

C. Wohlin, H. Petersson and A. Aurum, "Combining Data from Reading Experiments
in Software Inspections: A Feasibility Study", in Lecture Notes on Empirical

Software Engineering, pp. 85-132, edited by N. Juristo and A. Moreno, World
Scientific, 2003.

In Lecture Notes in Empirical Software Engineering", edited by N. Juristo and A.
Moreno, World Scientific Publishing, ISBN 981-02-4914-4.

Combining Data from Reading Experiments in
Software Inspections

-
A Feasibility Study

Claes Wohlin

Dept. of Software
Engineering and Computer

Science
Blekinge Institute of

Technology
Box 520, SE-372 25 Ronneby

Sweden
Phone: +46-457-385820

Fax: +46-457-27125
E-mail: claes.wohlin@bth.se

Håkan Petersson

Dept. of Communication Syst.
Lund University

Box 118
SE-221 00 Lund

Sweden
Phone: +46-46-222 4910

Fax: +46-46-145823
E-mail: hakanp@telecom.lth.se

Aybüke Aurum

School of Information Systems,
Technology and Management

University of New South Wales
 Sydney NSW 2052

Australia
Phone: +61-2-9385 4418
Fax: +61-2-9662 4061

E-mail: aybuke@unsw.edu.au

Abstract

Software inspections have been around for 25 years, and most software
engineering researchers and professionals know that they are mostly a cost-
effective means for removing software defects. However, this does not mean
that there is consensus about how they should be conducted in terms of
reading techniques, number of reviewers or the effectiveness of reviewers.
Still, software inspections are probably the most extensively empirically
studied technique in software engineering. Thus, a large body of knowledge
is available in literature. This paper uses 30 data sets from software inspec-
tions found in the literature to study different aspects of software

inspections. As a feasibility study, the data are amalgamated to increase our
understanding and illustrate what could be achieved if we manage to conduct
studies where a combination of data can be collected. It is shown how the
combinated data may help to evaluate the influence of several different
aspects, including reading techniques, team sizes and professionals vs.
students. The objective is primarily to illustrate how more general
knowledge may be gained by combining data from several studies. It is
concluded that combining data is possible, although there are potential
validity threats. Research results are examined with reference to software
inspections on three levels: organization, project and individual.

Keywords:

Software inspections, reading technique, empirical study, combining data.

1. Introduction

Software inspections have over the years been accepted as a key principle in
software engineering. It was first formalized and described by Fagan in 1976
[Fagan76]. Since then inspections have been researched and widely applied.
Several variants of inspections have been proposed [Parnas85, Bisant89,
Martin92, Knight93]. Software inspections are probably also the most thor-
oughly empirically studied subject in software engineering [Basili96,
Laitenberger97, Porter95, Porter97, Regnell00, Votta93]. Consequentially,
several books are now available on this subject [Gilb93, Ebenau94].

The volume of studies in this area implies that it may be possible to
combine the various empirically derived information together to build a
body of knowledge regarding the effectiveness of software inspections and
different aspects of inspections. Examples of such aspects are reading
techniques, team size and performance of individual reviewers. Combining
empirical information, however, is not a simple task.

To build a body of knowledge in software inspections from published
studies requires that the results from these studies are comparable. This
imposes significant requirements on the descriptions of the published
studies. For example, there are consistency issues regarding descriptions of
context, subjects, artifacts and other aspects between the different studies.
There have been successful attempts to produce so-called lab packages to
encourage replication continuity, such as those based on Basili et al’s study

[Basili96]. This is a great starting point, but there is still much to be done.
We need ways of documenting empirical studies so that it is possible to
combine the results from different studies to allow both meta-analysis
[Pickard98, Miller99, Hayes99] and the pooling of data. The latter refers to
the combination of data sets, which is the approach used in this paper. The
objective is of course to create new or more general results by amalgamating
the results from other studies. However, the validity of both meta-analysis
and pooling of data may be challenged, since it is always problematic to
combine information from different sources. From the published literature it
is often hard to understand the exact context of a given study and different
studies may have dependencies through, for example, usage of the same
artifacts or subjects.

However, the alternative of not combining information or data from
different studies is not attractive, since it would mean that studies are
primarily interpreted as single events and generalized knowledge is hard to
construct. Thus, the challenge is to try to combine information and data in
such a way that the results indeed become a general collection of knowledge
and experiences. This may be particularly appropriate for some examples in
software inspections, especially when the inspections can be viewed as a
random sample of inspections in general or when the context is limited to,
for example, a specific company. The data, in this paper, does not fulfil these
criteria since they are based on convenience sampling [Robson93]. Hence,
the main objective is to illustrate what is feasible if combining information
or data that is available.

The primary objective of this paper is to illustrate the types of
generalized results that can be derived if we were able to combine different
studies, whether combining the data or combining the results. In particular,
the intention is to show the opportunities for evaluating results at different
organizational levels including the organization itself, teams in the
preparation phase in software inspections and individual performance. A
secondary objective is to present some results from the combination of data
from 30 data sets found in the software inspection literature. The actual
results should be interpreted with some caution since the data sets are based
on availability and hence they are not a true random sample from a
population. However, the results may be used as a first indication of what
can be expected. In addition, it is of course very important to see whether the
results of our combination of data sets is more generally valid even though
they are based on convenience sampling.

The primary and secondary objectives are illustrated on three different
levels, i.e. organization, project and individual (see Sections 5, 6 and 7),
where each level has its own objectives. These are however primarily
presented to illustrate how the overall approach can be applied to the
different levels of analysis.

We have chosen to perform this feasibility study in an area where quite a
number of experiments have been carried out. However, when performing
the analysis we realized that we have insufficient knowledge of published
studies, thus it is still very hard to perform studies of this type and come to
generally accepted conclusions. This points to a very important issue,
namely that we must improve the way we document and report experiments.
Otherwise, experimental studies will continue to be isolated studies and we
will be unable to build a solid body of knowledge based on empiricism. The
ability to combine data or results is, in the authors’ opinion, a key issue for
the success of empiricism in software engineering. With this paper, we hope
to illustrate that if the challenges of combining information from different
studies could be overcome then there are opportunities to answer some
important research questions in the software engineering community.

The paper is structured as follows. Section 2 discusses characterization
of software inspections studies. The data sets used in the analysis and some
issues related to the data sets are introduced in Section 3. Analyses and
discussions are made on three different levels: organization, project and
individual. These levels are discussed in Section 4. The following three
sections discuss the results for the levels. In Section 5, the organizational
benchmarking in software inspections is discussed. Software inspection
planning on the project level in terms of team size for software inspections is
examined in Section 6. Section 7 presents the results on the individual level
and finally the conclusions are presented in Section 8.

2. Characterization of studies

2.1 Introduction
There are many reasons for combining the results and data sets of software
inspections. Potential reasons include to make an organizational benchmark
study, an internal study to maximize effectiveness within an organization or

to measure the ability of individual reviewers. The different types of studies
are further discussed in Section 4, and then elaborated on with specific data
in the following sections to illustrate the actual opportunities at different
levels. Anyhow, it is important to document these studies to enable greater
understanding and comparison among them. To support inspection
comparisons, it is necessary to:

• Characterize each inspection process to be compared by
application, environment and people factors (i.e. qualitative
description),

• Use comparable measures across inspections (i.e. quantitative
measurements).

It is possible to only perform a qualitative comparison using the
characterization. Fuller characterization also yields the possibility of
comparing inspection processes quantitatively. In this case the qualitative
description may act both as a means for comparison and as a way of
characterizing the process to enable quantitative comparison. The addition of
measures means that it is possible to quantitatively compare inspection
processes. The main measures to compare include effectiveness (how large a
proportion of the defects were found?), efficiency (how many defects were
found over a specific period of time? This can be described as defects found
per time unit) and the number of reviewers (how many reviewers were
needed to achieve a certain level of effectiveness or efficiency?)
respectively.

2.2 Characterization
A key aspect of comparison is the characterization, which can either be used
as a stand-alone qualitative description or as part of a quantitative
evaluation, where the characterization can also be used to support the
identification of suitable quantitative comparisons. The characterization
includes three perspectives and five aspects that are characterized (see Table
1). The characterization is based on the authors’ experience from working
with software inspections. The first perspective is the normal working
situation, which should capture characteristics related to the working
environment and the typical applications developed. The second perspective
is related to the resources in the study, i.e. the people participating in the
study and the applied inspection process. The third perspective is a
characterization of the unique aspects of the study. The latter refers to the
fact that, in many studies a document is developed for a specific study or

reused from another study. In many cases, this means that a specific study is
conducted in a controlled environment where other artifacts, notation and so
forth differ from what the subjects are used to.

TABLE 1. Characterization of software inspections.

Work Resources Study
Environment Application People Process Specifics

Phase Domain Native language Inspection type Artifact type

Normal notation Experience in
application

Roles Artifact notation

 Experience in
environment

Individual defect detection
technique, e.g. reading
technique

English or translated

 Meeting Number of known
defects

 Tool support Experience in study
application

 Protocol Distance from normal
artifacts

 Procedure for re-work

From an environmental point of view, it is important to document the

type of inspection (e.g. Fagan [Fagan76] or Phased-Inspections [Knight93])
that is studied as well as the normal notation used in each phase. The
characterization in Table 1 may be used both for quantitative and qualitative
comparisons. The former is however the main focus in here. The type of
application normally developed is important. This should not only include
the application domain, but also some additional information, for example,
whether it is a soft- or hard real-time system that is normally developed.

Next, the people participating in inspections have to be characterized.
This includes their native language and experience, both in terms of the
application domain and the environment. The inspection process has to be

documented. It is important to collect as much relevant information as
possible about the process. This includes the type of inspection (e.g. Fagan,
or walkthrough); the roles used in the inspection; the techniques used for
individual defect detection, if any; the data collection procedure (for
example comments are sent by e-mail or collected during a meeting); who
participates (both as reviewers and in any prospective meeting); and whether
any tool support is used in the inspections. It is also essential to document
how protocols are written and the procedure for re-work. The processes as
applied may be different from the processes as documented, meaning that
ethnographic techniques may be appropriate.

Finally, it is important to document aspects that relate to a particular
study, i.e. aspects that are specific for the study at hand. This includes the
type of artifact, notation used and the number of defects in the artifact used
for the study. Preferably, artifacts are developed and made available to other
researchers. In these cases, it is advantageous if the artifact can be reused as
is. However, in some cases this may be impossible, and it may be necessary
to translate it. If this is the case, it needs to be documented that the artifact
has been translated from and to particular languages. In many controlled
studies, the number of defects is known. This number needs to be identified.
Moreover, it is important to document the experience of the people in the
application domain of the study (especially if different from their normal
application domain). To increase the comparative value of a study, it is
important to document the difference in the inspection situation in
comparison with how inspections are either described in the literature or
conducted at a specific company. In other words, the distance from the
normal artifacts and the normal inspection situation to that of the study has
to be captured. This is preferably done in a survey after having done the
study. The descriptions should include as many aspects as possible,
including application type, language, notation, complexity of the review
artifact and also general opinions among developers. The developers could,
for example, answer questions such as: Was this inspection representative
compared to those you normally perform? Was it easier or more difficult?
Did you find more, less or an equal number of defects than usual?

2.3 Quantitative measures
The measure of primary interest here is the effectiveness of an inspection
team. The effectiveness E of a team T, is in this study calculated as:

DT is the number of unique defects found by team T and N is the total
number of defects in an artifact.

In the long run it would be very important to also address cost-
effectiveness. However given the availability of data and that effectiveness is
a starting point also for judging cost-effectiveness, the focus in this paper is
on effectiveness. The effectiveness of an inspection team denotes what
proportion of the existing defects the team found. The efficiency of an
inspection team can be defined in several ways [Briand98] but must include
the amount of effort spent by the team.

To obtain comparable measures regarding, for example, the effectiveness
of software inspections, it is necessary to list both the defects that were and
were not discovered, as this is needed in order to determine the true
effectiveness. The most common way of doing this is to conduct a controlled
experiment, where the number of defects is known (either through seeding or
through previously identified real defects) in a document such as an
information or software artifact. The document may be from either a generic
or a company-specific domain. The advantage of having a document from a
generic domain is that it makes comparison easier. The disadvantage is that
the document may not reflect the usual nature of such documents in a
specific organization. The company specific documents may on the other
hand make comparison more difficult across different environments.

The documents with seeded defects may be from any application
domain. In case of a standardized (or generic) artifact (for example in lab
packages), it is preferable to find an area, which is familiar to people in
general. However, it is also preferable, if few developers have actually
developed systems in the chosen application domain, to minimize the risk of
affecting the results due to knowledge in that specific domain. Examples of
specific domains include an elevator system or a reservation system for
taxis. Most people have an intuitive feeling for how these types of systems
should work, although most developers have not developed systems in these
application domains. Systems, for example, in the telecommunication
domain are probably not suited since some of the software is hard to
understand unless you have worked in the area. Subjects who have worked
with the chosen type of system have major advantages in domain experience
to those who have not. This makes comparison of subject’s inspection results
difficult.

ET
DT
N-------=

Another aspect of the artifacts is the phase they represent. It is important
to consider different development phases when studying software
inspections. One of the main strengths of inspections in general is the
possibility of applying software inspections to any type of artifact, but for
comparative purposes it is important to document exactly what was
inspected. As a first step, inspections of requirements specifications and
code could be studied, since several experiments have been conducted which
review these types of documents (see Table 1), and hence baseline data
already exists. The approaches used in requirements inspections may be
extended to other artifacts in the future. The requirements review is
especially useful when the specification is written in natural language and
hence is readable by most developers, i.e. they need not have any knowledge
of any specific high-level language. Code is also readable for developers,
even if they are not experts in that specific programming language.
However, the use of more common programming languages, such as Java, C
or C++, is preferred as more developers are familiar with these languages.

3. Data sets

3.1 General information
This study is based on publicly available data, and the main objective herein
is to illustrate how software inspection data may be used to evaluate several
important questions regarding software inspections. It must be noted that full
characterizations of the different contexts for some of the individual data sets
used here are not available and hence the derived empirical results are
presented with a degree of caution. The objective is to describe how, if an
appropriate characterization is conducted, this type of information can be
used for comparison purposes and for drawing more general conclusions
about software inspections.

The data has primarily been collected as part of formal experiments
[Wohlin00]. For the sake of this illustration, let us imagine that the data is
collected from different companies. This is done for symbolic purposes to
show the feasibility and opportunity of combining data from software
inspections.

The data used is a collection of 30 data sets from a number of controlled
experiments performed by different researchers in the field. In some of the
analyses, the data sets are analyzed as one entity and for other analyses the
data sets are classified based on three attributes: a) the environment in which
the study was conducted (Profession), b) the type of document, and c) the
reading technique used (Inspection Technique). The data sets and their
attributes are shown in Table 2, and the attributes are further explained
below. Three of the data sets, i.e. no. 6, 11 and 12, have been divided into
sub sets to lessen the effect of any large single data set in the analysis, see
Section 3.2.

The data sets are used without having complete information about the
full context of the environments, and it should once again be pointed out that
the data sets are based on availability. This is means that results should be
interpreted with some caution, and primarily viewed as an illustration of
what can be achieved if able to combine information from different studies.
It also illustrates some of the problems associated with combining data sets.
Several factors that may influence the results are unknown about in the data
sets. For example, information is not available regarding time spent in
inspections, motivation of the inspectors, severity of defects and several
other factors describing the actual context of each study in Table 2. It was
only possible to use three attributes to describe the context, as pointed out
above, and shown in the table.

3.2 Virtual inspection teams
A typical inspection includes an inspection meeting. At this meeting, the
reviewers gather the defects, and depending on the type of inspection, they
either focus on identifying as many defects as possible, or discussing the
defects they have found during the preparation. The data given from the 30
experiments contain no meeting data; only individual data showing which of
the defects a specific individual found or missed.

It should also be noted that a number of studies during the last ten years
which, when performing inspections where the fault discovery is focused to
the preparation phase, show small or virtually no faults are found during
meetings. For instance, Votta found in his experiment that during the
meeting on average only an additional 4% of faults were found [Votta93].
When including true faults that were reported by an individual but did not
get logged at the meeting, Johnson et al. found no significant difference

between having a meeting or not [Johnson98]. Porter et al. even found a
negative meeting gain of on average around minus 1% [Porter95].

In the experiments generating the data for this study, the focus of
reviewers was to find defects during the preparation, not in the inspection
meeting itself. In order to study the effect of teams, the individual data are
combined to form nominal teams of a certain size and by calculating the
team’s effectiveness, a virtual inspection is created. This virtual inspection
does not take meeting effects into account. To investigate the whole span of
possible outcomes from the data sets all possible combinations of groups are
formed.

One approach for combining the data from the different data sets is to:
1. Generate all combinations of nominal teams of all sizes, for all

data sets
2. Calculate the effectiveness value for all the nominal teams
3. Generate graphs and tables sorted on the number of reviewers
However, since the data sets contain different numbers of reviewers,

each data set’s influence on the graphs would be dissimilar. With six
reviewers, 20 teams of size three could be created, while for 22 reviewers
this number would be 1540. This is partly solved by dividing the three
largest data sets (data set no. 6, 11 and 12) between groups of only seven or
eight reviewers. This leaves 34 data sets with five to eight reviewers in each.
The differences in influence are thereby reduced. It should be noted that in
the long run, the aim should be to base the comparison only on real groups to
ensure that the conclusions are based on groups that are similar to the ones
found in industry.

When generating the nominal teams from the data sets, team sizes from 1
up to one less than the number of available reviewers is created. This means
that, when investigating larger team sizes than four, some data sets have to
be excluded. In Section 6.3, two graphs showing general behavior are
presented. One with team sizes up to four and one with up to six. In these
two graphs, the data sets numbered 0 and 15 respectively are excluded.

To further decrease the difference in data set influence, the reviewers
were selected randomly. For example, in the graph showing the general
effectiveness behaviour of teams with size 1 to 4 (Figure 3), all reviewers
from data sets number 26-30 were included while 5 reviewers were
randomly selected in the other data sets.

The disadvantage of virtual groups is that there is a high dependency
between the groups. On the other hand, all data sets are treated the same, and

since the main concern is comparison, this should not be critical to the
outcome. A random selection of all combinations is used so that all data sets
get a similar weight. Otherwise data sets with the most reviewers would
dominate over the others.

3.3 Dependency concerns
Since each reviewer was included in many of the teams, there exist an
obvious dependency between the data points. To evaluate some of the
dependency, a simulation of virtual teams versus an approach that randomly
creates teams without redraw and an approach having only real teams has
been conducted. The simulation approach seems better than the random-no-
redraw approach. Compared to the real-teams-only, the virtual team
approach generates results with the same mean value but reports less
variance in the results. This should be remembered when looking at the
graphs. However, the approach of using virtual teams shows the full scope of
what the effect could be of having these people as reviewers in a company
and picking some of them to be included in each inspection team.

There are also some dependencies among the 30 data sets. A couple of
the experiments are based on an experiment kit or lab package developed
during Basili et al’s PBR experiment [Basili96]. In these data sets, the
inspected documents are the same or similar to one another. In other cases,
the same person has participated in more than one of the experiments.
However there are no cases where the same person inspected the same
document.

3.4 Classification of the data sets
The characterization of the data sets is shown in Table 2. The data is
characterized based on type of subjects (NASA representatives, Academics
and professionals other than NASA), document type (requirements
specification, artificial requirements specification2, text and code) and
reading technique (ad hoc, checklist, and active-based reading; an example
of the latter is perspective-based reading [Basili96]). The data provides

2 The term artificial requirements specification is used when the specification is

developed for the sake of the experiment.

opportunities to make controlled comparisons to evaluate if, for example,
inspection rates vary by the profession, document type or reading technique.

TABLE 2. Data Sets.

No. No. of

review.

Profession Doc. Type Insp.

Tech.

Reference No. No. of

review.

Profession Doc. Type Insp.

Tech.

Reference

1 8 NAS
A

Artif.
Req3

AdH. Freimut97 14 6 NASA Artif. Req ART Freimut97

2 6 NASA Artif. Req AdH. Freimut97 15 6 NASA Req ART Freimut97
3 6 NASA Artif. Req AdH. Freimut97 16 6 NASA Req ART Freimut97
4 6 NASA Artif. Req AdH. Freimut97 17 7 NASA Req ART Freimut97
5 6 Acad Artif.

Req
Chk
l

Unpubl.
4

18 6 NASA Req ART Freimut97

6a 8 Acad Textual AdH. Wohlin95 19 8 NASA Artif. Req ART Freimut97
6b 7 Acad Textual AdH. Wohlin95 20 6 NASA Artif. Req ART Freimut97
6c 7 Acad Textual AdH. Wohlin95 21 8 Pro. Code ART Freimut97
7 7 NASA Req AdH. Freimut97 22 7 Pro. Code ART Freimut97
8 6 NASA Req AdH. Freimut97 23 8 Pro. Code ART Freimut97
9 6 NASA Req AdH. Freimut97 24 7 Pro. Code ART Freimut97
10 6 NASA Req AdH. Freimut97 25 8 Pro. Code ART Freimut97
11a 8 Acad. Artif. Req ART Regnell00 26 7 Pro. Code ART Freimut97
11b 7 Acad Artif. Req ART Regnell00 27 5 Acad Code Chkl Runeson98
12a 8 Acad. Artif. Req ART Regnell00 28 5 Acad Code Chkl Runeson98
12b 7 Acad Artif. Req ART Regnell00 29 5 Acad Code Chkl Runeson98
13 6 NASA Artif. Req ART Freimut97 30 5 Acad Code Chkl Runeson98

The first context attribute of the experiments is connected to the

environment in which the experiments took place. Software engineering
experiments, having students as subjects, are often criticised as they are not
representative of the real life software inspection teams. Hence studies
conducted on academics are categorized as a separate group. Several of the

3 Artificial requirement specification.
4 Collected in connection to the study in [Regnell00] though the data set is not

published.

studies have been conducted as part of the Software Engineering Laboratory
work at NASA [Basili95]. This initiative has been running for more than 20
years and hence the people involved in the studies are likely to have been
exposed to more empirical research than other people from industry. As a
result, NASA is separated as one group. Finally, studies conducted in other
industrial settings are viewed as a third group. This results in the following
three groups that are related to the environment of the studies:

1. Mix of college students, faculty members and some
professionals. (Acad)

2. Professional software engineers at NASA. (NASA)
3. Professional software engineers from outside NASA. (Prof.)
Several different types of artifacts have been used in the studies. The

following four types were identified:
1. Requirements specification (Req.): This includes studies where a

requirements specification from a software development project
is inspected.

2. Artificial requirements specification (Artif. Req.): In several
studies, requirements specifications have been developed for the
sake of the study. The objective is that these should resemble
real requirements specifications. A potential problem with the
artificial requirements specifications is that there is a lack of real
context, although it resembles a real specification.

3. Code (Code): Several studies have used code in the inspections.
4. Plain text document written in English. (Textual): One study

used a textual document where the defects where grammatical
defects rather than software defects. This study is included to
observe whether the effectiveness is significantly different when
reviewing with a different purpose compared to normal software
development.

Finally, three different types of reading techniques are identified:
1. Ad Hoc (AdH.): This simply means that the reviewers were

neither taught nor instructed to use any special kind of formal
inspection or reading technique. The reviewers all performed to
the best of their ability. It should be noted that there is always a
risk with using ad hoc as a control group, since most reviewers
apply some method and hence it is difficult to understand what
their actual behavior is in comparison with other methods.

2. Checklist-based (Chkl): When checklist-based inspections are
performed there is a checklist introduced to the reviewers
beforehand. This list is used to guide the reviewers regarding
what kind of defects to look for. The reviewers read the docu-
ment using the checklist to guide their review.

3. Active Reading Technique (ART): Most of these studies use a
perspective-based reading (PBR) technique. However since we
would like to use virtual groups it is not possible to guarantee
that all groups include all of the different perspectives and hence
we would like to refer to this new type of inspection as being
active-based reviews. Thus, the results should not be interpreted
as representative of PBR. It has also been discussed elsewhere,
[Laitenberger01], that some of the benefits of PBR comes from
team effect. In short PBR instructs the reviewer to use an active
form or review by assigning different perspectives to each
reviewer. The common perspectives are user, tester, and
designer. With the perspective follows a detailed description of
how to perform the inspection. The instructions involve active
steps such as ‘Construct test cases for...’ or ‘Make a small design
of...’. Some concerns regarding PBR and the analysis here are
discussed in the following paragraph.

The fact that PBR (perspective-based reading) assigns different
perspectives to the reviewers, combined with the use of nominal groups,
leads to problems when analyzing the PBR data. The use of different roles
was proposed by Fagan [Fagan76], although the emphasis on active reading
is more recent. In order to make the best use of the PBR, the review teams
should include at least one reviewer from each perspective. This greatly
limits the number of PBR compliant inspection teams that can be generated.
Our virtual team generating approach allows for groups of inspection teams
without the optimal set of perspectives. This leads to the impossibility of
evaluating the true potential of PBR, and therefore, any conclusions
concerning PBR cannot be drawn in this study. The PBR data are renamed to
ART (Active Reading Technique).

4. Levels of study

Three levels of comparisons can be identified: organization, project and
individual. At the organizational level, of potential interest could perhaps be
benchmarking a particular inspection process with respect to industry
standards or other specific partners. Alternatively, an objective could be to
select a reading technique or better understand the effectiveness of
inspections in different development phases. Organisational benchmarking is
discussed in Section 5.

At the project level, it is often important to learn more about the
effectiveness of different team sizes. Typically a project manager would also
like to plan the inspections within projects so as to maximize effectiveness.
In these cases, a manager would like to know how many reviewers to assign
in different phases of the development in order to obtain a certain degree of
inspection effectiveness. The effectiveness of different team sizes is studied
in Section 6.

Finally, it is important to know more about the individual performance.
Of particular interest is the gaining of an understanding of the differences
between individuals to be able to select a suitable inspection team. It is well
known that there are individual differences, but it is important to ascertain
how large they are. This is investigated in Section 7.

5. Organisation: Benchmarking

This chapter investigates the inspection data from an organizational
perspective. The intention is to examine what we can learn from the data
with a view to benchmarking the software inspection process of an
organization.

5.1 Benchmarking in general
Benchmarking is a widely used business practice and has been accepted as a
key component in an organization’s search for improvement in quality,
competitive position or market share. According to a survey in 1992, 31% of
US companies were regularly benchmarking their products and services.
Another survey in UK (1996) revealed that 85% of the business was using
benchmarking practices [Ahmed98]. In Japan, benchmarking is called

“dantotsu”, which means “striving to be the best of the best” [Corbett98].
Here, we would like to define benchmarking of processes as an activity that
allows people to strive to be the best of the best. Thus, both qualitative and
quantitative comparisons with this objective are viewed here as being
benchmarking.

The literature describes several types of benchmarks [Sole95, Ahmed98,
Longbottom00]. Sole and Bist point out that the level of benchmarking sets
the degree of the challenge from a slight improvement in the development
process to a radical change in the process [Sole95]. Benchmarking may be
divided into different types, depending on with whom the comparison is
made and what the objective of the comparison is. Some common types of
benchmarking include:

• comparison within the same organizations (internal
benchmarking),

• comparison with external organizations (external
benchmarking),

• comparison with competitors (industry benchmarking),
• identification of best practices (generic benchmarking),
• comparison of discrete work processes and systems (process

benchmarking),
• comparison of performance attributes e.g. price, time to market

(performance benchmarking), and
• addressing strategic issues (strategic benchmarking).

5.2 Benchmarking goal
The goal here is to be able to compare different software inspection
processes. Given the characterization and standardized artifacts, it is possible
to identify, for example, whether a specific inspection process is better or
worse than another.

Some key concerns regarding benchmarking are scalability, thresholds,
simplicity and atypical situations. Scalability should not be a major problem,
as long as the inspections scheduled on real projects are of limited size.
Since normal recommendations on the length of the preparation phase and an
inspection meeting are in the order of hours, it is feasible to benchmark a
realistic approximation of the process. Scalability must also be addressed by
using documents representative of what is normally seen at an organization,
with respect to size and defect density. In this case, the objective is not to set

quality thresholds on the documents, but rather to provide feedback on
effectiveness and efficiency and expectations on these two factors in terms
of group size. Simplicity is also very important because in order to make a
benchmark useful, it should be possible to replicate it without having to have
a number of experts present. For instance, the characterization scheme from
Table 2 supports simplicity. Finally, it is often reported that software
projects are so different from each other that it is not possible to compare
them. It may be true that projects are very different, but it should still be
possible to compare certain aspects of software projects, for example,
software inspections. The differences and similarities should be captured by
the characterization used and hence atypical inspections should be accounted
for in subsequent analysis. Atypical inspections may be important to learn
from, but they should not be part of the normal benchmarking data, since, by
definition, it is not anticipated that their individual situations will reoccur.

5.3 Benchmarking in software development
Benchmarking provides many opportunities for comparisons in software
development, for example, compilers may be compared by compiling the
same program on several different compilers and by logging compilation
time and errors.

Benchmarking in software development is perceived as an assessment
method, which is concerned with the collection of quantitative data on topics
such as effectiveness, schedules and costs [Jones95, Beitz00]. It allows the
comparison between an organizational process and industry best practice. It
also helps managers to determine whether significant improvements are
required to maintain a particular business [Beitz00]. Here, the term
benchmarking is used for both qualitative and quantitative comparisons as
long as the main objective of benchmarking is fulfilled. Thus, a
characterization of several processes in qualitative terms would qualify as
benchmarking if the objective is to improve these processes. Informally, the
following definition of benchmarking is used in this paper. Process
benchmarking is the comparison of similar processes in different contexts, it
implies multiple points of comparison (e.g. two data points is not a
benchmarking), and it requires a representative sample in terms of, for
example, organizations and applications.

Several assessment tools for software benchmarking have been
developed. Maxwell and Forselius report on the development of an
experience database which consists of 206 business software projects from

26 companies in Finland [Maxwell00]. This database allows managers to
compare their projects with the existing projects from the database.

5.4 Benchmarking in software inspection
To our knowledge, limited work has been done in the area of benchmarking
software inspection. One of the few examples is described by Jones
[Jones95] who argues that function points provide useful metrics on two
components of software quality: (a) potential defects, which is the total
number of defects found in a work product, and (b) defect removal
effectiveness level, which is the percentage of software defects removed
prior to delivery. Jones reports that in the US the average for potential
defects is about five per function point, and overall defect removal
effectiveness is about 82%. According to one recent study, code inspection
reduces life cycle defect detection costs by 39%, and design inspection
reduces life cycle defect detection costs by 44% [Briand98].

5.5 Research questions
Using the data described in Section 3, it should be possible to answer, the
following benchmark questions:

1. Are there any differences in terms of effectiveness between
requirements specification inspections and code inspections?
Assuming that the primary interest is to benchmark an
organization, the artificial requirements specifications may be
treated together with the requirements specifications. However,
the textual documents cannot be included when answering this
benchmark question.

2. Are there any differences in terms of effectiveness between the
different reading techniques? This question is important to the
organization as an answer to it allows for the selection of a
suitable reading technique.

3. Hypothetically, we could also remove data sets 19 and 29 from
the database, and assume that the organizations represented by
these data sets would like to compare their inspections with the
ones remaining in the database. Thus, it is possible to use the
data from the other organizations and compare this with these to
two fictitious companies for requirements and code inspections
respectively.

These types of questions and studies can be conducted as more and more
data becomes available. The intention here is to illustrate how a
benchmarking database for software inspections can be created.

To answer the above questions the data will be presented in box plots
and discussed qualitatively. The reason being that there is dependence
between the data points and hence the data do not fulfil the requirements for
using statistical tests.

5.6 Analysis
The three questions above are addressed to illustrate how software
inspection benchmarking can be used to study a number of issues of interest
to software management in their effort to improve the software development
process. It is here assumed that all data sets used for comparisons come from
“comparable” companies, i.e. the characterization shows that it is reasonable
to compare the companies. The benchmarking is illustrated with
effectiveness and the intention is that a manager can transfer this information
to cost-effectiveness within his or her own environment .

1. Effectiveness in requirements specification and code inspections
In the left box plot group in Figure 1, the effectiveness in software
inspections are shown for different types of documents. These box
plots are shown for 1 to 4 reviewers with requirements specifications
inspections to the left and code inspections to the right for the
different cases. The focus is on 1 to 4 reviewers since the number of
combinations is very few for higher number of reviewers, and the
results would depend too much on single data points rather than
representing a more general outcome.

From the box plots, it seems obvious that the differences in
terms of effectiveness between requirements specifications
inspections and code inspections are minor. From a benchmarking
perspective, this means that we may conclude that we can expect
that our effectiveness for different types (or at least for requirements
specification inspections and code inspections) of inspections should
be approximately the same. Given that the faults in code inspections
ought to be easier to find, we could have expected a higher
effectiveness in code inspections. This was however not the case,
which is an interesting observation. This information is valuable
when planning different types of inspections. In particular, it
implies, for example, that any experience regarding effectiveness for

code inspections could probably be transferred to inspections of
requirements specifications due to effectiveness in the different
types of inspections (in our case requirements and code) being fairly
similar.

2. Effectiveness in inspections using different reading techniques
In the right box plot group in Figure 1, the box plots for the
effectiveness for different reading techniques are shown. Once
again, the plots provide information for 1 to 4 reviewers with the
plots in the following order: ad hoc, checklists and active reading
technique. From the box plots, it seems as though checklists may be
more effective than the other two techniques. This may result from
us looking at individual inspection preparations only and not the
potential team effect from having different perspectives. From a
benchmarking perspective, this tells us that if we have good
checklists they ought to outperform ad hoc inspections and active
reading techniques on an individual preparation level. However, our
study has not taken any team effects similar to the ones introduced
by different perspectives in PBR into account. The benefits of a team
approach, in particular when using active-reading techniques such as
PBR, is further discussed by Laitenberger et al. [Laitenberger01].
The challenge is to develop inspection techniques that are strong
both in terms that the individual will find many faults during the
preparation and also that from a team perspective, the individuals
complement each other well.

FIGURE 1. Box Plots5 showing effectiveness in inspections for different types of
documents (left) and for different reading techniques (right). The documents are

from the left: requirements specification and code. The reading techniques are from
the left ad hoc, checklists and active reading technique.

3. New company scenario

Here it is assumed that data sets 19 and 29 are not part of the
experience base, and the box plots in Figure 2 are created without
these two data sets. In particular, it is assumed that the data sets
represent two companies which we will compare with a subset of the
companies in the experience base selected on the basis of their

5 In box plots, a line in the box indicates the median value. Moreover, each box
extends from the 25th percentile, lower quartile, to the 75th percentile, upper
quartile, of the estimates. The whiskers (lines extending from the boxes) show the
limit for non-outlier values. Outlier values have the following characteristics:

O u tlie r U Q 1.5 UQ LQ–() + >
o r

O u tlie r L Q 1.5 UQ LQ–() – <

UQ Upper quartile–
LQ Lower quartile–⎩

⎨
⎧

Box plot outliers are marked with plus signs.

1 2 3 4

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Document Type

E
ffe

ct
iv

en
es

s

Reviewers
1 2 3 4

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Inspection Technique

E
ffe

ct
iv

en
es

s

Reviewers

similar characterizations. Thus, the box plots may be seen as the
benchmarking experience base that new companies may use for
planning and comparing their own software inspection process. The
circles in the box plots represent the two new data sets (or
companies from a scenario perspective) with data set 19 on the left
diagram and 29 on the right.

Company No. 19 could use the left diagram in Figure 2 to
ascertain what to anticipate when performing inspections. It is
possible to see the median value for requirements specification
inspections as well as the different quartiles and whiskers. Thus, the
company has a good picture of the industry standard for
effectiveness of requirements specification inspections. After having
conducted controlled inspections at the company, it is possible to
plot how this company is performing. This is illustrated with the
circles in the box plot. It can be seen that company No. 19 in this
case performed below median for all group sizes. The difference
between how close the circle is to the median depends on the
individuals that are added as we increase the group size. It may be
particularly interesting to actually study the performance of
individuals and hence use this information to put together inspection
teams. This issue is discussed in Section 7.

To the right in Figure 2, a similar diagram is shown for code
inspections. In this case, it is worth noting that company No. 29 is
performing better than the industry standard.

FIGURE 2. New company scenario for requirements specifications inspections (left)
and code inspections (right).

In summary, the illustration above shows examples of questions that can

be addressed from using benchmarking in software inspections. The actual
figures are not the main issue. The illustration is based on the assumption
that the data sets are indeed comparable, i.e. the characterizations of the data
sets are similar. These figures indicate the level of effectiveness that we can
anticipate for different reading techniques, different types of documents and
different group sizes.

6. Project: Team size

In Section 4, three different levels of study were introduced. In the previous
section, the opportunity of benchmarking software inspection processes was
investigated. The objective in this section is to evaluate the use of the data
from a project perspective. The intention is to show how a project manager
may use the data to help in planning and managing software inspections.

6.1 Teamwork in small groups versus large groups
Teamwork is essential for software developers. There are some major
assumptions behind teamwork. Firstly, the software products in today’s

1 2 3 4 5

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Requirement Document

E
ffe

ct
iv

en
es

s

Group Size
1 2 3 4

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Code Documents

E
ffe

ct
iv

en
es

s

Group Size

market are too complex to be designed by individuals. The complexity of the
product has become the driving force behind the creation of teams. It has
been found that the quality of the product improves as it is inspected from
multiple viewpoints [Laitenberger97]. Secondly, there is a belief that people
are more committed to their work if they have a voice in the design of the
product or the work in general [Smart98]. According to researchers,
effective teams work best when the nature of their work requires a high level
of interdependence [Smart98]. Valacich and Dennis emphasize that while
many factors affect group performance, group size is a key ingredient since
it places a limit on the knowledge available to the meeting group
[Valacich94].

Several researchers in management science have focused on determining
the optimal group size for teamwork where the members of the team are
assigned to a set of tasks e.g. new product development or strategic decision-
making. The findings from these studies are contradicting. Some researchers
indicate a dozen is an optimal number and recommend an odd number to
assure a majority in the case of conflicting ideas [Osborn57]. Some earlier
studies report five people as an optimum number for a typical group size
[Hackman70, Chidambaram93, Tan94]. In [Jessup90], some experiments
conducted using electronic supporting systems suggested a small number --
four persons per group as an ideal size. On the other hand, Nagasundaram
and Dennis remark that it is better to have small groups in face-to-face
meetings, and large groups for electronic meetings [Nagasundaram93] . In
summary, team size is a key issue when trying to optimize available
resources. Given the need to use software development resources effectively,
there is also a need to understand how to choose an appropriate team size for
software inspections.

6.2 Team size in software inspection
Software inspection involves teamwork, where a group of individuals work
together to analyze the product in order to identify and remove defects.
Inspection teams are formed from small groups of developers. Fagan
[Fagan76] suggests that four people are a good inspection team size. This
suggestion also ties in with Weller’s industrial work, where it is reported that
four person teams are more effective and efficient than three person teams
[Weller93]. IEEE STD 1028-1997 suggests teams of 3 to 6 people [IEEE98].
Teams of 4 or 5 people are common in practice [Wheeler96]. Owens reports
that although it is expensive to have more reviewers, it is more effective to

have more points of view for requirements inspection (e.g. 5-6 inspectors)
than for design, and more inspectors are needed for design than coding (e.g.
1-2 inspectors for coding) [Owens97]. This idea of having two people in a
coding inspection is supported by other researchers [Bisant89]. Bisant and
lyle’s findings illustrate that programming speed increases significantly in
two-person inspections. Thus, it is clear, from literature, that there is no real
consensus on the number of reviewers to use and hence this illustrates the
need to combine data from different studies to obtain a more general
understanding.

Given the different arguments and results when identifying a good size
for teams in both management and software inspections, an analysis is
required to investigate the relationship between performance and team size.
In particular, team size refers to the combination of individuals and not real
teams. The focus here is directed at performance comparisons for various
team sizes, which provides valuable information to people planning
inspections. In the work presented here, we have used virtual teams, see
Section 3.2. The team size in virtual inspections has also been studied by
others [Biffl01].

6.3 Effectiveness in general
The first two box plots, Figure 3 and Figure 4, show the effectiveness of
teams from the analyzed data sets where no attribute filtering has been done.
In Figure 3, all data sets are represented, however, the data sets with six
reviewers or more had five reviewers randomly chosen to generate the virtual
teams. The median value is 0.26 for a team size of one and 0.64 for a team
size of four. In Figure 4, 17 of the data sets have been removed since they
only had five or six reviewers and do not provide any data for team sizes of
six reviewers. The median value for 6 reviewers is 0.71. As expected the
largest gain in adding a reviewer is achieved when using two reviewers
instead of one.

In Figure 3 and Figure 4, it can be seen how the inspection effectiveness
increases as the team size increases, and how the added value for an
additional reviewer decreases as the team size grows. Moreover, it is
possible to see the variation between different combinations of reviewers.
For example, the figures show that for a team size of four reviewers, the
median effectiveness is 0.64, and that in 75% of the cases the effectiveness is
above 0.5. On the other hand, it is also possible to note that in some cases the

effectiveness is only around 0.2. This type of information is important for
anyone planning, controlling and managing software inspections.

1 2 3 4

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

E
ff
e
c
ti
v
e
n
e
s
s

Group Size
1 2 3 4 5 6

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

E
ff
e
c
ti
v
e
n
e
s
s

Group Size

FIGURE 3. Team effectiveness for all data sets. FIGURE 4. Team effectiveness for data sets with less
than 7 reviewers not included.

6.4 Effectiveness based on filtered data
The next set of box plots, Figure 5 to Figure 7, shows the effectiveness of
different team sizes when data sets have been filtered based on the three
attributes discussed in Section 3.4: Environment, Document type and
Inspection type. The legend is shown in Table 3.

TABLE 3. Legend to Figure 5—Figure 7

 Figure 5 Figure 6 Figure 7

 - Textual -

 NASA Arti. Req. AdH

 Prof. Req. CheckL

 Acad. Code ART

From a visual inspection of the figures, some interesting observations

can be made. In Figure 6, the large dispersion of the requirements
specifications inspections is striking. The good performance of the checklist-
based inspections in Figure 7 is also noteworthy. To further investigate the
differences, the following research questions have been studied qualitatively:

1. Are there any differences in terms of the mean effectiveness for
different:
a) environments,
b) types of documents,
c) reading techniques.

2. Are there any differences in terms of variance in effectiveness
for different:
a) environments,
b) types of documents,
c) reading techniques.

1 2 3 4

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Environment
E

ff
e

ct
iv

e
n

e
ss

Reviewers
1 2 3 4

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Document Type

E
ff

e
ct

iv
e

n
e

ss

Reviewers

FIGURE 5. Environment FIGURE 6. Document Type

1 2 3 4

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Inspection Technique

E
ff

e
ct

iv
e

n
e

ss

Reviewers

FIGURE 7. Reading Technique

The result were as follows:
1. Mean effectiveness

a) Environment: It seems that the academic environment better
supports inspections compared to the other two environments. This
is particularly visible for 3 and 4 reviewers. It also seems that the

professionals at NASA perform better than professionals in general.
It is interesting to note that the order (descending) of the groups in
terms of mean effectiveness is: Academia, NASA and other
professionals. One possible reason for this result is that experiments
at universities often are based on an isolated artifact, which has no
system context. Another factor that may contribute is that people in
industry may be less motivated when performing an experiment on
artifacts, which are not part of their daily work. If they use an
artifact from their daily work, then that artifact most likely has a
complex system context which may make it harder to inspect than a
stand alone artifact.
b) Document type: There are no visible differences in mean
effectiveness for different types of documents. It is interesting to
note that independently of the type of artifact, the mean
effectiveness is about the same, including reviews aimed at finding
grammatical defects in a text document. The main observation, from
Figure 6, is the large variations, which are discussed below. Future
work includes investigating the combined effect of, for example, a
document type and a specific reading technique.
c) Reading technique: Checklist-based reading seems to be better,
at least this is the case when only looking at the combination of
individual data. However, the result may be a result of not having
team meetings and hence the full potential of active-reading
techniques is not explored. Effectiveness changes through having
meetings or not is discussed further in Section 3.2. This result may
be due to the fact that several of the defects are fairly trivial
(although this cannot be fully ascertained since the severity of
defects is not reported in most studies) and these are easily spotted
using checklists. As pointed out above, ad hoc reading poses a
problem in itself. Further studies are needed to explore whether, for
example, certain individuals perform better using one technique
rather than another.

2. Variations of effectiveness
a) Environment: NASA seems to have a higher variation than the
two other groups. This may be due to the fact that the studies at
NASA include a mixture of real software artifacts and artificially
created artifacts to a larger extent than the other groups.
b) Document type: Several interesting results were observed. Both
requirements specifications and code, have a higher variance than
the textual documents and the artificial requirements specifications.
This indicates that the real artifacts are more challenging and result
in greater dispersion between different teams. In addition it is also
worth mentioning that the requirements specifications seems to have
a higher variance than the code. This implies that requirements
specifications are harder to review than code, since the variation
between different teams is high.
c) Reading technique: Checklist-based reading seems to have a
lower variation than ad hoc and active reading techniques
respectively. Once again, this outcome could be explained by the
fact that several of the defects were relatively easy to uncover.
Furthermore, the checklists support finding such defects.

6.5 Planning table
The box plots provide an insight into how the effectiveness of inspection
teams varies, depending on the number of reviewers in each team. To
support the decision-making process regarding which team size to choose in
a specific situation, information is extracted and presented in Table 4. This
table shows the percentage of all the virtual inspections that had a certain
minimum level of effectiveness. For example, if we would like to be at least
75% certain of finding a minimum of 50% of the defects, then 4 reviewers
are needed, (see the grey cell in Table 4). A table of this type could be used
as a rule of thumb in different ways, depending on whether we would like to
determine the team size, or if we would like to know the expected
effectiveness resulting from a specified team size.

TABLE 4. Certainty of having a specific effectiveness for a specific team size.

Effectiveness 1 2 3 4 5 6 7
0.10 90 99 100 100 100 100 100
0.20 68 93 99 100 100 100 100
0.30 36 80 93 96 97 100 100
0.40 17 59 80 88 92 94 100
0.50 9 36 62 78 86 92 95
0.60 6 20 41 58 66 77 756
0.70 2 9 22 37 43 55 56
0.80 2 6 13 22 22 30 34
0.90 1 2 4 7 11 13 5
1.00 0 0 1 2 3 3 0

6.6 Discussion of managing inspection effectiveness
When planning an inspection, several issues have to be considered. For
example: How many reviewers should be included? Who should participate?
What roles should they have? When should the inspection meeting be held?
and What inspection technique and reading technique should be used? It is
common when dealing with these more practical matters of the planning, to
forget one very important question; What level of quality do we aim for in
the inspected document? If we know the approximate answer to this
question, we automatically have a general outline of how to answer many of
the other questions.

The level of quality aimed for in a specific document depends on many
factors, which can be summarized by answering the one question; How
important is the document? This is where the project manager or whoever
plans the inspection should begin. By processing and analyzing the different
aspects of a document’s importance, the manager gets an understanding of
what level of quality is needed before releasing the document to the next

6 This is an example of a lower value although we have more reviewers; this is a statistical
artifact based on the limited number of data sets to create the columns for six and seven
reveiwers.

development phase. Thus, he or she also may identify what amount of effort
should be spent on that specific document.

The number of defects within a document strongly affects the
document´s quality. In order to improve the quality, the number of defects
must be reduced. As can be seen in Section 6.3, the number of reviewers
involved greatly affects the proportion of defects detected by an inspection
team. Therefore, this is one of the more important decisions to be made by
the person planning an inspection.

This study shows the opportunities in terms of providing a basis for
supporting such decisions. The person planning the inspection can use Table
4 to get an indication of the level of risk that exists when choosing a certain
number of reviewers. This risk can then be weighted against the importance
of the document to obtain an estimate of the number of reviewers to use.

Table 4 shows general results from a number of inspection experiments.
By letting each company collect data to build their own tables, more relevant
data can be attained. This would increase the accuracy of the data by
narrowing down the variety of variables including document types, people
involved and reading techniques used. Most of the measures needed to
construct similar tables can be easily collected from inspections. The most
difficult part would be in getting accurate numbers of the total number of
defects. Different approaches could be taken to acquire this measure. Two
examples include using Capture-Recapture estimations [Wohlin95] or
controlled experiment, within the company in which the defects are known.

7. Individual: Reviewer effectiveness

This is the third level of investigation as pointed out in Section 4. Here we
would like to study the data to better understand the effect of individual
reviewers. This is important when planning inspections and also helps
reviewers understand their own abilities.

7.1 Research questions
There are many aspects of individual contributions when considering
inspection effectiveness. The analysis in this study as stated previously, is
nominal inspection teams, i.e. no meetings are held. One important role of
the meeting is to identify false positives, i.e. issues incorrectly reported as

defects. Information on false positives is typically unavailable from our data
sets, particularly as they come from controlled experiments where the
number of existing defects is known. Including meeting data would also lead
to an increased scope of possible impacts an individual may have, including
aspects such as how a single person affects the group psychology.

The questions investigated and illustrated in this study are:
1. What impact does a single reviewer have on average in terms of

inspection effectiveness?
2. What impact does the reviewer with the best individual

effectiveness have in terms of the team’s total inspection
effectiveness?

3. What impact does the reviewer with the worst individual
effectiveness have in terms of the team’s total inspection
effectiveness?

4. Does the combination of the two best individuals in a team
always find most unique defects?

The aim of the first question is to provide a general view of what can be
expected when adding or removing a person from a team. Question two and
three investigate how the best or worst individual effectiveness affects the
team’s effectiveness. The fourth question investigates one aspect of a very
interesting area: What makes a good team? It is not only individual
contributions that are important when being part of a team.

7.2 Theoretical analysis
To gain some insight into what could be expected when investigating the
effect of a single reviewer, the process of inspections can be modelled
statistically and simulated by Monte Carlo simulations. These two
approaches are shown below.

The simplest approach is to assume that all defects are equally difficult
to find and all reviewers have equal ability. If the probability for a defect to
be found by a reviewer is p, then the probability that at least someone in a
team of size R finds a specific defect is:

If a document contains N defects then the expected value of the number
of defects found in the inspection, E(D), is:

pT 1 1 p–()R–=

The average difference in effectiveness a single reviewer makes on a
team of R reviewers is then:

Table 5 shows the expected differences for different values of p. For
example, when finding defects with a probability of 0.4 the average
difference in effectiveness when removing one reviewer from a three-
reviewer team is 0.14.

TABLE 5. Expected differences when removing one reviewer from a team.

 Group Size
p 2 3 4 5 6

0.1 0.09 0.08 0.07 0.07 0.05

0.2 0.16 0.13 0.10 0.08 0.07

0.3 0.21 0.15 0.10 0.07 0.05

0.4 0.24 0.14 0.09 0.05 0.03

0.5 0.25 0.13 0.06 0.03 0.02

0.6 0.24 0.10 0.04 0.02 0.01

0.7 0.21 0.06 0.02 0.01 0.00

0.8 0.16 0.03 0.01 0.00 0.00

0.9 0.09 0.00 0.00 0.00 0.00

The previous model’s assumptions are very restrictive. The assumptions

can be relaxed by allowing the probability to vary among different
reviewers. Then each reviewer i, has the probability pi to find a defect. Thus:

E D() N
D⎝ ⎠
⎛ ⎞ pT

D 1 pT–()N D– D⋅ ⋅ ⋅

D 0=

N

∑ … pT N⋅= = =

N 1 1 p–()R–()⋅
N

-- N 1 1 p–()R 1––()⋅
N

---– =

1 p–()R 1– 1 p–()R– p 1 p–()R 1–⋅==

The different probabilities (pi, i = 0...R) have then to be estimated or
represented in some way. This is done as in [Boodoo00], i.e. using a Beta-
distribution to represent the pi’s and using the available data sets to estimate
the parameters of the Beta distribution.

2 3 4 5 6

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Simulation Results

Lo
st

 E
ffe

ct
iv

en
es

s

Team Size

Figure 8. Monte Carlo simulated effect of removing one reviewer.

A simulation of the difference a single reviewer makes was run with

team sizes of 2 to 6 people and the pi’s taken from the Beta-distribution. 30
simulated experiments for each team size were run. The approach with
virtual team combinations is used in the simulation to facilitate comparison.
The result is shown in Figure 8. For example, the median of the lost

pT 1 1 pi–()

i 1=

R

∏–=

E D() … N 1 1 pi–()

i 1=

R

∏–
⎝ ⎠
⎜ ⎟
⎜ ⎟
⎛ ⎞
⋅= =

effectiveness when removing one reviewer from a three-reviewer team is
close to 0.13.

Some caution must be taken when drawing conclusions from this Monte
Carlo simulation. The Beta distribution does not handle reviewers with an
effectiveness equal to zero. There are 8 cases out of 255 in the data sets
where a reviewer did not find any defects. In order to estimate the
parameters of the Beta distribution, these sets were removed.

7.3 Analysis procedure
The following measures are used to investigate the four questions.
1. What impact does a single reviewer have on average in terms of

the inspection effectiveness?
Measure I: Eff(Full Team)-Eff(Team with one person removed)
All possible combinations is considered. A virtual team, with
reviewers A, B and C, generates 3 combinations. Eff(A, B, C)
minus either Eff(A, B), Eff(A, C) or Eff(B, C)

2. What impact does the reviewer with the best individual
effectiveness have in terms of the team’s total inspection
effectiveness?
Measure II a: Eff(Full Team)-Eff(Team with the reviewer with the
best individual effectiveness removed)
Example: Inspection with reviewers A, B and C, where they
have individual effectiveness 0.43, 0.27 and 0.32, respectively.
Measure IIa = Eff(A, B, C)—Eff(B, C)

3. What impact does the reviewer with the worst individual
effectiveness have in terms of the team’s total inspection
effectiveness?
Measure II b: Eff(Full Team)-Eff(Team with the reviewer with the
worst individual effectiveness removed)
To investigate the difference between the best and the worst
another measure is added.
Measure II c: (Measure II a)—(Measure II b)

4. Does the combination of the two best individuals in a team
always find most unique defects?
Measure III: (Number of times a combination of two reviewers
within a team is found to have better effectiveness than the two
reviewers with the best effectiveness) / (Number of virtual
inspections)

The result of these measures is presented in Section 7.4.

7.4 Results

7.4.1 Measure I
Measure I is calculated for all of the possible virtual teams and all possible
removals of one reviewer. The mean and variance of measure I are
calculated and presented in Table 6. To investigate whether the profession,
document type or inspection technique has any impact on the result, the data
sets have been filtered based on these criteria. The average mean and
variance, when all data sets are treated together, are shown at the bottom of
the table.

TABLE 6. Single reviewer impact on inspection effectiveness

 Team Size
 2 3 4 5 6
 Mean Var Mean Var Mean Var Mean Var Mean Var

NASA 0.168 0.020 0.107 0.010 0.074 0.005 0.055 0.004 0.042 0.002

Prof. 0.144 0.010 0.103 0.007 0.076 0.005 0.057 0.004 0.045 0.003

Acad. 0.173 0.010 0.112 0.006 0.075 0.004 0.053 0.002 0.038 0.002

Text 0.172 0.011 0.109 0.007 0.073 0.004 0.052 0.003 0.038 0.002

Req. 0.170 0.032 0.098 0.014 0.063 0.007 0.043 0.004 0.029 0.002

Artif. Req. 0.163 0.008 0.110 0.005 0.077 0.004 0.056 0.003 0.042 0.002

Code 0.159 0.012 0.110 0.008 0.079 0.005 0.058 0.004 0.045 0.003

Ad Hoc 0.161 0.016 0.104 0.008 0.074 0.005 0.055 0.003 0.043 0.002

Chkl 0.218 0.015 0.151 0.009 0.105 0.006 0.070 0.004 0.029 0.001

ART 0.159 0.013 0.106 0.007 0.074 0.004 0.054 0.003 0.041 0.002

All 0.165 0.014 0.108 0.008 0.075 0.005 0.055 0.003 0.042 0.002

The table shows that the difference a single person makes on the

effectiveness varies on average from about 0.16 in the two-reviewer case to
0.04 in the six-reviewer case. The largest effect is when checklists are

compared to Ad Hoc and the Active Reading Technique. There is a sharp
drop in the checklist case between five and six reviewers. This is probably
because there is only one data set using checklists for six reviewers (data set
number 5), see Table 2. The largest variance is found in the data sets from
inspecting requirement specifications.

To further illustrate the outcome, a box plot for four reviewers is shown
in Figure 9.

Profession Doc. Type Insp. Type All

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

One Reviewer Effect / Team Size 4

E
ffe

ct
iv

en
es

s

FIGURE 9. One reviewer effect. From left to right (NASA, Prof., Acad.;
Text, Req., Artif. Req., Code; Ad Hoc, Chkl, ART and All)

7.4.2 Measure IIa, b and c
The aim of measure II is to capture the effect extreme reviewers, i.e. the best
and worst, have on a team’s effectiveness. Table 7 shows the mean and
variance of all data sets. On average, the effect of the best reviewers varies
from 0.24 for two reviewers down to 0.10 for six reviewers. The effect of the
reviewer with the worst personal effectiveness drops from 0.10 down to only
0.01.

TABLE 7. Mean and variance of measure II taken of all data sets for different team
sizes.

 Team Size
 2 3 4 5 6
 Mean Var Mean Var Mean Var Mean Var Mean Var

IIa, best 0.237 0.014 0.186 0.007 0.147 0.005 0.118 0.003 0.096 0.002

IIb, worst 0.092 0.004 0.047 0.002 0.027 0.001 0.016 0.001 0.010 0.000

IIc, difference 0.144 0.017 0.139 0.010 0.121 0.006 0.103 0.004 0.086 0.003

Although the detailed statistics are not presented here, when Table 7’s

data is filtered on the different context attributes, the results are similar to
measure I (see Table 6). Checklists show slightly larger mean values up to
five reviewers while requirements specifications show the largest variance.

Figure 10 shows a box plot for measure IIa-c for all data sets with
different team sizes. A feature not captured in the table is the occurrence of
negative differences in the effect between the best and the worst reviewers.
This represents cases where the reviewer with the worst effectiveness has
found more unique defects than the best reviewer (Note: This condition can
not occur in the two reviewer case).

2 3 4 5 6

−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Removing Best/Worst Reviewer
E

ffe
ct

iv
en

es
s

Team Size

FIGURE 10. Effect of removing best or worst reviewer from the team. From
left to right for each team size: Best, Worst, Difference.

7.5 Measure III
Measure III investigates whether teams with the best individual reviewers
necessarily form the best team. In Table 8, measure III is presented. This
shows how often, within a team, the best combination of two reviewers is
not the two reviewers with best effectiveness individually. For example, in
62 percent of the four-reviewer teams it is possible to find a better
combination of two reviewers than the effectiveness of the individuals
involved would suggest. The two-reviewer case is not investigated, since
there is only one combination, and it is automatically the best.

TABLE 8. Percentages of how often a better combination of two reviewers than the
two with the best individual effectiveness could be found within a team.

 Team Size
 3 4 5 6

Measure III 53% 62% 75% 74%

8. Conclusions

Combining data or results from different studies of software inspections
provide many interesting opportunities for comparison and evaluation. This
includes benchmarking at the organizational level, inspection planning at the
project level and an improved understanding of individual performance.

8.1 Organizational benchmarking
The results in Section 5 show variations in the mean effectiveness across
some of the studied attributes. This includes differences between
environments, and differences showing that checklist-based reading
outperformed ad hoc and active reading techniques at least when only
comparing the individual results and nominal teams and ignoring the team
effects for real teams. The results are certainly interesting, but further studies
are required to better understand these issues.

The variations observed are very interesting. They show that differences
in inspection effectiveness when using real software documents, including
both requirements specifications and code, is greater than when using other
types of documents. It is also noteworthy that the variation in effectiveness
for requirements specifications is higher than for code. This illustrates some
of the problems when performing inspections and shows the potential of
performing a study of this type. Such results, if confirmed by later studies,
would form an important input for anyone who plans, controls or manages
software inspections.

Benchmarking opens a number of interesting opportunities. The need for
empirical studies and experimentation in software engineering is well
known. Software inspection is an area well suited to experimentation, both in
industry and in universities. By agreeing on a number of standardized

artifacts or use of company specific artifacts and a characterization schema,
it should be possible to make a large number of experiments world-wide and
hence it should be possible to rapidly develop greater understanding in this
area.

Software inspection benchmarking is interesting for universities as well
as industry. Industry may perform benchmarking as discussed above.
Universities may perform experiments allowing for more data to be collected
regarding inspections, which would enable researchers to better understand
different aspects of software inspections more fully. This becomes
particularly valuable if the universities use the same documents as are used
for benchmarking in industry. For example, universities should be able to
run experiments with students in courses where different reading techniques
can be compared.

8.2 Project management
The analysis in Section 6 uses effectiveness of the inspection to evaluate the
results. The effort is assumed to be approximately the same in all
experiments. The cost of effort is important too, since the effort put into
inspection could instead be used to further develop the documents or product
itself. If no effort considerations apply, the best option would be to use as
many reviewers as available. However, even with effort considerations when
deciding on how to perform an inspection, it still comes down to the
question stated in Section 6.6, How important is the document? When this is
known, the effectiveness of the inspection team is the next thing to be
considered.

Main objectives of this study include exploring how inspection teams
behave, depending on team size, and identifying how inspection planning
can be better supported. This was done by combining data from different
controlled inspection experiments. Another aspect that was illustrated was
the effect on the inspection effectiveness when altering some of the
inspection attributes, such as the environment, document type and reading
technique.

The question of How many reviewers should be included in the review?
is an important consideration when planning an inspection. This study has
provided an initial answer, in terms of a table from which it is possible to
estimate the number of individuals needed in a team to reach a certain
effectiveness (in preparation) or vice versa (to estimate the effectiveness for
a given team size). The table is based on 30 published data sets, and it

provides a starting point. However, to get a better picture of the effectiveness
of inspection, it is necessary for organizations to build their own experience
bases.

8.3 Individual performance in inspections
The study in Section 7 used data sets from several controlled inspection
experiments to illustrate the impact an individual reviewer has on an
inspection team’s effectiveness. The results provide some rules of thumb to
consider when planning inspections. The averages presented show rather a
small individual reviewer contribution to the inspection effectiveness.
However, good individual performance is still important and, in reality, may
have a larger effect than the averages suggest. For example, having good
reviewers can decrease the needed size of the inspection team and thereby
reduce the effort cost of the inspection. Therefore it is important for compa-
nies to analyze their own inspection process to guide their decisions and to
perhaps pinpoint reviewers with inspection ‘talents’. Their ability can be
utilized on important projects and their knowledge may be able to be
captured and taught to others.

When addressing individual performances, four questions were posed.
The aim of the first question was to study how much impact in general, an
individual reviewer has on the effectiveness of an inspection team. The
average effect is of course dependent on the team’s size and the mean was
found to be 0.16 in the two-reviewer case down to 0.04 for six reviewers.
Compared to the theoretical models in Section 7.2, the investigated data sets
behaved similar to the second model although the theoretical model had
larger median values, especially in the two-reviewer case.

The second and third questions focused on the degree to which the best
and worst reviewers effect the team’s performance. The difference between
their impact on the team’s effectiveness (Measure IIc) is on average 0.14 in
the two-reviewer case, down to about 0.09 with teams of size six. This can
be seen as an approximation of the risk that exists when choosing members
of an inspection team. These values show a limited risk but there is still an
impact. For example, in a project with 10 design documents each having
about 30 major defects, picking a worst reviewer instead of the best reviewer
to a team of four (difference of 0.11) would on average lead to 33 defects not
being found because of the choice of reviewer.

There are of course, as shown in Figure 10, cases where the difference is
much larger but in general most cases show a difference below 0.3. In the

example above, the most extreme outlier for four reviewers would lead to
that about 140 defects of the total 300 being missed because of the staffing.

The answer to question four indicates that the individual effectiveness of
a typical reviewer only views focuses on a single dimension of the
inspection task. Selecting the people with the best individual effectiveness
provides no guarantee of finding the most unique defects. As soon as a team
is created, the individual effectiveness is not that important. Individual
expertise increases the chances of the team finding many defects, but in
order to make the team effective, the reviewers dimension focuses should
complement each other. This is an important issue to remember when
choosing an inspection team.

It was interesting to discover that the inspections that used checklists
generally had a larger difference between the best and the worst reviewers.
The expected impact of using a checklist would be to increase the number of
defects a reviewer finds, but also making the reviewers more homogenous in
what defects they find. However, the data shows that on average larger
single reviewer impact as well as larger differences between the best and the
worst reviewers.

Independent of which method is used, education of the reviewers would
be beneficial. Sauer et al argue that the dominant factor of a team’s
effectiveness is the amount of expertise within the group [Sauer00].
Consequently, it is important to train reviewers to increase their knowledge
and ability of reviewing and create tools and methods that utilize the
expertise within the team.

8.4 Conclusions from combining data
An important issue to consider is how useful the combination of data from
different studies can be when the data is taken from inspections with such a
wide range of conditions. This study and its results are primarily to be
viewed as a feasibility study, although the findings themselves also provide
some interesting results in terms of summarizing some of the studies that are
available in the literature. It is clear that several factors that may influence
the results are not documented, which of course is a threat to the accuracy of
the analysis. On the other hand, it is important to start doing these types of
analyses to build a body of knowledge, rather than only generating new
relatively freestanding studies. It may also be argued that having a variety of
conditions increases the generality, and this is the best way to start before
collecting metrics from within a specific department or company.

A study of this type may be criticized for its debatable validity, due to
the lack of control and knowledge about the context of many of the studies.
This also includes the general problems of performing different studies
where either data or results are later combined. However, the solution is
certainly not to avoid doing these types of studies. On the contrary, it is
necessary to start undertaking such combined studies and attempt to meet the
challenges of the resulting analyses in order to gain deeper understanding of
this area. Despite the potential threats to the validity, the following key
findings are of major interest:

• There are no visible differences in effectiveness for different
document types.

• There are clearly differences in the variation of effectiveness for
different document types. The variation is larger for real documents
and is higher for requirements specification than for code.

• It is possible to determine the effectiveness for different team sizes.
This can be used for decision-making when planning and managing
software inspections.

• There are differences between different types of subjects. However,
the results indicate that people in academia are more effective. This
is probably due to the fact that the documents used in academia are
more stand-alone than documents investigated in an industrial
setting. Thus, the result may be due to a confounding factor. This is
an area for further investigation.

• Checklists turned out to be more effective than other types of reading
techniques. This may also be a result of a confounding factor,
namely experience. It is believed that less experienced reviewers
would benefit more from checklists than others. Due to the fact that
the experience of the subjects is unknown, we are unable to evaluate
this. This is also an area for further studies.

• It is clear from the data that individual differences exist and hence it
is important to put together an inspection team cautiously so as to
make the best possible use of the available resources.

• A combination of the individually best reviewers is not necessarily
the most effective team. This means that there are more effective
combinations of reviewers than simply putting together the
individuals that perform the best in the individual preparation. This
stresses the need to further develop approaches using the expertise of
different reviewers in an effective way.

Finally, there is of course a great need for more studies in this field to
generate more individual studies that, in turn, can be utilized in meta-
analysis, pooling of data or analysis of a series of experiments. In this way, a
body of knowledge can be built that increases our general understanding of
how to conduct cost-effective software inspections. It should also be noted
that the combining of data and results in itself is an important area of
research in software engineering. In particular, we must increase our
understanding of when it is reasonable to combine data or results. The main
objective of this paper has been to look at what can be achieved in this type
of approach.

Acknowledgment

The authors would like to thank Dr. Forrest Shull, Fraunhofer USA Center
for Experimental Software Engineering in Maryland, USA and Marcus
Ciolkowski, University of Kaiserslautern in Germany for many valuable
discussions regarding benchmarking in software inspections. We would also
like to thank Thomas Thelin and Dr. Per Runeson at Lund University in
Sweden for many valuable discussions on software inspection research and
Peter Parkin and Irem Sevinc from University of New South Wales,
Australia.

References
[Ahmed98] Ahmed, P. K. and Rafiq, M. (1998): “Integrated

Benchmarking: A Holistic Examination of Selected Techniques for
Benchmarking Analysis”. Benchmarking for Quality & Technology, 5(3),
pp. 225-242.

[Basili95] Basili, V. R., Zelkowitz, M., McGarry, F., Page, J., Waligora,
S. and Pajerski, R. (1995): “SEL's Software Process Improvement Program”,
IEEE Software, Vol. 12, No. 6, pp. 83 -87

[Basili96] Basili, V. R., Green, S., Laitenberger, O., Lanubile, F., Shull,
F., Sørumgård, S. and Zelkowitz, M. V. (1996): “The Empirical
Investigation of Perspective-Based Reading”. Empirical Software
Engineering: An International Journal, 1(2), pp. 133-164.

[Beitz00] Beitz, A. and Wieczorek, I. (2000): “Applying Benchmarking
to Learn from Best Practices”. Proceedings 2nd International Conference on
Product Focused Software Process Improvement, Oulu, Finland.

[Biffl01] Biffl, S. and Gutjahr, W. (2001): “Analyzing the Influence of
Team Size and Defect Detection Technique On the Inspection Effectiveness

of a Nominal Team”. Proceedings International Software Metrics
Symposium, pp. 63-73, London, UK.

[Bisant89] Bisant, D. B. and Lyle, J. R. (1989): “Two-Person Inspection
Method to Improve Programming Productivity”. IEEE Transactions on
Software Engineering, 15(10), pp. 1294-1304.

[Boodoo00] Boodoo, S., El Emam, K., Laitenberger, O. and Madhavji,
N.: “The Optimal Team Size for UML Design Inspections”, National
Research Council Canada, ERB-1081, NRC 44149. 2000.

[Briand98] Briand, L; El Emam, K., Laitenberger, O. and Fussbroich, T.
(1998): “Using Simulation to Build Inspection Efficiency Benchmarks for
Development Process”. Proc. of the IEEE International Conference on
Software Engineering, pp. 340-349.

[Chidambaram93] Chidambaram, L. and Bostrom, R. P. (1993):
“Evolution of Group Performance Over Time”. Journal of Management
Information Systems, 7, pp. 7-25.

[Corbett98] Corbett, L. M. (1998): “Benchmarking Manufacturing
Performance in Australia and New Zealand”. Benchmarking for Quality
Management & Technology, 5(4), pp. 271-282.

[Ebenau94] Ebenau, R. G. and Strauss, S. H. (1994): “Software
Inspection Process”. McGraw Hill (System Design and Implementation
Series), ISBN 0-07-062166-7.

[Fagan76] Fagan, M. E. (1976): ‘Design and code inspections to reduce
errors in program development’. IBM System Journal. 15(3), pp. 182-211.

[Freimut97] Freimut, B. (1997): “Capture-Recapture Models to Estimate
Software Fault Content”. Diploma Thesis, University of Kaiserslautern,
Germany.

[Gilb93] Gilb, T. and Graham, D. (1993): “Software Inspection”.
Addison Wesley Publishing Company. ISBN 0-201-63181-4.

[Hackman70] Hackman, J. R and Vidmar, N (1970): “Effects of Size and
Task Type on Group Performance and Member Reactions”. Sociometrics,
33, pp. 37-54.

[Hayes99] Hayes, W. (1999): “Research Synthesis in Software
Engineering: A Case for Meta-Analysis”. Proc. of the IEEE International
Software Metrics Symposium, pp. 143-151.

[IEEE98] IEEE (1998): “IEEE Standard for Software Reviews”. The
Institute of Electrical and Electronics Engineering, Inc. ISBN 1-55937-987-
1.

]Jessup90] Jessup, L. M., Connolly, T. and Galegher, J. (1990): “The
Effects of Anonymity on GDSS Process with an Idea Generation Task”.
Management Information Systems, Quarterly, 14(3), pp. 313-412.

[Johnson98] Johnson, P. and Tjahjono, D. (1998): “Does Every
Inspection Meeting Really Need a Meeting”, Empirical Software
Engineering: An International Journal, Vol. 3, No. 1, pp. 9-35.

[Jones95] Jones, C. (1995): “Software Challenges”. IEEE Computer,
28(10), pp. 102-103.

[Knight93] Knight, J. C. and Myers, E. A. (1993): “An Improved
Inspection Technique”, Communications of the ACM, Vol. 36, No. 11, pp.
51-61.

[Laitenberger97] Laitenberger, O. and DeBaud, J. (1997): “Perspective-
based Reading of Code Documents at Robert Bosch Gmbh”. Information
and Software Technology, 39(11), pp. 781-791.

[Laitenberger01] Laitenberger, O., El Emam, K., Harbich, T. G. (2001):
“An Internally Replicated Quasi-Experiment Comparison of Checklist and
Perspective-Based Reading of Code Documents”. IEEE Transactions on
Software Engineering, Vol. 27, No. 5, pp. 387-421.

[Longbottom00] Longbottom, D. (2000): “Benchmarking in the UK: An
Empirical Study of Practitioners and Academics”. Benchmarking: An
International Journal. 7(2), pp. 98-117.

[Martin92] Martin, J. and Tsai, W. T. (1992): ‘N-Fold Inspection: A
Requirements Analysis Technique’. Communications of ACM, 33(2), 225-232,
February.

[Maxwell00] Maxwell, K. D. and Forselius, P. (2000): “Benchmarking
Software Development Productivity”. IEEE Software, January/February
2000, pp. 80-88.

[Miller99] Miller, J. (1999): “Can Results from Software Engineering
Experiments be Safely Combined?”. Proc. of the IEEE International
Software Metrics Symposium, pp. 152-158.

[Nagasundaram93] Nagasundaram, M. and Dennis, A. R. (1993): “When
a Group is not a Group: The Cognitive Foundation of Group Idea
Generation”. Small Group Research, 24(4), pp. 463-489.

[Osborn57] Osborn, A. F. (1957): “Applied Imagination: Principles and
Procedures of Creative Thinking”. Charles Scribner’s Son, New York.

[Owens97] Owens, K. (1997): “Software Detailed Technical Reviews:
Findings and Using Defects”. Wescon’97, Conference Proceedings, pp. 128-
133.

[Parnas85] Parnas, D. L. and Weiss, D. M. (1985): “Active Design
Reviews: Principles and Practices”, Proc. of the IEEE International
Conference on Software Engineering, pp. 132-136.

[Pickard98] Pickard, L. M., Kitchenham, B. A. and Jones, P. W. (1998):
“Combining Empirical Results in Software Engineering”. Information and
Software Technology. Vol. 40, pp. 811-821.

[Porter95] Porter, A. A., Votta, L. and Basili, V. R (1995).: “Comparing
Detection Methods for Software Requirements Inspection: A Replicated
Experiment”, IEEE Transactions on Software Engineering, Vol 21, No 6, pp.
563-575.

[Porter97] Porter, A. A., Siy, H. P., Toman, C. A. and Votta L. G.
(1997): “An Experiment to Assess the Cost-Benefits of Code Inspections in
Large Scale Software Development”, IEEE Transactions on Software
Engineering, Vol. 23, No. 6.

[Regnell00] Regnell, B., Runeson, P. and Thelin T. (2000): “Are the
Perspectives Really Different?—Further Experimentation on Scenario-Based
Reading of Requirements”. Empirical Software Engineering: An
International Journal, Vol. 5, No. 4, pp. 331-356.

[Robson93] Robson, C. (1993): “Real World Research”, Blackwell
Publishers, UK.

[Runeson98] Runeson P. and Wohlin, C. (1998): “An Experimental
Evaluation of an Experience-Based Capture-Recapture Method in Software
Code Inspections”. Empirical Software Engineering: An International
Journal, Vol. 3, No. 4, pp. 381-406.

[Sauer00] Sauer, C., Jeffery, D. R., Land, L. and Yetton, P. (2000): “The
Effectiveness of Software Development Technical Reviews: A
Behaviourally Motivated Program of Research”. IEEE Transactions on
Software Engineering, Vol. 26, No. 1, pp. 1-14.

[Smart98] Smart, K. L. and Thompson, M. (1998): “Changing the Way
We Work: Fundamentals of Effective Teams’”. Proceedings of IEEE
International Communication Conference, Vol. 2, pp. 383-390.

[Sole95] Sole, T. D. and Bist, G. (1995): “Benchmarking in Technical
Information”. IEEE Transactions on Professional Communication, 38(2), pp.
77-82.

[Tan94] Tan, B. C. Y., Raman, K. S. and Wei, K. (1994): “An Empirical
Study of the Task Dimension of Group Support System”. IEEE Transaction
on Systems, Man and Cybernetics, 24, pp. 1054-1060.

[Valacich94] Valacich, J. B. and Dennis, A. R: (1994): “A Mathematical
Model of Performance of Computer-Mediated Groups During Idea
Generation”. Journal of Management Information Systems, 11(1), pp. 59-72.

[Votta93] Votta, L. G. Jr. (1993): “Does Every Inspection Need a
Meeting?”. Proc. of 1st ACM SIGSOFT Symposium on Software
Development Engineering’, ACM Press New York, N. Y., pp. 107-114.

[Weller93] Weller, E. F. (1993): “Lessons from Three Years of
Inspection Data”. IEEE Software, 10(5), pp. 38-45.

[Wheeler96] Wheeler, D. A., Brykczynski, B. and Meeson, R. N. Jr.
(1996): “Software Inspection: An Industry Best Practice”. IEEE Computer
Society Press, USA. ISBN 0-8186-7340-0.

[Wohlin95] Wohlin, C., Runeson, P. and Brantestam, J. (1995): “An
Experimental Evaluation of Capture-Recapture in Software Inspections”.
Journal of Software Testing, Verification and Reliability, Vol. 5, No. 4, pp.
213-232.

[Wohlin00] Wohlin, C., Runeson, P., Höst, M., Ohlsson, M. C., Regnell,
B. and Wesslén, A. (2000): “Experimentation in Software Engineering—An
Introduction”. Kluwer Academic Publishers, Boston, USA.

