether a fault slipped through the phase where it should have been found. The
definition of it is similar to measures used in related studies, e.g. phase containment
metrics where faults should be found in the same phase as they were introduced [6],
and goodness measures where faults should be found in the earliest possible phase
[1]. In practice, the only difference between the faults-slip-through definition and the
other definitions is when a fault is introduced in a certain phase but it is not efficient
to find in the same phase, e.g. a certain test technique might be required to simulate
the behaviour of the function. Table 1 provides a fictitious example of faults-slip-
through between arbitrarily chosen development phases. The columns represent in
which phase the faults were found (PF) and the rows represent where the faults
should have been found (Phase Belonging, PB). For example, 25 of the faults that
were found in Function Test should have been found during implementation (e.g.
through inspections or unit tests). Further, the rightmost column summarizes the
amount of faults that belonged to each phase whereas the bottom row summarizes the
amount of faults that were found in each phase. For example, 49 faults belonged to
the implementation phase whereas most of the faults were found in Function Test
(50).

Table 1. Fictious example of faults-slip-through data (nr. faults found, belonging /phase)

 PF:
PB:

Design Impl. Function
Test

System
Test Operation

Total
belonging/phase

Design 1 1 10 5 1 18
Impl. 4 25 18 2 49
Function Test 15 5 4 24
System Test 13 2 15
Operation 0 0
Tot. found/phase 1 5 50 41 9 106

When having all the faults categorized according to the faults-slip-through meas-

ure, the next step is to estimate the cost of finding faults in different phases. Several
studies have shown that the cost of finding and fixing faults increases more and more
the longer they remain in a product [3, 10]. However, the cost-increase varies signifi-
cantly depending on the maturity of the development process and on whether the
faults are severe or not [10]. Therefore, the average fault cost in different phases
needs to be determined explicitly in the environment where the improvement poten-
tial is to be determined (see a fictitious example in Table 2). This measure could ei-
ther be obtained through the time reporting system or from expert judgments, e.g. a
questionnaire where the developers/testers that were involved in the bug-fix give an
estimate of the average cost.

Table 2. Fictious example of average fault cost/phase found

 Design Implementation Function test System test Operation
Average fault cost 1 2 10 25 50

Expert judgments are a fast and easy way to obtain the measures; however, in the
long-term, fully accurate measures can only be obtained by having the cost of every
fault stored with the fault report when repairing it. That is, when the actual cost is
stored with each fault report, the average cost can be measured instead of just being
subjectively estimated. Further, when obtaining these measures, it is important not
just to include the cost of repairing the fault but also fault reporting and re-testing
after the fault is corrected.

The third step (e.g. the improvement potential) is determined by calculating the
difference between the cost of faults in relation to what the fault cost would have
been if none of them would have had slipped through the phase where they were
supposed to be found. Fig. 1 provides the formulas for making such a calculation and
as presented in the table in the figure, the improvement potential can be calculated in
a two-dimensional matrix. The equation in the figure provides the actual formula for
calculating the improvement potential for each cell (IPxx). PFx total and PBx total are
calculated by summarizing the corresponding row/column. As illustrated rightmost in
the figure, the average fault cost (as discussed in the previous paragraph), need to be
determined for each phase before using it in the formula (IPxx). In order to demon-
strate how to use and interpret the matrix, Table 3 provides an example calculation by
applying the formulas in Fig. 1 on the fictitious values in Table 1 and Table 2.

 PF1 PF2 PBtotal AvFC
PB1 IP11 IP12 PB1 total PB1 AvFC
PB2 IP21 IP22 PB2 total PB2 AvFC
PF total PF1 total PF2 total (PB/PF)total

 PF = Phase found, PB =Phase belonging, AvFC=Average Fault Cost
 IP = Improvement potential

IPxx = (Nr faults bel. (PBx) * PB1 AvFC) – (Nr faults bel. (PBx) * PBxAvFC)

Fig. 1. Matrix formula for calculation of improvement potential

In Table 3, the most interesting cells are those in the rightmost column that sum-
marizes the total cost of faults in relation to fault belonging and the bottom row that
summarizes the total unnecessary cost of faults in relation to phase found. For exam-
ple, the largest improvement potential is in the implementation phase, i.e. the phase
triggered 710 hours of unnecessary costs in later phases due to a large faults-slip-
through from it. Note that taking an action that removes the faults-slip-through from
the implementation phase to later phases will increase the fault cost of the implemen-
tation phase, i.e. up to 49 hours (1 hour/fault times 49 faults that according to Table 2
belonged to the implementation phase). Further, System Test is the phase that suf-
fered from the largest excessive costs due to faults slipped through (609 hours). How-
ever, when interpreting such excessive costs, one must be aware of that some sort of
investment is required in order to get rid of them, e.g. by adding code inspections.

Thus, the potential gain is probably not as large as 609 hours. Therefore, the primary
usage of the values is to serve as input to an expected Return On Investment (ROI)
calculation when prioritizing possible improvement actions.

 Table 3. Example of calculation of improvement potential (hours)

When measured in percent, the improvement potential for a certain phase equals

the improvement potential in hours divided with the total improvement potential (e.g.
in the example provided in Table 3, the improvement potential of System Test =
609/1255=49%). In the case study reported below, the measurements are provided in
percent (due to confidentiality reasons).

In related work, calculations on the improvement potential from faults have been
applied by calculating the time needed in each phase when faults were found when
supposed to in comparison to when they were not [11]. Although the results of using
such an approach are useful for estimating the effect of implementing a certain im-
provement, they require measurements on the additional effort required for removing
the faults earlier. Such measurements require decisions on what improvements to
make and estimates of what they cost and therefore they cannot be used as input when
deciding in which phases to focus the improvements and what the real potential is.

3 Results from Applying the Method

The applicability of the described method was evaluated by using it on the faults
reported in two projects at a department at Ericsson AB. The projects developed new
functionality to be included in new releases of the two different products. Hence,
previous versions of the products were already in full operation at customer sites.
Further, the projects used the same processes and tools and the products developed in
the projects were developed on the same platform (i.e. the platform provides a com-
ponent-based architecture and a number of platform components that are used by both

 PF:
PB

Design

Impl. Function Test System Test Operation

Total
PB/phase

Design
1*1-1*1

= 0
1*2-1*1

= 1h
10*10-10*1

= 90h
5*25-5*1

= 120
1*50-1*1

= 49 260h

Impl.
 4*2-4*2

= 0
25*10-25*2

= 200h
18*25-18*2

= 414h
2*50-2*2

= 96h 710h

Function Test
 15*10-15*10

= 0
5*25-5*10

= 75h
4*50-4*10

= 160h 235h

System Test

13*25-13*25

= 0
2*50-2*25

= 50h 50h
Operation 0 0h
Total
potential/ PF 1h 290h 609h 355h 1255h

products). The products were developed mainly in C++ except for a Java-based
graphical user interface that constitutes minor parts of each product. Apart from the
platform components, each product consists of about 10-30 components and each
component consists of about 5-30 classes. The reason for studying more than one
project was to be able to strengthen the validity of the results, i.e. two projects that
were developed in the same environment and according to the same development
process should provide similar results (except for eventual known events in the
projects that affected the results). Further, two projects were chosen since the selected
projects were the only recently finished projects and because earlier finished projects
were not developed according to the same process. Thereby, it was the two selected
projects that could be considered as representative for the organization.

The reported faults originated from the test phases performed by the test unit at the
department, i.e. faults found earlier were not reported in a written form that could be
post-analyzed. Further, during the analysis, some faults were excluded either because
they were rejected or because they did not affect the operability of the products, e.g.
opinion about function, not reproducible faults, and documentation faults.

3.1 Faults-Slip-Through

Fig. 2 and Fig. 3 present the average percent faults-slip-through in relation to percent
faults found and development phase from two finished projects at the department.
The faults-slip-through measure was not introduced until after the project comple-
tions, and hence all the fault reports in the projects studied needed to be classified
according to the method described in Section 2.1 in retrospect. The time required for
performing the classification was on average two minutes/fault. Actually, several
faults could be classified a lot faster but some of them took a significantly longer time
since these fault reports lacked information about the causes of the faults. In those
cases, the person that repaired the fault needed to be consulted about the cause. Addi-
tionally, in order to obtain a consensus on what faults should be considered as faults-
slip-through and not, a workshop with key representatives from different areas at the
department was held. The output from the workshop was a checklist specifying which
faults that should be considered to belong to which phase. When assigning faults to
different phases, the possible phases to select among were the following:
System Design (SD): Faults in the design of the external interfaces of the product.
Implementation (Imp): Faults found when implementing the components, e.g. low-
level design and coding faults as well as faults found during inspections and unit
tests.
Integration Test (IT): Faults found during primary component integration tests, e.g.
installation faults and basic component interaction faults.
Function Test (FT): Faults found when testing the features of the system.
System Test (ST): Includes integration with external systems and testing of non-
functional requirements.
Field Test + 6 months (FiT+6): During this period, the product is tested in a real
environment (e.g. installed into a mobile network), either at an internal test site or

together with a customer. During the first six months, most issues should be resolved
and the product then becomes accepted for full operation.
Field Test 7-12 months (FiT_7-12): Same as FiT+6; however, after 6 months of
field tests, live usage of the product has normally begun.

Fig. 2. Percent faults-slip-through in relation to percent faults found and develop-
ment phase (Project A)

Fig. 3. Percent faults-slip-through in relation to percent faults found and develop-
ment phase (Project B)

As can be seen in the figures, several faults belonged to the implementation phase
(59, 66%). Further, in project A (Fig. 3), many faults were found in FiT+6 (29%).
The primary reason for this was that the field tests started before ST was completed,
i.e. the phases were overlapping which resulted in that ST continued to find faults
during FiT+6. These ST faults could for practical reasons only be classified as FiT+6
faults.

3.2 Average Fault Cost

When estimating the average fault cost for different phases at the department, expert
judgments were used since neither was the fault cost reported directly into the fault
reporting system nor was the time reporting system feasible to use for the task. In
practice, this means that the persons that were knowledgeable in each area estimated

3% 3%
4%6%

61%

29%

30%

4%

59%

0%
10%
20%
30%
40%
50%
60%
70%

SD Imp IT FT ST FiT+6 FiT_7-12

Project A -
Nr faults
found

Project A -
Nr faults
belonging

6%
10% 13%

48%

20% 19%

66%

2%

16%

0%
10%
20%
30%
40%
50%
60%
70%

SD Imp IT FT ST FiT+6 FiT_7-12

Project B -
% faults
found
Project B -
% faults
belonging

the average fault cost. Table 4 presents the result of the estimations. For example, a
fault costs 16 times more in System Test (ST) than in System Design (SD).

Table 4. Average fault-cost/phase at the department (in relative terms)

Phase found SD Imp IT FT ST FiT+6 FiT_7-12
Average cost/fault 1 1.2 3 9.8 16 20 20
The performed cost estimations only include the time required for reporting, fixing
and re-testing each fault, which means that there might be additional costs such as the
cost of performing extra bug-fix deliveries to the test department. Such a cost is hard
to account for since the amount of deliveries required is not directly proportional to
the amount of faults, i.e. it depends on the fault distributions over time and the nature
of the faults. The reason why FiT_7-12 was estimated to have the same cost as FiT+6
was because the system was still expected to be in field tests although live usage in
reality actually might already have started. Further, during the first 12 months after
the field tests have started, few systems have been installed although the system be-
comes available for live usage already during this period. That is, the fault cost rises
when more installed systems need to be patched, but, in reality, this does not take any
effect until after FiT_7-12.

3.3 Improvement Potential

Table 5 and Table 6 present the improvement potential of the two studied projects
from the fault statistics provided in Sections 3.1 and 3.2, calculated according to the
method provided in Section 2.1. As can be seen in both tables, faults-slip-through
from Implementation comprised a significant proportion of the improvement potential
(81%, 84%); therefore, this is foremost where the department should focus their im-
provement efforts. Further, in project B, all the test phases had a significant im-
provement potential, e.g. FT could be performed at a 32% lower cost by avoiding the
faults-slip-through to it. On the contrary, project A had more diverse fault distribu-
tions regarding phase found. The reason for this is mainly due to overlapping test
phases (further discussed in Section 3.1). Finally, it should also be noted that the total
improvement potential in relation to fault origin phase (rightmost columns) are simi-
lar for both projects, which strengthens the assumption in that the improvement po-
tential is foremost process related, i.e. the faults-slip-through did not occur due to
certain product problems or accidental events in the projects.

Table 5. Improvement potential (Project A)

 Phase found
Phase belonging FT ST FiT+6 FiT_7-12

Total potential
/origin phase

SD 3.3% 0.0% 0.6% 0.0% 3.9%
Imp 33% 5.6% 37% 5.4% 81%
IT 2.2% 0.0% 0.5% 0.5% 3.2%
FT 0.0% 0.7% 10.1% 0.6% 11%

ST 0.0% 0.0% 0.8% 0.1% 0.9%
Total potential/test phase 39% 6.3% 48% 6.6% 100%

Table 6. Improvement potential (Project B)

 Phase found
Phase belonging FT ST FiT+6 FiT_7-12

Total potential
/origin phase

SD 0.6% 1.9% 0.0% 0.0% 2.5%
Imp 30% 14% 12% 28% 84%
IT 1.7% 2.5% 2.2% 0.0% 6.4%
FT 0.0% 1.6% 1.3% 2.0% 4.9%
ST 0.0% 0.0% 1.5% 0.8% 2.3%
Total potential/test phase 32% 20% 17% 30% 100%

4 Discussion

4.1 Validity Threats to the Results

When conducting an empirical industry study, the environment cannot be controlled
to the same extent as in isolated research experiments. In order to be able to make a
correct interpretation of the results presented in Section 3, one should be aware of
threats to the validity of them. As presented below, the main validity threats to this
case study concern conclusion, internal, and external validity [8]. Construct validity is
not relevant in this context since the case study was conducted in an industrial setting.

Conclusion validity concerns whether it is possible to draw correct conclusions
from the results, e.g. reliability of the results [8]. The threats to conclusion validity
are as follows. First, when determining which phase each fault belonged to, several
faults were assigned to the implementation phase. However, some of these faults
might as well belong to System Design due to a lack of information on the causes of
the faults. That is, from a described fault cause, it was possible to determine that the
fault should have been found before testing started but determining whether a fault
belonged to system design or to implementation was sometimes hard since the fault
description did not state if the fault occurred due to a fault in a specification or in the
implementation. Nevertheless, the practical effect of this uncertainty was small since
the cost of finding faults in these two phases was estimated as almost the same (see
Table 3). Second, in order to be able to draw conclusions from the results, the de-
partment must have a common view on which phase each fault should belong to. That
is, managers and developers should together agree on which fault types that should be
considered as faults-slip-through and not. At the studied department, this was ma-
naged by having workshops where checklists for how to estimate fault-slip-through
were developed. However, continuous improvements and training are required in the

first projects in order to ensure that everyone have the same view on how to make the
estimations. Further, regarding the average fault cost for different phases, the result
was obtained through expert judgments and therefore, the estimations might not ex-
actly reflect the reality. However, this was minimized by asking as many ’experts’ as
possible, i.e. although there might be deviations, the results were good enough to
measure the improvement potential from and hence use as basis for decisions. How-
ever, in the future, direct fault cost measures should be included in the fault reports so
that this uncertainty is removed. Finally, since the improvement potential is calculated
from the faults-slip-through measure and the average fault cost measure, the accuracy
of the improvement potential is only dependent on the accuracy of the other meas-
ures.

Internal validity concerns how well the study design allows the researchers to
draw conclusions from causes and effects, i.e. causality. For example, there might be
factors that affect the dependent variables (e.g. fault distributions) without the re-
searchers knowing about it [8]. In the case study presented in Section 3, all faults
were post-classified by one researcher which thereby minimized the risk for biased or
inconsistent classifications. Another threat to internal validity is whether certain
events that occurred during the studied projects affected the fault distribution, i.e.
events that the researchers were not aware of. This was managed through workshops
with project participants where possible threats to the validity of the results were put
forward. Additionally, since two projects were measured, the likelihood of special
events that affected the results without being noticed decreased.

External validity concerns whether the results are generalizable or not [8]. In this
case study, the results are in overall not generalizable since they are only valid for the
studied department having certain products, processes, and tools. However, since two
projects were studied and gave similar fault distributions, the results are generalizable
within the context of the department. Further, the results on average fault costs in
different phases (see Table 4) acknowledge previous claims in that faults are signifi-
cantly more expensive to find in later phases [3, 10]. Nevertheless, in this paper, the
main concern regarding external validity is whether the method used for obtaining the
results is generalizable or not. Since the method contains no context dependant in-
formation, there are no indications in that there should be any problems in applying
the method in other contexts. Thus, the method can be replicated in other environ-
ments.

4.2 Implications of the Results

The primary implication of the results is that they provide important input when de-
termining the Return On Investment (ROI) of process improvements. That is, since
software process improvement is about reducing costs, the expected ROI needs to be
known; otherwise, managers might not want to take the risk to allocate resources for
handling upfront costs that normally follow with improvements. Additionally, the
results can be used for making developers understand why they need to change their
ways of working, i.e. a quantified improvement potential motivates the developers to
cooperate [11].

Improvement actions regarding the issues resulting in the largest costs were im-
plemented in subsequent projects, e.g. more quality assurance in earlier phases. Be-
sides shortening the verification lead-time, the expected result of decreased faults-
slip-through percentages was to improve the delivery precision since the software
process becomes more reliable when many defects are removed in earlier phases [11].
The projects using the method will be studied as they progress.

An unanticipated implication of introducing the faults-slip-through measure was
that it became a facilitator for discussing and agreeing on what to test when, e.g.
improvement of test strategies. This implies that the measure could serve as a key
driver for test process improvement.

5 Conclusions and Further Work

The main objective of this paper was to answer the following research question:
How can fault statistics be used for determining the improvement
potential of different phases/activities in the software development
process in an organization?

The answer to the research question constitutes a new method for determining the
improvement potential of a software development organization. The method com-
prises the following three steps:
(1) Determine which faults that could have been avoided or at least found earlier, i.e.

faults-slip-through.
(2) Determine the average cost of faults found in different phases.
(3) Determine the improvement potential from the measures in (1) and (2), i.e. meas-

ure the cost of not finding the faults as early as possible.
The practical applicability of the method was determined by applying it on two in-

dustrial software development projects. In the studied projects, potential improve-
ments were foremost identified in the implementation phase, e.g. the implementation
phase inserted, or did not capture faults present at least, too many faults that slipped
through to later phases. For example, in the two studied projects, the Function Test
phase could be improved by up to 32 and 38 percent respectively by decreasing the
amount of faults that slipped through to it. Further, the implementation phase caused
the largest faults-slip-through to later phases and thereby had the largest improvement
potential, i.e. 81 and 84 percent in the two studied projects.

The measures obtained in this report provide a solid basis for where to focus im-
provement efforts. However, in further work, the method could be complemented
with investigations on causes of why faults slipped though the phase where they
should have been found. For example, the distribution of faults-slip-through could be
related to different software modules in order to be able to focus more efforts on
modules that have a high faults-slip-through. Further, when using the method de-
scribed in this paper, it would be very interesting to be able to quantify what effect
the provided measures have on the development lead-time and delivery precision, e.g.
through fault prediction models. To clarify, it is quite obvious that an organization
that has a high improvement potential plausibly also has a longer development lead-
time than necessary. Further, when having a longer verification lead-time, the organi-

zation cannot be as certain about when the product will reach an adequate quality
level and thereby is ready to be delivered. The challenge is to be able to quantify this
relation.

6 Acknowledgements

This work was funded jointly by Ericsson AB and The Knowledge Foundation in
Sweden under a research grant for the project "Blekinge - Engineering Software
Qualities (BESQ)" (http://www.bth.se/besq).

References

1. Berling, T., Thelin, T., An Industrial Case Study of the Verification and Valida-
tion Activities, Proceedings of the Ninth International Software Metrics Sympo-
sium, IEEE, (2003) 226-238

2. Bhandari, I., Halliday, M., Tarver, E., Brown, D., Chaar, J., Chillarege, R., A
Case Study of Software Process Improvement During Development, IEEE
Transactions on Software Engineering, Vol. 19, Issue 12, Proquest (1993) 1157-
1171

3. Boehm, B., Software Engineering Economics, Prentice-Hall (1981)
4. Cook, E., Votta, L., Wolf, L., Cost-Effective Analysis of In-Place Software

Processes, IEEE Transactions on Software Engineering, Vol. 24, Issue 8, Pro-
quest (1998) 650-662

5. Grady, R., Practical Software Metrics for Project Management and Process Im-
provement, Prentice Hall (1992)

6. Hevner, A. R., Phase Containment for Software Quality Improvement, Informa-
tion and Software Technology 39 (1997) 867-877

7. IEEE Guide for the Use of IEEE Standard Dictionary of Measures to Produce
Reliable Software, IEEE/ANSI Standard 982.2-1988.

8. Wohlin, C., Höst, M., Henningsson, K., Empirical Research Methods in Soft-
ware Engineering, In Empirical Methods and Studies in Software Engineering:
Experiences from ESERNET, pp. 7-23, editors Reidar Conradi and Alf Inge
Wang, Lecture Notes in Computer Science, Spinger-Verlag, Germany, LNCS
2765

9. Leszak, M., Perry, D., Stoll, D., A Case Study in Root Cause Defect Analysis,
Proceedings of the 22nd Int. Conference on Software Engineering, ACM Press,
(2000) 428-437

10. Shull, F., Basili V., Boehm B., Brown W., Costa, P., Lindwall, M., Port, D., Rus,
I., Tesoriero, R., Zelkowitz, M., What We Have Learned About Fighting De-
fects, Proceedings of the Eight IEEE Symposium on Software Metrics, IEEE
(2002) 249-258

11. Tanaka T., Sakamoto K., Kusumoto, S., Matsumoto K., Kikuno T., Improvement
of Software Process by Process Description and Benefit Estimation, Proceedings
of the 17th International Conference on Software Engineering, ACM (1995) 123-
132

12. Wohlwend H., Rosenbaum S., Software Improvements in an International Com-
pany, Proceedings of the 15th International Conference on Software Engineering,
IEEE Comput. Soc. Press. (1993) 212-220

