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Abstract 

Software inspections have been around for 25 years, and most software 
engineering researchers and professionals know that they are mostly a cost-
effective means for removing software defects. However, this does not mean 
that there is consensus about how they should be conducted in terms of 
reading techniques, number of reviewers or the effectiveness of reviewers. 
Still, software inspections are probably the most extensively empirically 
studied technique in software engineering. Thus, a large body of knowledge 
is available in literature. This paper uses 30 data sets from software inspec-
tions found in the literature to study different aspects of software 



inspections. As a feasibility study, the data are amalgamated to increase our 
understanding and illustrate what could be achieved if we manage to conduct 
studies where a combination of data can be collected. It is shown how the 
combinated data may help to evaluate the influence of several different 
aspects, including reading techniques, team sizes and professionals vs. 
students. The objective is primarily to illustrate how more general 
knowledge may be gained by combining data from several studies. It is 
concluded that combining data is possible, although there are potential 
validity threats. Research results are examined with reference to software 
inspections on three levels: organization, project and individual. 
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1. Introduction 

Software inspections have over the years been accepted as a key principle in 
software engineering. It was first formalized and described by Fagan in 1976 
[Fagan76]. Since then inspections have been researched and widely applied. 
Several variants of inspections have been proposed [Parnas85, Bisant89, 
Martin92, Knight93]. Software inspections are probably also the most thor-
oughly empirically studied subject in software engineering [Basili96, 
Laitenberger97, Porter95, Porter97, Regnell00, Votta93]. Consequentially, 
several books are now available on this subject [Gilb93, Ebenau94]. 

The volume of studies in this area implies that it may be possible to 
combine the various empirically derived information together to build a 
body of knowledge regarding the effectiveness of software inspections and 
different aspects of inspections. Examples of such aspects are reading 
techniques, team size and performance of individual reviewers. Combining 
empirical information, however, is not a simple task. 

To build a body of knowledge in software inspections from published 
studies requires that the results from these studies are comparable. This 
imposes significant requirements on the descriptions of the published 
studies. For example, there are consistency issues regarding descriptions of 
context, subjects, artifacts and other aspects between the different studies. 
There have been successful attempts to produce so-called lab packages to 
encourage replication continuity, such as those based on Basili et al’s study 



[Basili96]. This is a great starting point, but there is still much to be done. 
We need ways of documenting empirical studies so that it is possible to 
combine the results from different studies to allow both meta-analysis 
[Pickard98, Miller99, Hayes99] and the pooling of data. The latter refers to 
the combination of data sets, which is the approach used in this paper. The 
objective is of course to create new or more general results by amalgamating 
the results from other studies. However, the validity of both meta-analysis 
and pooling of data may be challenged, since it is always problematic to 
combine information from different sources. From the published literature it 
is often hard to understand the exact context of a given study and different 
studies may have dependencies through, for example, usage of the same 
artifacts or subjects. 

However, the alternative of not combining information or data from 
different studies is not attractive, since it would mean that studies are 
primarily interpreted as single events and generalized knowledge is hard to 
construct. Thus, the challenge is to try to combine information and data in 
such a way that the results indeed become a general collection of knowledge 
and experiences. This may be particularly appropriate for some examples in 
software inspections, especially when the inspections can be viewed as a 
random sample of inspections in general or when the context is limited to, 
for example, a specific company. The data, in this paper, does not fulfil these 
criteria since they are based on convenience sampling [Robson93]. Hence, 
the main objective is to illustrate what is feasible if combining information 
or data that is available. 

The primary objective of this paper is to illustrate the types of 
generalized results that can be derived if we were able to combine different 
studies, whether combining the data or combining the results. In particular, 
the intention is to show the opportunities for evaluating results at different 
organizational levels including the organization itself, teams in the 
preparation phase in software inspections and individual performance. A 
secondary objective is to present some results from the combination of data 
from 30 data sets found in the software inspection literature. The actual 
results should be interpreted with some caution since the data sets are based 
on availability and hence they are not a true random sample from a 
population. However, the results may be used as a first indication of what 
can be expected. In addition, it is of course very important to see whether the 
results of our combination of data sets is more generally valid even though 
they are based on convenience sampling. 



The primary and secondary objectives are illustrated on three different 
levels, i.e. organization, project and individual (see Sections 5, 6 and 7), 
where each level has its own objectives. These are however primarily 
presented to illustrate how the overall approach can be applied to the 
different levels of analysis. 

We have chosen to perform this feasibility study in an area where quite a 
number of experiments have been carried out. However, when performing 
the analysis we realized that we have insufficient knowledge of published 
studies, thus it is still very hard to perform studies of this type and come to 
generally accepted conclusions. This points to a very important issue, 
namely that we must improve the way we document and report experiments. 
Otherwise, experimental studies will continue to be isolated studies and we 
will be unable to build a solid body of knowledge based on empiricism. The 
ability to combine data or results is, in the authors’ opinion, a key issue for 
the success of empiricism in software engineering. With this paper, we hope 
to illustrate that if the challenges of combining information from different 
studies could be overcome then there are opportunities to answer some 
important research questions in the software engineering community. 

The paper is structured as follows. Section 2 discusses characterization 
of software inspections studies. The data sets used in the analysis and some 
issues related to the data sets are introduced in Section 3. Analyses and 
discussions are made on three different levels: organization, project and 
individual. These levels are discussed in Section 4. The following three 
sections discuss the results for the levels. In Section 5, the organizational 
benchmarking in software inspections is discussed. Software inspection 
planning on the project level in terms of team size for software inspections is 
examined in Section 6. Section 7 presents the results on the individual level 
and finally the conclusions are presented in Section 8. 

2. Characterization of studies 

2.1 Introduction 
There are many reasons for combining the results and data sets of software 
inspections. Potential reasons include to make an organizational benchmark 
study, an internal study to maximize effectiveness within an organization or 



to measure the ability of individual reviewers. The different types of studies 
are further discussed in Section 4, and then elaborated on with specific data 
in the following sections to illustrate the actual opportunities at different 
levels. Anyhow, it is important to document these studies to enable greater 
understanding and comparison among them. To support inspection 
comparisons, it is necessary to: 

• Characterize each inspection process to be compared by 
application, environment and people factors (i.e. qualitative 
description), 

• Use comparable measures across inspections (i.e. quantitative 
measurements). 

It is possible to only perform a qualitative comparison using the 
characterization. Fuller characterization also yields the possibility of 
comparing inspection processes quantitatively. In this case the qualitative 
description may act both as a means for comparison and as a way of 
characterizing the process to enable quantitative comparison. The addition of 
measures means that it is possible to quantitatively compare inspection 
processes. The main measures to compare include effectiveness (how large a 
proportion of the defects were found?), efficiency (how many defects were 
found over a specific period of time? This can be described as defects found 
per time unit) and the number of reviewers (how many reviewers were 
needed to achieve a certain level of effectiveness or efficiency?) 
respectively. 

2.2 Characterization 
A key aspect of comparison is the characterization, which can either be used 
as a stand-alone qualitative description or as part of a quantitative 
evaluation, where the characterization can also be used to support the 
identification of suitable quantitative comparisons. The characterization 
includes three perspectives and five aspects that are characterized (see Table 
1). The characterization is based on the authors’ experience from working 
with software inspections. The first perspective is the normal working 
situation, which should capture characteristics related to the working 
environment and the typical applications developed. The second perspective 
is related to the resources in the study, i.e. the people participating in the 
study and the applied inspection process. The third perspective is a 
characterization of the unique aspects of the study. The latter refers to the 
fact that, in many studies a document is developed for a specific study or 



reused from another study. In many cases, this means that a specific study is 
conducted in a controlled environment where other artifacts, notation and so 
forth differ from what the subjects are used to. 

TABLE 1. Characterization of software inspections. 
 
Work Resources Study 
Environment Application People Process Specifics 

Phase Domain Native language Inspection type Artifact type 

Normal notation  Experience in 
application 

Roles Artifact notation 

  Experience in 
environment 

Individual defect detection 
technique, e.g. reading 
technique 

English or translated 

   Meeting Number of known 
defects 

   Tool support Experience in study 
application 

   Protocol Distance from normal 
artifacts 

   Procedure for re-work  

 
From an environmental point of view, it is important to document the 

type of inspection (e.g. Fagan [Fagan76] or Phased-Inspections [Knight93]) 
that is studied as well as the normal notation used in each phase. The 
characterization in Table 1 may be used both for quantitative and qualitative 
comparisons. The former is however the main focus in here. The type of 
application normally developed is important. This should not only include 
the application domain, but also some additional information, for example, 
whether it is a soft- or hard real-time system that is normally developed. 

Next, the people participating in inspections have to be characterized. 
This includes their native language and experience, both in terms of the 
application domain and the environment. The inspection process has to be 



documented. It is important to collect as much relevant information as 
possible about the process. This includes the type of inspection (e.g. Fagan, 
or walkthrough); the roles used in the inspection; the techniques used for 
individual defect detection, if any; the data collection procedure (for 
example comments are sent by e-mail or collected during a meeting); who 
participates (both as reviewers and in any prospective meeting); and whether 
any tool support is used in the inspections. It is also essential to document 
how protocols are written and the procedure for re-work. The processes as 
applied may be different from the processes as documented, meaning that 
ethnographic techniques may be appropriate. 

Finally, it is important to document aspects that relate to a particular 
study, i.e. aspects that are specific for the study at hand. This includes the 
type of artifact, notation used and the number of defects in the artifact used 
for the study. Preferably, artifacts are developed and made available to other 
researchers. In these cases, it is advantageous if the artifact can be reused as 
is. However, in some cases this may be impossible, and it may be necessary 
to translate it. If this is the case, it needs to be documented that the artifact 
has been translated from and to particular languages. In many controlled 
studies, the number of defects is known. This number needs to be identified. 
Moreover, it is important to document the experience of the people in the 
application domain of the study (especially if different from their normal 
application domain). To increase the comparative value of a study, it is 
important to document the difference in the inspection situation in 
comparison with how inspections are either described in the literature or 
conducted at a specific company. In other words, the distance from the 
normal artifacts and the normal inspection situation to that of the study has 
to be captured. This is preferably done in a survey after having done the 
study. The descriptions should include as many aspects as possible, 
including application type, language, notation, complexity of the review 
artifact and also general opinions among developers. The developers could, 
for example, answer questions such as: Was this inspection representative 
compared to those you normally perform? Was it easier or more difficult? 
Did you find more, less or an equal number of defects than usual? 

2.3 Quantitative measures 
The measure of primary interest here is the effectiveness of an inspection 
team. The effectiveness E of a team T, is in this study calculated as:  



DT is the number of unique defects found by team T and N is the total 
number of defects in an artifact. 

In the long run it would be very important to also address cost-
effectiveness. However given the availability of data and that effectiveness is 
a starting point also for judging cost-effectiveness, the focus in this paper is 
on effectiveness. The effectiveness of an inspection team denotes what 
proportion of the existing defects the team found. The efficiency of an 
inspection team can be defined in several ways [Briand98] but must include 
the amount of effort spent by the team. 

To obtain comparable measures regarding, for example, the effectiveness 
of software inspections, it is necessary to list both the defects that were and 
were not discovered, as this is needed in order to determine the true 
effectiveness. The most common way of doing this is to conduct a controlled 
experiment, where the number of defects is known (either through seeding or 
through previously identified real defects) in a document such as an 
information or software artifact. The document may be from either a generic 
or a company-specific domain. The advantage of having a document from a 
generic domain is that it makes comparison easier. The disadvantage is that 
the document may not reflect the usual nature of such documents in a 
specific organization. The company specific documents may on the other 
hand make comparison more difficult across different environments. 

The documents with seeded defects may be from any application 
domain. In case of a standardized (or generic) artifact (for example in lab 
packages), it is preferable to find an area, which is familiar to people in 
general. However, it is also preferable, if few developers have actually 
developed systems in the chosen application domain, to minimize the risk of 
affecting the results due to knowledge in that specific domain. Examples of 
specific domains include an elevator system or a reservation system for 
taxis. Most people have an intuitive feeling for how these types of systems 
should work, although most developers have not developed systems in these 
application domains. Systems, for example, in the telecommunication 
domain are probably not suited since some of the software is hard to 
understand unless you have worked in the area. Subjects who have worked 
with the chosen type of system have major advantages in domain experience 
to those who have not. This makes comparison of subject’s inspection results 
difficult. 
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Another aspect of the artifacts is the phase they represent. It is important 
to consider different development phases when studying software 
inspections. One of the main strengths of inspections in general is the 
possibility of applying software inspections to any type of artifact, but for 
comparative purposes it is important to document exactly what was 
inspected. As a first step, inspections of requirements specifications and 
code could be studied, since several experiments have been conducted which 
review these types of documents (see Table 1), and hence baseline data 
already exists. The approaches used in requirements inspections may be 
extended to other artifacts in the future. The requirements review is 
especially useful when the specification is written in natural language and 
hence is readable by most developers, i.e. they need not have any knowledge 
of any specific high-level language. Code is also readable for developers, 
even if they are not experts in that specific programming language. 
However, the use of more common programming languages, such as Java, C 
or C++, is preferred as more developers are familiar with these languages. 

3. Data sets 

3.1 General information 
This study is based on publicly available data, and the main objective herein 
is to illustrate how software inspection data may be used to evaluate several 
important questions regarding software inspections. It must be noted that full 
characterizations of the different contexts for some of the individual data sets 
used here are not available and hence the derived empirical results are 
presented with a degree of caution. The objective is to describe how, if an 
appropriate characterization is conducted, this type of information can be 
used for comparison purposes and for drawing more general conclusions 
about software inspections. 

The data has primarily been collected as part of formal experiments 
[Wohlin00]. For the sake of this illustration, let us imagine that the data is 
collected from different companies. This is done for symbolic purposes to 
show the feasibility and opportunity of combining data from software 
inspections. 



The data used is a collection of 30 data sets from a number of controlled 
experiments performed by different researchers in the field. In some of the 
analyses, the data sets are analyzed as one entity and for other analyses the 
data sets are classified based on three attributes: a) the environment in which 
the study was conducted (Profession), b) the type of document, and c) the 
reading technique used (Inspection Technique). The data sets and their 
attributes are shown in Table 2, and the attributes are further explained 
below. Three of the data sets, i.e. no. 6, 11 and 12, have been divided into 
sub sets to lessen the effect of any large single data set in the analysis, see 
Section 3.2. 

The data sets are used without having complete information about the 
full context of the environments, and it should once again be pointed out that 
the data sets are based on availability. This is means that results should be 
interpreted with some caution, and primarily viewed as an illustration of 
what can be achieved if able to combine information from different studies. 
It also illustrates some of the problems associated with combining data sets. 
Several factors that may influence the results are unknown about in the data 
sets. For example, information is not available regarding time spent in 
inspections, motivation of the inspectors, severity of defects and several 
other factors describing the actual context of each study in Table 2. It was 
only possible to use three attributes to describe the context, as pointed out 
above, and shown in the table. 

3.2 Virtual inspection teams 
A typical inspection includes an inspection meeting. At this meeting, the 
reviewers gather the defects, and depending on the type of inspection, they 
either focus on identifying as many defects as possible, or discussing the 
defects they have found during the preparation. The data given from the 30 
experiments contain no meeting data; only individual data showing which of 
the defects a specific individual found or missed.  

It should also be noted that a number of studies during the last ten years 
which, when performing inspections where the fault discovery is focused to 
the preparation phase, show small or virtually no faults are found during 
meetings. For instance, Votta found in his experiment that during the 
meeting on average only an additional 4% of faults were found [Votta93]. 
When including true faults that were reported by an individual but did not 
get logged at the meeting, Johnson et al. found no significant difference 



between having a meeting or not [Johnson98]. Porter et al. even found a 
negative meeting gain of on average around minus 1% [Porter95].  

In the experiments generating the data for this study, the focus of 
reviewers was to find defects during the preparation, not in the inspection 
meeting itself. In order to study the effect of teams, the individual data are 
combined to form nominal teams of a certain size and by calculating the 
team’s effectiveness, a virtual inspection is created. This virtual inspection 
does not take meeting effects into account. To investigate the whole span of 
possible outcomes from the data sets all possible combinations of groups are 
formed. 

One approach for combining the data from the different data sets is to: 
1. Generate all combinations of nominal teams of all sizes, for all 

data sets 
2. Calculate the effectiveness value for all the nominal teams 
3. Generate graphs and tables sorted on the number of reviewers 
However, since the data sets contain different numbers of reviewers, 

each data set’s influence on the graphs would be dissimilar. With six 
reviewers, 20 teams of size three could be created, while for 22 reviewers 
this number would be 1540. This is partly solved by dividing the three 
largest data sets (data set no. 6, 11 and 12) between groups of only seven or 
eight reviewers. This leaves 34 data sets with five to eight reviewers in each. 
The differences in influence are thereby reduced. It should be noted that in 
the long run, the aim should be to base the comparison only on real groups to 
ensure that the conclusions are based on groups that are similar to the ones 
found in industry.  

When generating the nominal teams from the data sets, team sizes from 1 
up to one less than the number of available reviewers is created. This means 
that, when investigating larger team sizes than four, some data sets have to 
be excluded. In Section 6.3, two graphs showing general behavior are 
presented. One with team sizes up to four and one with up to six. In these 
two graphs, the data sets numbered 0 and 15 respectively are excluded. 

To further decrease the difference in data set influence, the reviewers 
were selected randomly. For example, in the graph showing the general 
effectiveness behaviour of teams with size 1 to 4 (Figure 3), all reviewers 
from data sets number 26-30 were included while 5 reviewers were 
randomly selected in the other data sets. 

The disadvantage of virtual groups is that there is a high dependency 
between the groups. On the other hand, all data sets are treated the same, and 



since the main concern is comparison, this should not be critical to the 
outcome. A random selection of all combinations is used so that all data sets 
get a similar weight. Otherwise data sets with the most reviewers would 
dominate over the others.  

3.3 Dependency concerns 
Since each reviewer was included in many of the teams, there exist an 
obvious dependency between the data points. To evaluate some of the 
dependency, a simulation of virtual teams versus an approach that randomly 
creates teams without redraw and an approach having only real teams has 
been conducted. The simulation approach seems better than the random-no-
redraw approach. Compared to the real-teams-only, the virtual team 
approach generates results with the same mean value but reports less 
variance in the results. This should be remembered when looking at the 
graphs. However, the approach of using virtual teams shows the full scope of 
what the effect could be of having these people as reviewers in a company 
and picking some of them to be included in each inspection team. 

There are also some dependencies among the 30 data sets. A couple of 
the experiments are based on an experiment kit or lab package developed 
during Basili et al’s PBR experiment [Basili96]. In these data sets, the 
inspected documents are the same or similar to one another. In other cases, 
the same person has participated in more than one of the experiments. 
However there are no cases where the same person inspected the same 
document. 

3.4 Classification of the data sets 
The characterization of the data sets is shown in Table 2. The data is 
characterized based on type of subjects (NASA representatives, Academics 
and professionals other than NASA), document type (requirements 
specification, artificial requirements specification2, text and code) and 
reading technique (ad hoc, checklist, and active-based reading; an example 
of the latter is perspective-based reading [Basili96]). The data provides 

                                                           
2 The term artificial requirements specification is used when the specification is 

developed for the sake of the experiment. 



opportunities to make controlled comparisons to evaluate if, for example, 
inspection rates vary by the profession, document type or reading technique. 

TABLE 2. Data Sets. 
 

No. No. of 

review.  

Profession Doc. Type Insp. 

Tech. 

Reference No. No. of 

review. 

Profession Doc. Type Insp. 

Tech. 

Reference 

1 8 NAS
A 

Artif. 
Req3 

AdH. Freimut97 14 6 NASA Artif. Req ART Freimut97 

2 6 NASA Artif. Req AdH. Freimut97 15 6 NASA Req ART Freimut97 
3 6 NASA Artif. Req AdH. Freimut97 16 6 NASA Req ART Freimut97 
4 6 NASA Artif. Req AdH. Freimut97 17 7 NASA Req ART Freimut97 
5 6 Acad Artif. 

Req 
Chk
l 

Unpubl.
4 

18 6 NASA Req ART Freimut97 

6a 8 Acad Textual AdH. Wohlin95 19 8 NASA Artif. Req ART Freimut97 
6b 7 Acad Textual AdH. Wohlin95 20 6 NASA Artif. Req ART Freimut97 
6c 7 Acad Textual AdH. Wohlin95 21 8 Pro. Code ART Freimut97 
7 7 NASA Req AdH. Freimut97 22 7 Pro. Code ART Freimut97 
8 6 NASA Req AdH. Freimut97 23 8 Pro. Code ART Freimut97 
9 6 NASA Req AdH. Freimut97 24 7 Pro. Code ART Freimut97 
10 6 NASA Req AdH. Freimut97 25 8 Pro. Code ART Freimut97 
11a 8 Acad. Artif. Req ART Regnell00 26 7 Pro. Code ART Freimut97 
11b 7 Acad Artif. Req ART Regnell00 27 5 Acad Code Chkl Runeson98 
12a 8 Acad. Artif. Req ART Regnell00 28 5 Acad Code Chkl Runeson98 
12b 7 Acad Artif. Req ART Regnell00 29 5 Acad Code Chkl Runeson98 
13 6 NASA Artif. Req ART Freimut97 30 5 Acad Code Chkl Runeson98 

 
The first context attribute of the experiments is connected to the 

environment in which the experiments took place. Software engineering 
experiments, having students as subjects, are often criticised as they are not 
representative of the real life software inspection teams. Hence studies 
conducted on academics are categorized as a separate group. Several of the 
                                                           
3 Artificial requirement specification. 
4 Collected in connection to the study in [Regnell00] though the data set is not 

published. 



studies have been conducted as part of the Software Engineering Laboratory 
work at NASA [Basili95]. This initiative has been running for more than 20 
years and hence the people involved in the studies are likely to have been 
exposed to more empirical research than other people from industry. As a 
result, NASA is separated as one group. Finally, studies conducted in other 
industrial settings are viewed as a third group. This results in the following 
three groups that are related to the environment of the studies: 

1. Mix of college students, faculty members and some 
professionals. (Acad) 

2. Professional software engineers at NASA. (NASA) 
3. Professional software engineers from outside NASA. (Prof.) 
Several different types of artifacts have been used in the studies. The 

following four types were identified: 
1. Requirements specification (Req.): This includes studies where a 

requirements specification from a software development project 
is inspected. 

2. Artificial requirements specification (Artif. Req.): In several 
studies, requirements specifications have been developed for the 
sake of the study. The objective is that these should resemble 
real requirements specifications. A potential problem with the 
artificial requirements specifications is that there is a lack of real 
context, although it resembles a real specification. 

3. Code (Code): Several studies have used code in the inspections. 
4. Plain text document written in English. (Textual): One study 

used a textual document where the defects where grammatical 
defects rather than software defects. This study is included to 
observe whether the effectiveness is significantly different when 
reviewing with a different purpose compared to normal software 
development. 

Finally, three different types of reading techniques are identified: 
1. Ad Hoc (AdH.): This simply means that the reviewers were 

neither taught nor instructed to use any special kind of formal 
inspection or reading technique. The reviewers all performed to 
the best of their ability. It should be noted that there is always a 
risk with using ad hoc as a control group, since most reviewers 
apply some method and hence it is difficult to understand what 
their actual behavior is in comparison with other methods. 



2. Checklist-based (Chkl): When checklist-based inspections are 
performed there is a checklist introduced to the reviewers 
beforehand. This list is used to guide the reviewers regarding 
what kind of defects to look for. The reviewers read the docu-
ment using the checklist to guide their review.  

3. Active Reading Technique (ART): Most of these studies use a 
perspective-based reading (PBR) technique. However since we 
would like to use virtual groups it is not possible to guarantee 
that all groups include all of the different perspectives and hence 
we would like to refer to this new type of inspection as being 
active-based reviews. Thus, the results should not be interpreted 
as representative of PBR. It has also been discussed elsewhere, 
[Laitenberger01], that some of the benefits of PBR comes from 
team effect. In short PBR instructs the reviewer to use an active 
form or review by assigning different perspectives to each 
reviewer. The common perspectives are user, tester, and 
designer. With the perspective follows a detailed description of 
how to perform the inspection. The instructions involve active 
steps such as ‘Construct test cases for...’ or ‘Make a small design 
of...’. Some concerns regarding PBR and the analysis here are 
discussed in the following paragraph. 

The fact that PBR (perspective-based reading) assigns different 
perspectives to the reviewers, combined with the use of nominal groups, 
leads to problems when analyzing the PBR data. The use of different roles 
was proposed by Fagan [Fagan76], although the emphasis on active reading 
is more recent. In order to make the best use of the PBR, the review teams 
should include at least one reviewer from each perspective. This greatly 
limits the number of PBR compliant inspection teams that can be generated. 
Our virtual team generating approach allows for groups of inspection teams 
without the optimal set of perspectives. This leads to the impossibility of 
evaluating the true potential of PBR, and therefore, any conclusions 
concerning PBR cannot be drawn in this study. The PBR data are renamed to 
ART (Active Reading Technique). 



4. Levels of study 

Three levels of comparisons can be identified: organization, project and 
individual. At the organizational level, of potential interest could perhaps be 
benchmarking a particular inspection process with respect to industry 
standards or other specific partners. Alternatively, an objective could be to 
select a reading technique or better understand the effectiveness of 
inspections in different development phases. Organisational benchmarking is 
discussed in Section 5. 

At the project level, it is often important to learn more about the 
effectiveness of different team sizes. Typically a project manager would also 
like to plan the inspections within projects so as to maximize effectiveness. 
In these cases, a manager would like to know how many reviewers to assign 
in different phases of the development in order to obtain a certain degree of 
inspection effectiveness. The effectiveness of different team sizes is studied 
in Section 6. 

Finally, it is important to know more about the individual performance. 
Of particular interest is the gaining of an understanding of the differences 
between individuals to be able to select a suitable inspection team. It is well 
known that there are individual differences, but it is important to ascertain 
how large they are. This is investigated in Section 7. 

5. Organisation: Benchmarking 

This chapter investigates the inspection data from an organizational 
perspective. The intention is to examine what we can learn from the data 
with a view to benchmarking the software inspection process of an 
organization.  

5.1 Benchmarking in general 
Benchmarking is a widely used business practice and has been accepted as a 
key component in an organization’s search for improvement in quality, 
competitive position or market share. According to a survey in 1992, 31% of 
US companies were regularly benchmarking their products and services. 
Another survey in UK (1996) revealed that 85% of the business was using 
benchmarking practices [Ahmed98]. In Japan, benchmarking is called 



“dantotsu”, which means “striving to be the best of the best” [Corbett98]. 
Here, we would like to define benchmarking of processes as an activity that 
allows people to strive to be the best of the best. Thus, both qualitative and 
quantitative comparisons with this objective are viewed here as being 
benchmarking. 

The literature describes several types of benchmarks [Sole95, Ahmed98, 
Longbottom00]. Sole and Bist point out that the level of benchmarking sets 
the degree of the challenge from a slight improvement in the development 
process to a radical change in the process [Sole95]. Benchmarking may be 
divided into different types, depending on with whom the comparison is 
made and what the objective of the comparison is. Some common types of 
benchmarking include: 

• comparison within the same organizations (internal 
benchmarking),  

• comparison with external organizations (external 
benchmarking), 

• comparison with competitors (industry benchmarking), 
• identification of best practices (generic benchmarking), 
• comparison of discrete work processes and systems (process 

benchmarking), 
• comparison of performance attributes e.g. price, time to market 

(performance benchmarking), and 
• addressing strategic issues (strategic benchmarking). 

5.2 Benchmarking goal 
The goal here is to be able to compare different software inspection 
processes. Given the characterization and standardized artifacts, it is possible 
to identify, for example, whether a specific inspection process is better or 
worse than another. 

Some key concerns regarding benchmarking are scalability, thresholds, 
simplicity and atypical situations. Scalability should not be a major problem, 
as long as the inspections scheduled on real projects are of limited size. 
Since normal recommendations on the length of the preparation phase and an 
inspection meeting are in the order of hours, it is feasible to benchmark a 
realistic approximation of the process. Scalability must also be addressed by 
using documents representative of what is normally seen at an organization, 
with respect to size and defect density. In this case, the objective is not to set 



quality thresholds on the documents, but rather to provide feedback on 
effectiveness and efficiency and expectations on these two factors in terms 
of group size. Simplicity is also very important because in order to make a 
benchmark useful, it should be possible to replicate it without having to have 
a number of experts present. For instance, the characterization scheme from 
Table 2 supports simplicity. Finally, it is often reported that software 
projects are so different from each other that it is not possible to compare 
them. It may be true that projects are very different, but it should still be 
possible to compare certain aspects of software projects, for example, 
software inspections. The differences and similarities should be captured by 
the characterization used and hence atypical inspections should be accounted 
for in subsequent analysis. Atypical inspections may be important to learn 
from, but they should not be part of the normal benchmarking data, since, by 
definition, it is not anticipated that their individual situations will reoccur. 

5.3 Benchmarking in software development 
Benchmarking provides many opportunities for comparisons in software 
development, for example, compilers may be compared by compiling the 
same program on several different compilers and by logging compilation 
time and errors.  

Benchmarking in software development is perceived as an assessment 
method, which is concerned with the collection of quantitative data on topics 
such as effectiveness, schedules and costs [Jones95, Beitz00]. It allows the 
comparison between an organizational process and industry best practice. It 
also helps managers to determine whether significant improvements are 
required to maintain a particular business [Beitz00]. Here, the term 
benchmarking is used for both qualitative and quantitative comparisons as 
long as the main objective of benchmarking is fulfilled. Thus, a 
characterization of several processes in qualitative terms would qualify as 
benchmarking if the objective is to improve these processes. Informally, the 
following definition of benchmarking is used in this paper. Process 
benchmarking is the comparison of similar processes in different contexts, it 
implies multiple points of comparison (e.g. two data points is not a 
benchmarking), and it requires a representative sample in terms of, for 
example, organizations and applications. 

Several assessment tools for software benchmarking have been 
developed. Maxwell and Forselius report on the development of an 
experience database which consists of 206 business software projects from 



26 companies in Finland [Maxwell00]. This database allows managers to 
compare their projects with the existing projects from the database.  

5.4 Benchmarking in software inspection 
To our knowledge, limited work has been done in the area of benchmarking 
software inspection. One of the few examples is described by Jones 
[Jones95] who argues that function points provide useful metrics on two 
components of software quality: (a) potential defects, which is the total 
number of defects found in a work product, and (b) defect removal 
effectiveness level, which is the percentage of software defects removed 
prior to delivery. Jones reports that in the US the average for potential 
defects is about five per function point, and overall defect removal 
effectiveness is about 82%. According to one recent study, code inspection 
reduces life cycle defect detection costs by 39%, and design inspection 
reduces life cycle defect detection costs by 44% [Briand98]. 

5.5 Research questions 
Using the data described in Section 3, it should be possible to answer, the 
following benchmark questions: 

1. Are there any differences in terms of effectiveness between 
requirements specification inspections and code inspections? 
Assuming that the primary interest is to benchmark an 
organization, the artificial requirements specifications may be 
treated together with the requirements specifications. However, 
the textual documents cannot be included when answering this 
benchmark question. 

2. Are there any differences in terms of effectiveness between the 
different reading techniques? This question is important to the 
organization as an answer to it allows for the selection of a 
suitable reading technique. 

3. Hypothetically, we could also remove data sets 19 and 29 from 
the database, and assume that the organizations represented by 
these data sets would like to compare their inspections with the 
ones remaining in the database. Thus, it is possible to use the 
data from the other organizations and compare this with these to 
two fictitious companies for requirements and code inspections 
respectively. 



These types of questions and studies can be conducted as more and more 
data becomes available. The intention here is to illustrate how a 
benchmarking database for software inspections can be created. 

To answer the above questions the data will be presented in box plots 
and discussed qualitatively. The reason being that there is dependence 
between the data points and hence the data do not fulfil the requirements for 
using statistical tests.  

5.6 Analysis 
The three questions above are addressed to illustrate how software 
inspection benchmarking can be used to study a number of issues of interest 
to software management in their effort to improve the software development 
process. It is here assumed that all data sets used for comparisons come from 
“comparable” companies, i.e. the characterization shows that it is reasonable 
to compare the companies. The benchmarking is illustrated with 
effectiveness and the intention is that a manager can transfer this information 
to cost-effectiveness within his or her own environment . 

1. Effectiveness in requirements specification and code inspections  
In the left box plot group in Figure 1, the effectiveness in software 
inspections are shown for different types of documents. These box 
plots are shown for 1 to 4 reviewers with requirements specifications 
inspections to the left and code inspections to the right for the 
different cases. The focus is on 1 to 4 reviewers since the number of 
combinations is very few for higher number of reviewers, and the 
results would depend too much on single data points rather than 
representing a more general outcome. 

From the box plots, it seems obvious that the differences in 
terms of effectiveness between requirements specifications 
inspections and code inspections are minor. From a benchmarking 
perspective, this means that we may conclude that we can expect 
that our effectiveness for different types (or at least for requirements 
specification inspections and code inspections) of inspections should 
be approximately the same. Given that the faults in code inspections 
ought to be easier to find, we could have expected a higher 
effectiveness in code inspections. This was however not the case, 
which is an interesting observation. This information is valuable 
when planning different types of inspections. In particular, it 
implies, for example, that any experience regarding effectiveness for 



code inspections could probably be transferred to inspections of 
requirements specifications due to effectiveness in the different 
types of inspections (in our case requirements and code) being fairly 
similar. 

2. Effectiveness in inspections using different reading techniques 
In the right box plot group in Figure 1, the box plots for the 
effectiveness for different reading techniques are shown. Once 
again, the plots provide information for 1 to 4 reviewers with the 
plots in the following order: ad hoc, checklists and active reading 
technique. From the box plots, it seems as though checklists may be 
more effective than the other two techniques. This may result from 
us looking at individual inspection preparations only and not the 
potential team effect from having different perspectives. From a 
benchmarking perspective, this tells us that if we have good 
checklists they ought to outperform ad hoc inspections and active 
reading techniques on an individual preparation level. However, our 
study has not taken any team effects similar to the ones introduced 
by different perspectives in PBR into account. The benefits of a team 
approach, in particular when using active-reading techniques such as 
PBR, is further discussed by Laitenberger et al. [Laitenberger01]. 
The challenge is to develop inspection techniques that are strong 
both in terms that the individual will find many faults during the 
preparation and also that from a team perspective, the individuals 
complement each other well.   
 



FIGURE 1. Box Plots5 showing effectiveness in inspections for different types of 
documents (left) and for different reading techniques (right). The documents are 

from the left: requirements specification and code. The reading techniques are from 
the left ad hoc, checklists and active reading technique. 

 
3. New company scenario 

Here it is assumed that data sets 19 and 29 are not part of the 
experience base, and the box plots in Figure 2 are created without 
these two data sets. In particular, it is assumed that the data sets 
represent two companies which we will compare with a subset of the 
companies in the experience base selected on the basis of their 

                                                           
5 In box plots, a line in the box indicates the median value. Moreover, each box 
extends from the 25th percentile, lower quartile, to the 75th percentile, upper 
quartile, of the estimates. The whiskers (lines extending from the boxes) show the 
limit for non-outlier values. Outlier values have the following characteristics: 
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Box plot outliers are marked with plus signs. 

1 2 3 4

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Document Type

E
ffe

ct
iv

en
es

s

Reviewers
1 2 3 4

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Inspection Technique

E
ffe

ct
iv

en
es

s

Reviewers

 



similar characterizations. Thus, the box plots may be seen as the 
benchmarking experience base that new companies may use for 
planning and comparing their own software inspection process. The 
circles in the box plots represent the two new data sets (or 
companies from a scenario perspective) with data set 19 on the left 
diagram and 29 on the right. 

Company No. 19 could use the left diagram in Figure 2 to 
ascertain what to anticipate when performing inspections. It is 
possible to see the median value for requirements specification 
inspections as well as the different quartiles and whiskers. Thus, the 
company has a good picture of the industry standard for 
effectiveness of requirements specification inspections. After having 
conducted controlled inspections at the company, it is possible to 
plot how this company is performing. This is illustrated with the 
circles in the box plot. It can be seen that company No. 19 in this 
case performed below median for all group sizes. The difference 
between how close the circle is to the median depends on the 
individuals that are added as we increase the group size. It may be 
particularly interesting to actually study the performance of 
individuals and hence use this information to put together inspection 
teams. This issue is discussed in Section 7. 

To the right in Figure 2, a similar diagram is shown for code 
inspections. In this case, it is worth noting that company No. 29 is 
performing better than the industry standard. 

 
 



FIGURE 2. New company scenario for requirements specifications inspections (left) 
and code inspections (right). 

 
In summary, the illustration above shows examples of questions that can 

be addressed from using benchmarking in software inspections. The actual 
figures are not the main issue. The illustration is based on the assumption 
that the data sets are indeed comparable, i.e. the characterizations of the data 
sets are similar. These figures indicate the level of effectiveness that we can 
anticipate for different reading techniques, different types of documents and 
different group sizes. 

6. Project: Team size 

In Section 4, three different levels of study were introduced. In the previous 
section, the opportunity of benchmarking software inspection processes was 
investigated. The objective in this section is to evaluate the use of the data 
from a project perspective. The intention is to show how a project manager 
may use the data to help in planning and managing software inspections. 

6.1 Teamwork in small groups versus large groups 
Teamwork is essential for software developers. There are some major 
assumptions behind teamwork. Firstly, the software products in today’s 
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market are too complex to be designed by individuals. The complexity of the 
product has become the driving force behind the creation of teams. It has 
been found that the quality of the product improves as it is inspected from 
multiple viewpoints [Laitenberger97]. Secondly, there is a belief that people 
are more committed to their work if they have a voice in the design of the 
product or the work in general [Smart98]. According to researchers, 
effective teams work best when the nature of their work requires a high level 
of interdependence [Smart98]. Valacich and Dennis emphasize that while 
many factors affect group performance, group size is a key ingredient since 
it places a limit on the knowledge available to the meeting group 
[Valacich94].  

Several researchers in management science have focused on determining 
the optimal group size for teamwork where the members of the team are 
assigned to a set of tasks e.g. new product development or strategic decision-
making. The findings from these studies are contradicting. Some researchers 
indicate a dozen is an optimal number and recommend an odd number to 
assure a majority in the case of conflicting ideas [Osborn57]. Some earlier 
studies report five people as an optimum number for a typical group size 
[Hackman70, Chidambaram93, Tan94]. In [Jessup90], some experiments 
conducted using electronic supporting systems suggested a small number -- 
four persons per group as an ideal size. On the other hand, Nagasundaram 
and Dennis remark that it is better to have small groups in face-to-face 
meetings, and large groups for electronic meetings [Nagasundaram93] . In 
summary, team size is a key issue when trying to optimize available 
resources. Given the need to use software development resources effectively, 
there is also a need to understand how to choose an appropriate team size for 
software inspections. 

6.2 Team size in software inspection 
Software inspection involves teamwork, where a group of individuals work 
together to analyze the product in order to identify and remove defects. 
Inspection teams are formed from small groups of developers. Fagan 
[Fagan76] suggests that four people are a good inspection team size. This 
suggestion also ties in with Weller’s industrial work, where it is reported that 
four person teams are more effective and efficient than three person teams 
[Weller93]. IEEE STD 1028-1997 suggests teams of 3 to 6 people [IEEE98]. 
Teams of 4 or 5 people are common in practice [Wheeler96]. Owens reports 
that although it is expensive to have more reviewers, it is more effective to 



have more points of view for requirements inspection (e.g. 5-6 inspectors) 
than for design, and more inspectors are needed for design than coding (e.g. 
1-2 inspectors for coding) [Owens97]. This idea of having two people in a 
coding inspection is supported by other researchers [Bisant89]. Bisant and 
lyle’s findings illustrate that programming speed increases significantly in 
two-person inspections. Thus, it is clear, from literature, that there is no real 
consensus on the number of reviewers to use and hence this illustrates the 
need to combine data from different studies to obtain a more general 
understanding. 

Given the different arguments and results when identifying a good size 
for teams in both management and software inspections, an analysis is 
required to investigate the relationship between performance and team size. 
In particular, team size refers to the combination of individuals and not real 
teams. The focus here is directed at performance comparisons for various 
team sizes, which provides valuable information to people planning 
inspections. In the work presented here, we have used virtual teams, see 
Section 3.2. The team size in virtual inspections has also been studied by 
others [Biffl01]. 

6.3 Effectiveness in general 
The first two box plots, Figure 3 and Figure 4, show the effectiveness of 
teams from the analyzed data sets where no attribute filtering has been done. 
In Figure 3, all data sets are represented, however, the data sets with six 
reviewers or more had five reviewers randomly chosen to generate the virtual 
teams. The median value is 0.26 for a team size of one and 0.64 for a team 
size of four. In Figure 4, 17 of the data sets have been removed since they 
only had five or six reviewers and do not provide any data for team sizes of 
six reviewers. The median value for 6 reviewers is 0.71. As expected the 
largest gain in adding a reviewer is achieved when using two reviewers 
instead of one. 

In Figure 3 and Figure 4, it can be seen how the inspection effectiveness 
increases as the team size increases, and how the added value for an 
additional reviewer decreases as the team size grows. Moreover, it is 
possible to see the variation between different combinations of reviewers. 
For example, the figures show that for a team size of four reviewers, the 
median effectiveness is 0.64, and that in 75% of the cases the effectiveness is 
above 0.5. On the other hand, it is also possible to note that in some cases the 



effectiveness is only around 0.2. This type of information is important for 
anyone planning, controlling and managing software inspections. 
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FIGURE 3. Team effectiveness for all data sets. FIGURE 4. Team effectiveness for data sets with less 
than 7 reviewers not included. 

 

6.4 Effectiveness based on filtered data 
The next set of box plots, Figure 5 to Figure 7, shows the effectiveness of 
different team sizes when data sets have been filtered based on the three 
attributes discussed in Section 3.4: Environment, Document type and 
Inspection type. The legend is shown in Table 3. 



TABLE 3. Legend to Figure 5—Figure 7 
 

 Figure 5 Figure 6 Figure 7 

 - Textual - 

 NASA Arti. Req. AdH 

 Prof. Req. CheckL 

 Acad. Code ART 

 
From a visual inspection of the figures, some interesting observations 

can be made. In Figure 6, the large dispersion of the requirements 
specifications inspections is striking. The good performance of the checklist-
based inspections in Figure 7 is also noteworthy. To further investigate the 
differences, the following research questions have been studied qualitatively: 

1. Are there any differences in terms of the mean effectiveness for 
different: 
a) environments, 
b) types of documents, 
c) reading techniques. 

2. Are there any differences in terms of variance in effectiveness 
for different: 
a) environments, 
b) types of documents, 
c) reading techniques. 
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The result were as follows: 
1. Mean effectiveness 

a) Environment: It seems that the academic environment better 
supports inspections compared to the other two environments. This 
is particularly visible for 3 and 4 reviewers. It also seems that the 



professionals at NASA perform better than professionals in general. 
It is interesting to note that the order (descending) of the groups in 
terms of mean effectiveness is: Academia, NASA and other 
professionals. One possible reason for this result is that experiments 
at universities often are based on an isolated artifact, which has no 
system context. Another factor that may contribute is that people in 
industry may be less motivated when performing an experiment on 
artifacts, which are not part of their daily work. If they use an 
artifact from their daily work, then that artifact most likely has a 
complex system context which may make it harder to inspect than a 
stand alone artifact. 
b) Document type: There are no visible differences in mean 
effectiveness for different types of documents. It is interesting to 
note that independently of the type of artifact, the mean 
effectiveness is about the same, including reviews aimed at finding 
grammatical defects in a text document. The main observation, from 
Figure 6, is the large variations, which are discussed below. Future 
work includes investigating the combined effect of, for example, a 
document type and a specific reading technique. 
c) Reading technique: Checklist-based reading seems to be better, 
at least this is the case when only looking at the combination of 
individual data. However, the result may be a result of not having 
team meetings and hence the full potential of active-reading 
techniques is not explored. Effectiveness changes through having 
meetings or not is discussed further in Section 3.2. This result may 
be due to the fact that several of the defects are fairly trivial 
(although this cannot be fully ascertained since the severity of 
defects is not reported in most studies) and these are easily spotted 
using checklists. As pointed out above, ad hoc reading poses a 
problem in itself. Further studies are needed to explore whether, for 
example, certain individuals perform better using one technique 
rather than another. 



2. Variations of effectiveness 
a) Environment: NASA seems to have a higher variation than the 
two other groups. This may be due to the fact that the studies at 
NASA include a mixture of real software artifacts and artificially 
created artifacts to a larger extent than the other groups. 
b) Document type: Several interesting results were observed. Both 
requirements specifications and code, have a higher variance than 
the textual documents and the artificial requirements specifications. 
This indicates that the real artifacts are more challenging and result 
in greater dispersion between different teams. In addition it is also 
worth mentioning that the requirements specifications seems to have 
a higher variance than the code. This implies that requirements 
specifications are harder to review than code, since the variation 
between different teams is high. 
c) Reading technique: Checklist-based reading seems to have a 
lower variation than ad hoc and active reading techniques 
respectively. Once again, this outcome could be explained by the 
fact that several of the defects were relatively easy to uncover. 
Furthermore, the checklists support finding such defects. 

6.5 Planning table 
The box plots provide an insight into how the effectiveness of inspection 
teams varies, depending on the number of reviewers in each team. To 
support the decision-making process regarding which team size to choose in 
a specific situation, information is extracted and presented in Table 4. This 
table shows the percentage of all the virtual inspections that had a certain 
minimum level of effectiveness. For example, if we would like to be at least 
75% certain of finding a minimum of 50% of the defects, then 4 reviewers 
are needed, (see the grey cell in Table 4). A table of this type could be used 
as a rule of thumb in different ways, depending on whether we would like to 
determine the team size, or if we would like to know the expected 
effectiveness resulting from a specified team size. 



TABLE 4. Certainty of having a specific effectiveness for a specific team size. 
 
  
Effectiveness 1 2 3 4 5 6 7 
0.10 90 99 100 100 100 100 100 
0.20 68 93 99 100 100 100 100 
0.30 36 80 93 96 97 100 100 
0.40 17 59 80 88 92 94 100 
0.50 9 36 62 78 86 92 95 
0.60 6 20 41 58 66 77 756 
0.70 2 9 22 37 43 55 56 
0.80 2 6 13 22 22 30 34 
0.90 1 2 4 7 11 13 5 
1.00 0 0 1 2 3 3 0 

6.6 Discussion of managing inspection effectiveness 
When planning an inspection, several issues have to be considered. For 
example: How many reviewers should be included? Who should participate? 
What roles should they have? When should the inspection meeting be held? 
and What inspection technique and reading technique should be used? It is 
common when dealing with these more practical matters of the planning, to 
forget one very important question; What level of quality do we aim for in 
the inspected document? If we know the approximate answer to this 
question, we automatically have a general outline of how to answer many of 
the other questions. 

The level of quality aimed for in a specific document depends on many 
factors, which can be summarized by answering the one question; How 
important is the document? This is where the project manager or whoever 
plans the inspection should begin. By processing and analyzing the different 
aspects of a document’s importance, the manager gets an understanding of 
what level of quality is needed before releasing the document to the next 

                                                           
6      This is an example of a lower value although we have more reviewers; this is a statistical 
artifact based on the limited number of data sets to create the columns for six and seven 
reveiwers. 



development phase. Thus, he or she also may identify what amount of effort 
should be spent on that specific document. 

The number of defects within a document strongly affects the 
document´s quality. In order to improve the quality, the number of defects 
must be reduced. As can be seen in Section 6.3, the number of reviewers 
involved greatly affects the proportion of defects detected by an inspection 
team. Therefore, this is one of the more important decisions to be made by 
the person planning an inspection. 

This study shows the opportunities in terms of providing a basis for 
supporting such decisions. The person planning the inspection can use Table 
4 to get an indication of the level of risk that exists when choosing a certain 
number of reviewers. This risk can then be weighted against the importance 
of the document to obtain an estimate of the number of reviewers to use. 

Table 4 shows general results from a number of inspection experiments. 
By letting each company collect data to build their own tables, more relevant 
data can be attained. This would increase the accuracy of the data by 
narrowing down the variety of variables including document types, people 
involved and reading techniques used. Most of the measures needed to 
construct similar tables can be easily collected from inspections. The most 
difficult part would be in getting accurate numbers of the total number of 
defects. Different approaches could be taken to acquire this measure. Two 
examples include using Capture-Recapture estimations [Wohlin95] or 
controlled experiment, within the company in which the defects are known. 

7. Individual: Reviewer effectiveness 

This is the third level of investigation as pointed out in Section 4. Here we 
would like to study the data to better understand the effect of individual 
reviewers. This is important when planning inspections and also helps 
reviewers understand their own abilities. 

7.1 Research questions 
There are many aspects of individual contributions when considering 
inspection effectiveness. The analysis in this study as stated previously, is 
nominal inspection teams, i.e. no meetings are held. One important role of 
the meeting is to identify false positives, i.e. issues incorrectly reported as 



defects. Information on false positives is typically unavailable from our data 
sets, particularly as they come from controlled experiments where the 
number of existing defects is known. Including meeting data would also lead 
to an increased scope of possible impacts an individual may have, including 
aspects such as how a single person affects the group psychology. 

The questions investigated and illustrated in this study are: 
1. What impact does a single reviewer have on average in terms of 

inspection effectiveness? 
2. What impact does the reviewer with the best individual 

effectiveness have in terms of the team’s total inspection 
effectiveness? 

3. What impact does the reviewer with the worst individual 
effectiveness have in terms of the team’s total inspection 
effectiveness? 

4. Does the combination of the two best individuals in a team 
always find most unique defects? 

The aim of the first question is to provide a general view of what can be 
expected when adding or removing a person from a team. Question two and 
three investigate how the best or worst individual effectiveness affects the 
team’s effectiveness. The fourth question investigates one aspect of a very 
interesting area: What makes a good team? It is not only individual 
contributions that are important when being part of a team. 

7.2 Theoretical analysis 
To gain some insight into what could be expected when investigating the 
effect of a single reviewer, the process of inspections can be modelled 
statistically and simulated by Monte Carlo simulations. These two 
approaches are shown below. 

The simplest approach is to assume that all defects are equally difficult 
to find and all reviewers have equal ability. If the probability for a defect to 
be found by a reviewer is p, then the probability that at least someone in a 
team of size R finds a specific defect is: 

If a document contains N defects then the expected value of the number 
of defects found in the inspection, E(D), is: 

pT 1 1 p–( )R–=



The average difference in effectiveness a single reviewer makes on a 
team of R reviewers is then: 

Table 5 shows the expected differences for different values of p. For 
example, when finding defects with a probability of 0.4 the average 
difference in effectiveness when removing one reviewer from a three-
reviewer team is 0.14. 

TABLE 5. Expected differences when removing one reviewer from a team. 
 

 Group Size 
p 2 3 4 5 6 

0.1 0.09 0.08 0.07 0.07 0.05 

0.2 0.16 0.13 0.10 0.08 0.07 

0.3 0.21 0.15 0.10 0.07 0.05 

0.4 0.24 0.14 0.09 0.05 0.03 

0.5 0.25 0.13 0.06 0.03 0.02 

0.6 0.24 0.10 0.04 0.02 0.01 

0.7 0.21 0.06 0.02 0.01 0.00 

0.8 0.16 0.03 0.01 0.00 0.00 

0.9 0.09 0.00 0.00 0.00 0.00 

 
The previous model’s assumptions are very restrictive. The assumptions 

can be relaxed by allowing the probability to vary among different 
reviewers. Then each reviewer i, has the probability pi to find a defect. Thus: 

E D( ) N
D⎝ ⎠
⎛ ⎞ pT

D 1 pT–( )N D– D⋅ ⋅ ⋅

D 0=

N

∑ … pT N⋅= = =
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N

------------------------------------------ N 1 1 p–( )R 1––( )⋅
N

-------------------------------------------------– =

1 p–( )R 1– 1 p–( )R– p 1 p–( )R 1–⋅==



The different probabilities (pi, i = 0...R) have then to be estimated or 
represented in some way. This is done as in [Boodoo00], i.e. using a Beta-
distribution to represent the pi’s and using the available data sets to estimate 
the parameters of the Beta distribution. 
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Figure 8. Monte Carlo simulated effect of removing one reviewer. 

 
A simulation of the difference a single reviewer makes was run with 

team sizes of 2 to 6 people and the pi’s taken from the Beta-distribution. 30 
simulated experiments for each team size were run. The approach with 
virtual team combinations is used in the simulation to facilitate comparison. 
The result is shown in Figure 8. For example, the median of the lost 
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effectiveness when removing one reviewer from a three-reviewer team is 
close to 0.13. 

Some caution must be taken when drawing conclusions from this Monte 
Carlo simulation. The Beta distribution does not handle reviewers with an 
effectiveness equal to zero. There are 8 cases out of 255 in the data sets 
where a reviewer did not find any defects. In order to estimate the 
parameters of the Beta distribution, these sets were removed. 

7.3 Analysis procedure 
The following measures are used to investigate the four questions. 
1. What impact does a single reviewer have on average in terms of 

the inspection effectiveness? 
Measure I: Eff(Full Team)-Eff(Team with one person removed) 
All possible combinations is considered. A virtual team, with 
reviewers A, B and C, generates 3 combinations. Eff(A, B, C) 
minus either Eff(A, B), Eff(A, C) or Eff(B, C) 

2. What impact does the reviewer with the best individual 
effectiveness have in terms of the team’s total inspection 
effectiveness? 
Measure II a: Eff(Full Team)-Eff(Team with the reviewer with the 
best individual effectiveness removed) 
Example: Inspection with reviewers A, B and C, where they 
have individual effectiveness 0.43, 0.27 and 0.32, respectively. 
Measure IIa = Eff(A, B, C)—Eff(B, C) 

3. What impact does the reviewer with the worst individual 
effectiveness have in terms of the team’s total inspection 
effectiveness? 
Measure II b: Eff(Full Team)-Eff(Team with the reviewer with the 
worst individual effectiveness removed) 
To investigate the difference between the best and the worst 
another measure is added. 
Measure II c: (Measure II a)—(Measure II b) 

4. Does the combination of the two best individuals in a team 
always find most unique defects? 
Measure III: (Number of times a combination of two reviewers 
within a team is found to have better effectiveness than the two 
reviewers with the best effectiveness) / (Number of virtual 
inspections) 



The result of these measures is presented in Section 7.4. 

7.4 Results 

7.4.1 Measure I 
Measure I is calculated for all of the possible virtual teams and all possible 
removals of one reviewer. The mean and variance of measure I are 
calculated and presented in Table 6. To investigate whether the profession, 
document type or inspection technique has any impact on the result, the data 
sets have been filtered based on these criteria. The average mean and 
variance, when all data sets are treated together, are shown at the bottom of 
the table. 

TABLE 6. Single reviewer impact on inspection effectiveness 
 

 Team Size 
 2 3 4 5 6 
 Mean Var Mean Var Mean Var Mean Var Mean Var 

NASA 0.168 0.020 0.107 0.010 0.074 0.005 0.055 0.004 0.042 0.002 

Prof. 0.144 0.010 0.103 0.007 0.076 0.005 0.057 0.004 0.045 0.003 

Acad. 0.173 0.010 0.112 0.006 0.075 0.004 0.053 0.002 0.038 0.002 

Text 0.172 0.011 0.109 0.007 0.073 0.004 0.052 0.003 0.038 0.002 

Req. 0.170 0.032 0.098 0.014 0.063 0.007 0.043 0.004 0.029 0.002 

Artif. Req. 0.163 0.008 0.110 0.005 0.077 0.004 0.056 0.003 0.042 0.002 

Code 0.159 0.012 0.110 0.008 0.079 0.005 0.058 0.004 0.045 0.003 

Ad Hoc 0.161 0.016 0.104 0.008 0.074 0.005 0.055 0.003 0.043 0.002 

Chkl 0.218 0.015 0.151 0.009 0.105 0.006 0.070 0.004 0.029 0.001 

ART 0.159 0.013 0.106 0.007 0.074 0.004 0.054 0.003 0.041 0.002 

All 0.165 0.014 0.108 0.008 0.075 0.005 0.055 0.003 0.042 0.002 

 
The table shows that the difference a single person makes on the 

effectiveness varies on average from about 0.16 in the two-reviewer case to 
0.04 in the six-reviewer case. The largest effect is when checklists are 



compared to Ad Hoc and the Active Reading Technique. There is a sharp 
drop in the checklist case between five and six reviewers. This is probably 
because there is only one data set using checklists for six reviewers (data set 
number 5), see Table 2. The largest variance is found in the data sets from 
inspecting requirement specifications. 

To further illustrate the outcome, a box plot for four reviewers is shown 
in Figure 9. 
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FIGURE 9. One reviewer effect. From left to right (NASA, Prof., Acad.; 
Text, Req., Artif. Req., Code; Ad Hoc, Chkl, ART and All) 

7.4.2 Measure IIa, b and c 
The aim of measure II is to capture the effect extreme reviewers, i.e. the best 
and worst, have on a team’s effectiveness. Table 7 shows the mean and 
variance of all data sets. On average, the effect of the best reviewers varies 
from 0.24 for two reviewers down to 0.10 for six reviewers. The effect of the 
reviewer with the worst personal effectiveness drops from 0.10 down to only 
0.01. 



TABLE 7. Mean and variance of measure II taken of all data sets for different team 
sizes. 

 Team Size 
 2 3 4 5 6 
 Mean Var Mean Var Mean Var Mean Var Mean Var 

IIa, best 0.237 0.014 0.186 0.007 0.147 0.005 0.118 0.003 0.096 0.002 

IIb, worst 0.092 0.004 0.047 0.002 0.027 0.001 0.016 0.001 0.010 0.000 

IIc, difference 0.144 0.017 0.139 0.010 0.121 0.006 0.103 0.004 0.086 0.003 

 
Although the detailed statistics are not presented here, when Table 7’s 

data is filtered on the different context attributes, the results are similar to 
measure I (see Table 6). Checklists show slightly larger mean values up to 
five reviewers while requirements specifications show the largest variance. 

Figure 10 shows a box plot for measure IIa-c for all data sets with 
different team sizes. A feature not captured in the table is the occurrence of 
negative differences in the effect between the best and the worst reviewers. 
This represents cases where the reviewer with the worst effectiveness has 
found more unique defects than the best reviewer (Note: This condition can 
not occur in the two reviewer case). 
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FIGURE 10. Effect of removing best or worst reviewer from the team. From 
left to right for each team size: Best, Worst, Difference. 

7.5 Measure III 
Measure III investigates whether teams with the best individual reviewers 
necessarily form the best team. In Table 8, measure III is presented. This 
shows how often, within a team, the best combination of two reviewers is 
not the two reviewers with best effectiveness individually. For example, in 
62 percent of the four-reviewer teams it is possible to find a better 
combination of two reviewers than the effectiveness of the individuals 
involved would suggest. The two-reviewer case is not investigated, since 
there is only one combination, and it is automatically the best. 



TABLE 8. Percentages of how often a better combination of two reviewers than the 
two with the best individual effectiveness could be found within a team. 
 

 Team Size 
 3 4 5 6 

Measure III 53% 62% 75% 74% 

8. Conclusions 

Combining data or results from different studies of software inspections 
provide many interesting opportunities for comparison and evaluation. This 
includes benchmarking at the organizational level, inspection planning at the 
project level and an improved understanding of individual performance. 

8.1 Organizational benchmarking 
The results in Section 5 show variations in the mean effectiveness across 
some of the studied attributes. This includes differences between 
environments, and differences showing that checklist-based reading 
outperformed ad hoc and active reading techniques at least when only 
comparing the individual results and nominal teams and ignoring the team 
effects for real teams. The results are certainly interesting, but further studies 
are required to better understand these issues. 

The variations observed are very interesting. They show that differences 
in inspection effectiveness when using real software documents, including 
both requirements specifications and code, is greater than when using other 
types of documents. It is also noteworthy that the variation in effectiveness 
for requirements specifications is higher than for code. This illustrates some 
of the problems when performing inspections and shows the potential of 
performing a study of this type. Such results, if confirmed by later studies, 
would form an important input for anyone who plans, controls or manages 
software inspections. 

Benchmarking opens a number of interesting opportunities. The need for 
empirical studies and experimentation in software engineering is well 
known. Software inspection is an area well suited to experimentation, both in 
industry and in universities. By agreeing on a number of standardized 



artifacts or use of company specific artifacts and a characterization schema, 
it should be possible to make a large number of experiments world-wide and 
hence it should be possible to rapidly develop greater understanding in this 
area. 

Software inspection benchmarking is interesting for universities as well 
as industry. Industry may perform benchmarking as discussed above. 
Universities may perform experiments allowing for more data to be collected 
regarding inspections, which would enable researchers to better understand 
different aspects of software inspections more fully. This becomes 
particularly valuable if the universities use the same documents as are used 
for benchmarking in industry. For example, universities should be able to 
run experiments with students in courses where different reading techniques 
can be compared.  

8.2 Project management 
The analysis in Section 6 uses effectiveness of the inspection to evaluate the 
results. The effort is assumed to be approximately the same in all 
experiments. The cost of effort is important too, since the effort put into 
inspection could instead be used to further develop the documents or product 
itself. If no effort considerations apply, the best option would be to use as 
many reviewers as available. However, even with effort considerations when 
deciding on how to perform an inspection, it still comes down to the 
question stated in Section 6.6, How important is the document? When this is 
known, the effectiveness of the inspection team is the next thing to be 
considered. 

Main objectives of this study include exploring how inspection teams 
behave, depending on team size, and identifying how inspection planning 
can be better supported. This was done by combining data from different 
controlled inspection experiments. Another aspect that was illustrated was 
the effect on the inspection effectiveness when altering some of the 
inspection attributes, such as the environment, document type and reading 
technique. 

The question of How many reviewers should be included in the review? 
is an important consideration when planning an inspection. This study has 
provided an initial answer, in terms of a table from which it is possible to 
estimate the number of individuals needed in a team to reach a certain 
effectiveness (in preparation) or vice versa (to estimate the effectiveness for 
a given team size). The table is based on 30 published data sets, and it 



provides a starting point. However, to get a better picture of the effectiveness 
of inspection, it is necessary for organizations to build their own experience 
bases. 

8.3 Individual performance in inspections 
The study in Section 7 used data sets from several controlled inspection 
experiments to illustrate the impact an individual reviewer has on an 
inspection team’s effectiveness. The results provide some rules of thumb to 
consider when planning inspections. The averages presented show rather a 
small individual reviewer contribution to the inspection effectiveness. 
However, good individual performance is still important and, in reality, may 
have a larger effect than the averages suggest. For example, having good 
reviewers can decrease the needed size of the inspection team and thereby 
reduce the effort cost of the inspection. Therefore it is important for compa-
nies to analyze their own inspection process to guide their decisions and to 
perhaps pinpoint reviewers with inspection ‘talents’. Their ability can be 
utilized on important projects and their knowledge may be able to be 
captured and taught to others. 

When addressing individual performances, four questions were posed. 
The aim of the first question was to study how much impact in general, an 
individual reviewer has on the effectiveness of an inspection team. The 
average effect is of course dependent on the team’s size and the mean was 
found to be 0.16 in the two-reviewer case down to 0.04 for six reviewers. 
Compared to the theoretical models in Section 7.2, the investigated data sets 
behaved similar to the second model although the theoretical model had 
larger median values, especially in the two-reviewer case. 

The second and third questions focused on the degree to which the best 
and worst reviewers effect the team’s performance. The difference between 
their impact on the team’s effectiveness (Measure IIc) is on average 0.14 in 
the two-reviewer case, down to about 0.09 with teams of size six. This can 
be seen as an approximation of the risk that exists when choosing members 
of an inspection team. These values show a limited risk but there is still an 
impact. For example, in a project with 10 design documents each having 
about 30 major defects, picking a worst reviewer instead of the best reviewer 
to a team of four (difference of 0.11) would on average lead to 33 defects not 
being found because of the choice of reviewer. 

There are of course, as shown in Figure 10, cases where the difference is 
much larger but in general most cases show a difference below 0.3. In the 



example above, the most extreme outlier for four reviewers would lead to 
that about 140 defects of the total 300 being missed because of the staffing. 

The answer to question four indicates that the individual effectiveness of 
a typical reviewer only views focuses on a single dimension of the 
inspection task. Selecting the people with the best individual effectiveness 
provides no guarantee of finding the most unique defects. As soon as a team 
is created, the individual effectiveness is not that important. Individual 
expertise increases the chances of the team finding many defects, but in 
order to make the team effective, the reviewers dimension focuses should 
complement each other. This is an important issue to remember when 
choosing an inspection team. 

It was interesting to discover that the inspections that used checklists 
generally had a larger difference between the best and the worst reviewers. 
The expected impact of using a checklist would be to increase the number of 
defects a reviewer finds, but also making the reviewers more homogenous in 
what defects they find. However, the data shows that on average larger 
single reviewer impact as well as larger differences between the best and the 
worst reviewers. 

Independent of which method is used, education of the reviewers would 
be beneficial. Sauer et al argue that the dominant factor of a team’s 
effectiveness is the amount of expertise within the group [Sauer00]. 
Consequently, it is important to train reviewers to increase their knowledge 
and ability of reviewing and create tools and methods that utilize the 
expertise within the team.  

8.4 Conclusions from combining data 
An important issue to consider is how useful the combination of data from 
different studies can be when the data is taken from inspections with such a 
wide range of conditions. This study and its results are primarily to be 
viewed as a feasibility study, although the findings themselves also provide 
some interesting results in terms of summarizing some of the studies that are 
available in the literature. It is clear that several factors that may influence 
the results are not documented, which of course is a threat to the accuracy of 
the analysis. On the other hand, it is important to start doing these types of 
analyses to build a body of knowledge, rather than only generating new 
relatively freestanding studies. It may also be argued that having a variety of 
conditions increases the generality, and this is the best way to start before 
collecting metrics from within a specific department or company. 



A study of this type may be criticized for its debatable validity, due to 
the lack of control and knowledge about the context of many of the studies. 
This also includes the general problems of performing different studies 
where either data or results are later combined. However, the solution is 
certainly not to avoid doing these types of studies. On the contrary, it is 
necessary to start undertaking such combined studies and attempt to meet the 
challenges of the resulting analyses in order to gain deeper understanding of 
this area. Despite the potential threats to the validity, the following key 
findings are of major interest: 

• There are no visible differences in effectiveness for different 
document types. 

• There are clearly differences in the variation of effectiveness for 
different document types. The variation is larger for real documents 
and is higher for requirements specification than for code. 

• It is possible to determine the effectiveness for different team sizes. 
This can be used for decision-making when planning and managing 
software inspections. 

• There are differences between different types of subjects. However, 
the results indicate that people in academia are more effective. This 
is probably due to the fact that the documents used in academia are 
more stand-alone than documents investigated in an industrial 
setting. Thus, the result may be due to a confounding factor. This is 
an area for further investigation. 

• Checklists turned out to be more effective than other types of reading 
techniques. This may also be a result of a confounding factor, 
namely experience. It is believed that less experienced reviewers 
would benefit more from checklists than others. Due to the fact that 
the experience of the subjects is unknown, we are unable to evaluate 
this. This is also an area for further studies. 

• It is clear from the data that individual differences exist and hence it 
is important to put together an inspection team cautiously so as to 
make the best possible use of the available resources. 

• A combination of the individually best reviewers is not necessarily 
the most effective team. This means that there are more effective 
combinations of reviewers than simply putting together the 
individuals that perform the best in the individual preparation. This 
stresses the need to further develop approaches using the expertise of 
different reviewers in an effective way. 



Finally, there is of course a great need for more studies in this field to 
generate more individual studies that, in turn, can be utilized in meta-
analysis, pooling of data or analysis of a series of experiments. In this way, a 
body of knowledge can be built that increases our general understanding of 
how to conduct cost-effective software inspections. It should also be noted 
that the combining of data and results in itself is an important area of 
research in software engineering. In particular, we must increase our 
understanding of when it is reasonable to combine data or results. The main 
objective of this paper has been to look at what can be achieved in this type 
of approach. 
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