
Noname manuscript No.
(will be inserted by the editor)

The Effect of Moving from a Plan-Driven to an
Incremental Software Development Approach with Agile
Practices

An Industrial Case Study

Kai Petersen · Claes Wohlin

Received: date / Accepted: date

Abstract So far, only few in-depth studies focused on the direct comparison of pro-

cess models in general, and between plan-driven and incremental/agile approaches in

particular. That is, it is not made explicit what the effect is of moving from one model

to another model. Furthermore, there is limited evidence on advantages and issues

encountered in agile software development, this is specifically true in the context of

large-scale development.

Objectives: The objective of the paper is to investigate how the perception of

bottlenecks, unnecessary work, and rework (from hereon referred to as issues) changes

when migrating from a plan-driven to an incremental software development approach

with agile practices (flexible product backlog, face-to-face interaction, and frequent

integration), and how commonly perceived these practices are across different systems

and development roles. The context in which the objective should be achieved is large-

scale development with a market-driven focus. The selection of the context was based

on the observation in related work that mostly small software development projects

were investigated and that the investigation was focused on one agile model (eXtreme

programming).

Research Method: A case study was conducted at a development site of Ericsson

AB, located in Sweden in the end of 2007. In total 33 interviews were conducted in order

to investigate the perceived change when migrating from plan-driven to incremental

and agile software development, the interviews being the primary source of evidence.

For triangulation purposes measurements collected by Ericsson were considered, the

Author One
School 1
Institute 1
Address 1
Institute 2
Address
Tel.: 00-10-00000000
E-mail: mail@domain.com

Author Two
School
Institute
Aaddress

2

measurements relating to unnecessary work (amount of discarded requirements) and

rework (data on testing efficiency and maintenance effort). Triangulation in this context

means that the measurements were used to confirm the perceived changes with an

additional data source.

Results: In total 64 issues were identified, 24 being of general nature and the

remaining 40 being local and therefore unique to individual’s opinions or a specific

system. The most common ones were documented and analyzed in detail. The com-

monality refers to how many persons in different roles and across the systems studied

have mentioned the issues for each of the process models. The majority of the most

common issues relates to plan-driven development. We also identified common issues

remaining for agile after the migration, which were related to testing lead-time, test

coverage, software release, and coordination overhead. Improvements were identified as

many issues commonly raised for the plan-driven approach were not raised anymore

for the incremental and agile approach.

Conclusion: It is concluded that the recent introduction (start in 2005 with the

study being conducted in the end of 2007) of incremental and agile practices brings

added values in comparison to the plan-driven approach, which is evident from the

absence of critical issues that are encountered in plan-driven development.

Keywords Incremental · Agile · Plan-Driven · Case Study · Migration

1 Introduction

As software has become a major success factor in software products the competition

has increased. In consequence, the software industry aims at shorter lead times to gain

a first-move advantage and to fulfill the current needs of the customer. However, the

needs of the customers in terms of functions and quality constantly evolve leading to

high requirements volatility which requires the software companies to be highly flex-

ible. Therefore, more and more software companies started to adopt incremental and

agile methods and the number of recent empirical studies on agile methods have in-

creased (for example [Svensson and Höst(2005)], [Karlström and Runeson(2005)], and

[Benediktsson et al. (2006)]).

Due to the increased importance and interest in agility of software development

a systematic review [Dyb̊a and Dingsøyr(2008)] summarized the results of empirical

studies on agile methods. According to the systematic review there is a clear need

for exploratory qualitative studies. In particular, we need to better understand the

impact of the change from traditional (plan-driven) development models (like waterfall,

Rational Unified Process (RUP) or V-model) to more agile methods. Furthermore, the

review identified research methodological quality problems that frequently occurred in

the studies. For example, methods were not well described, the data was biased, and

reliability and validity of the results were not always addressed. The review also shows

that the main focus of studies was on XP, and that the settings studied are quite small

in terms of the number of team members. Overall, this suggests a clear need to further

investigate agile and incremental methods using sound empirical methods. Specifically,

to understand the impact of migrating to incremental and agile methods requires the

comparison of agile with other approaches in different contexts. For example, how does

plan-driven development perform in comparison to agile and incremental development

in different domains (telecommunication, embedded systems and information systems)

and different system complexities (small scale, medium scale, and large scale)?

3

In order to address this research gap, we conducted a case study investigating the

effect of moving from plan-driven development to an approach employing incremental

and agile practices. The effect was captured in terms of advantages and issues for the

situation before and after the migration. The case being studied was a development

site of Ericsson AB, Sweden. The plan-driven approach was used at Ericsson for several

years. Due to industry benchmarks and thereby identified performance issues (e.g. re-

lated to lead-times) Ericsson first adopted incremental practices starting in the middle

of 2005. Agile practices (flexible product-backlog, face-to-face interaction, and frequent

integration) were added in late 2006 and early 2007. Overall, we will show that Er-

icsson’s model shares practices with incremental development, Extreme Programming

(XP), and Scrum.

The case study was conducted in the last quarter of 2007 where incremental prac-

tices were adopted to a large part and about 50 % of the Scrum and XP practices

have been implemented. We conducted 33 interviews with representatives of differ-

ent roles in Ericsson to capture the advantages and issues with the two development

approaches. That is, we identified issues/advantages in plan-driven development, and

how the issues/advantages have changed after migrating to incremental/agile practices.

Document analysis was used to complement the interviews. Furthermore, quantitative

data collected by Ericsson was used to identify confirmative and contradicting informa-

tion to the qualitative data. The quantitative data (performance measures) included

requirements waste in terms of share of implemented requirements and software qual-

ity. The case study research design was strongly inspired by the guidelines provided

in [Yin(2002)]. Furthermore, we used the guidelines provided specifically in a software

engineering context by [Runeson and Höst(2009)].

The contributions of the paper and case study are:

– Illustrate an industrial approach of using incremental and agile practices and a

comparison of the industrial model with models discussed in literature (e.g., XP,

Scrum, and incremental development) to be able to generalize the results.

– Identify and gain an in-depth understanding of the most important issues in re-

lation to process performance in plan-driven development and the process used

after introducing incremental and agile practices at Ericsson. The outcomes of the

situation before (plan-driven approach) and after the migration (incremental/agile

approach) were compared and discussed. This information was captured through

interviews, and thus illustrates the perception of the effect of the migration.

– Provide process performance measurements on the development approaches as an

additional source of evidence to support or contradict the primary evidence in the

form of qualitative findings from the interviews.

The remainder of the paper is structured as follows. Section 2 presents related

work. Thereafter, Section 3 illustrates the development processes used at Ericsson

and compares them to known models from literature. Section 4 describes the research

design. The analysis of the data is divided into one qualitative (Section 5) and one

quantitative (Section 6) part. Based on the analysis, the results are discussed in Section

7. Section 8 concludes the paper.

2 Related Work

Studies have investigated the advantages and disadvantages of plan-driven and agile

processes. However, few studies present a comparison of the models in general, and

4

the effect of moving from one model to the other. This section summarizes the results

of existing empirical studies on both process models, presenting a list of advantages

and disadvantages for each of them. The description of studies related to plan-driven

development is not split into advantages and disadvantages as few advantages have

been reported in literature.

2.1 Plan-Driven Development

Plan-driven development includes development approaches such as the waterfall model,

the Rational Unified Process (RUP), and the V-model. All plan-driven approaches

share the following characteristics (cf. [Hirsch(2005)]): the desired functions / properties

of the software need to be specified beforehand; a detailed plan is constructed from

the start till the end of the project; requirements are specified in high detail and a

rigor change request process is implemented afterwards; the architecture and design

specification has to be complete before implementation begins; programming work is

only concentrated in the programming phase; testing is done in the end of the project;

quality assurance is handled in a formal way.

Waterfall: Challenges with waterfall development (as a representative for plan-

driven approaches) have been studied and factors for the failures of the waterfall

approach have been identified in empirical research. The main factor identified is

the management of a large scope, i.e. requirements cannot be managed well and has

been identified as the main reason for failure (cf. [Thomas(2001)] [Jarzombek(1999)]

[Johnson(2002)]). Consequences have been that the customers’ current needs are not

addressed by the end of the project [Jarzombek(1999)], resulting in that many of the

features implemented are not used [Johnson(2002)]. Additionally, there is a problem in

integrating the overall system in the end and testing it [Jones(1995)]. A study of 400

waterfall projects has shown that only a small portion of the developed code has actu-

ally been deployed or used. The reasons for this are the change of needs and the lack

of opportunity to clarify misunderstandings. This is caused by the lack of opportunity

for the customer to provide feedback on the system [Cohen et al. (2001)].

RUP: The RUP process was investigated in a case study mainly based on inter-

views [Hanssen et al. (2005)]. The study was conducted in the context of small software

companies. The study identified positive as well as negative factors related to the use

of RUP. Advantages of the process are: the clear definition of roles; the importance of

having a supportive process; good checklists provided by templates and role definitions.

Disadvantages of the process are: the process is too extensive for small projects (very

high agreement between interviewees); the process is missing a common standard of use;

RUP is hard to learn and requires high level of knowledge; a too strong emphasis is put

on the programming phase. [Heijstek and Chaudron(2008)] investigated the effort dis-

tribution of different projects using RUP. They found that poor quality in one phase has

significant impact on the efforts related to rework in later phases. Thus, balancing effort

in a way to avoid poor quality (e.g. more resources in the design phase to avoid quality

problems later) is important. V-model: We were not able to identify industrial case stud-

ies focusing on the V-model, though it was part of an experiment comparing different

process models (see Section 2.3). Plan-driven approaches are still relevant today as they

are widely used in practice as recognized in many research articles (c.f. [Raccoon(1997),

Beck(1999),Laplante and Neill(2004),Dai and Guo(2007)]). The case company of this

study used the approach till 2005, and there are still new research publications on plan-

5

driven approaches (cf. [Hanssen et al. (2005)], [Heijstek and Chaudron(2008)], and

[Petersen et al. (2009)]).

2.2 Incremental and Agile Development

[Dyb̊a and Dingsøyr(2008)] conducted an exhaustive systematic review on agile prac-

tices and identified a set of relevant literature describing the limitations and benefits

of using agile methods. According to the systematic review a majority of the relevant

related work focuses on XP (76 % of 36 relevant articles). The following positive and

negative factors have been identified in the review.

Positive factors: Agile methods help to facilitate better communication and feed-

back due to small iterations and customer interaction (cf. [Svensson and Höst(2005),

Karlström and Runeson(2005),Bahli and Abou-Zeid(2005)]). Furthermore, the bene-

fit of communication helps to transfer knowledge [Bahli and Abou-Zeid(2005)]. Agile

methods further propose to have the customer on-site. This is perceived as valuable by

developers as they can get frequent feedback [Tessem(2003)] [Svensson and Höst(2005)]

[Karlström and Runeson(2005)], and the customers appreciate being on-site as this

provides them with control over processes and projects [Ilieva et al(2004)]. An addi-

tional benefit is the regular feedback on development progress provided to customers

[Ilieva et al(2004)]. From a work-environment perspective agile projects are perceived

as comfortable as they can be characterized as respectful, trustful, and help preserving

quality of working life [Mannaro et al. (2004)].

Negative factors: Well known problems are that architecture does not have enough

focus in agile development (cf. [McBreen(2003)] [Stephens and Rosenberg(2003)]) and

that agile development does not scale well [Cohen et al. (2004)]. An important concept

is continuous testing and integration. Though, realizing continuous testing requires

much effort as creating an integrated test environment is hard for different platforms

and system dependencies [Svensson and Höst(2005)]. Furthermore, testing is a bottle-

neck in agile projects for safety critical systems, the reason being that testing had to

be done very often and at the same time exhaustively due to that a safety critical

system was developed [Wils et al. (2006)]. On the team level team members have to be

highly qualified [Merisalo-Rantanen et al. (2005)]. With regard to on-site customers a

few advantages have been mentioned. The downside for on-site customers is that they

have to commit for the whole development process which requires their commitment

over a long time period and puts them under stress [Martin et al. (2004)].

[Petersen and Wohlin(2009a)] compared issues and advantages identified in litera-

ture with an industrial case. The source of the information was the interviews conducted

in this study, but the paper focused on a detailed analysis of the agile situation, and

its comparison with the literature. The main finding was that agile practices lead to

advantages in one part of the development process, and at the same time raises new

challenges and issues in another part. Furthermore, the need for a research framework

for agile methods has been identified to describe the context and characteristics of the

processes studied.

6

2.3 Empirical Studies on Comparison of Models

In waterfall development the requirements are specified upfront, even the require-

ments that are not implemented later (due to change). The introduction of an in-

cremental approach reduces the impact of change requests on a project. Further-

more, the increments can be delivered to the customer more frequently demonstrat-

ing what has been achieved. This also makes the value of the product visible to the

customer early in development [Dagnino et al. (2004)]. Furthermore, several studies

indicate that agile companies are more customer centric and generally have better

relationships to their customers. This has a positive impact on customer satisfaction

[Ceschi et al. (2005)] [Sillitti et al. (2005)]. However, a drawback of agile development

is that team members are not as easily interchangeable as in waterfall-oriented devel-

opment [Baskerville et al. (2003)].

Studies reported significant productivity gains of 42 % [Ilieva et al(2004)], 46 %

[Layman et al(2004)], and up to 337 % [Benediktsson et al. (2006)]. The study report-

ing a productivity gain (LOC/Effort) of 337 % [Benediktsson et al. (2006)] was a multi-

project experiment with 55 computer science students. The students applied different

models (V-Model representing traditional development, incremental and evolutionary

models, and XP). Regarding time consumption, the results show that XP saves time

on requirements, but requires more time for verification and validation. In coding,

no major time differences were discovered. The huge gain in productivity was due to

more code developed. However, it is important to mention that this does not imply

that the team delivered more functionality. Ilieva et al. [Ilieva et al(2004)] measured

productivity for each iteration and compared the productivity of a baseline project

(characterized as heavyweight and documentation driven) with an XP project. The

productivity gains are the highest for the first two of three iterations. However, the

last iteration did not lead to gains as only bug fixing and modifications were requested

in this iteration. This required considerable effort, but no new code was developed.

Layman et al. [Layman et al(2004)] compared two releases with each other, one devel-

oped with traditional methods and one using XP. The results show improvement in

programmer productivity by 46 %. However, as pointed out in the study the increase on

productivity can also be influenced by the gained experience during the development of

the first release. Even though the study in this paper does not focuses on productivity,

the observations in the productivity studies showed a significant positive effect of an

introduction of agile development, and hence are reported here. With regard to qual-

ity [Layman et al(2004)] reported positive effects of the introduction with regard to

reduction in the number of defects discovered. The number of defects pre-release (i.e.

discovered defects through verification activities conducted by the development orga-

nization) was reduced by 65 % and the number of defects post-release (i.e. discovered

defects by the customer) was reduced by 35 %.

Given the results of the related work it becomes apparent that benefits reported

were not identified starting from a baseline, i.e. the situation before the introduction

of agile was not clear. Hence, little is known about the effect of moving from a plan-

driven to an incremental and agile approach. Furthermore, the focus of studies has

been on eXtreme programming (XP) and the rigor of the studies was considered as

very low [Dyb̊a and Dingsøyr(2008)]. Hence, the related work strengthens the need

for further empirical studies investigating incremental and agile software development.

Furthermore, evaluating the baseline situation is important to judge the improvements

achieved through the migration. In response to the research gap this study investigates

7

the baseline situation to judge the effect of the migration towards the incremental and

agile approach.

3 The Plan-Driven and Agile Models at Ericsson

Before presenting the actual case study the process models that are compared with

each other have to be introduced and understood first.

3.1 Plan-Driven Approach

The plan-driven model that was used at Ericsson implemented the main character-

istics of plan-driven approaches as summarized by [Hirsch(2005)]. The main process

steps were requirements engineering, design and implementation, testing, release, and

maintenance. At each step a state-gate model was used to assure the quality of the

software artifacts passed on to the next phase, i.e. software artifacts produced have to

pass through a quality door. The gathered customers’ needs collected from the market

by so-called market units were on a high abstraction level and therefore needed to

be specified in detail to be used as input to design and development. Requirements

were stored in a requirements repository. From the repository, requirements were se-

lected that should be implemented in a main project. Such a project lasted from one

up to two years and ended with the completion of one major release. Quality checks

related to the requirements phase were whether the requirements have been under-

stood, agreed on, and documented. In addition it was determined whether the product

scope adhered to the business strategy, and whether the relevant stakeholders for the

requirements were identified. The architecture design and the implementation of the

source code was subjected to a quality check with regard to architecture evaluation

and adherence to specification, and whether the time-line and effort deviated from the

targets. In the testing phase the quality door determined whether the functional and

quality requirements have been fulfilled in the test (e.g. performance, load balancing,

installation and stability). It was also checked whether the hand-over of the product

to the customer was defined according to company guidelines. In the release phase the

product was packaged, which included programming of build instructions. They were

used to enable and disable features to be able to tailor the system to specific customer

needs. The documentation also contains whether the customer accepted the outcome,

and whether the final result was delivered meeting the time and effort restrictions.

When changes occurred in form of a change request (CR), requirements had to be

changed and thus became obsolete. Therefore, all downstream work products related to

these requirements, like design or already implemented code, had to be changed as well.

Late in the process, this led to a considerable amount of rework [Tomaszewski(2006)]

and prolonged lead-times. Furthermore, software development has not only to cope with

changes in needs that are valid for the whole customer base, but also with customer

specific needs. If the customer specific needs were considered as of high priority, a

customer adaptation project was initiated which took the last available version of the

product as input. In response to these challenges Ericsson recognized the need for a

more agile and flexible process leading to the stepwise introduction of incremental and

agile practices, as described in the following subsections.

8

Further details on the plan-driven approach employed at Ericsson (i.e. the baseline

situation) can be found in [Petersen et al. (2009)].

3.2 Development Approach Using Incremental and Agile Practices

The used at Ericsson after the migration is shown in Figure 1. The process relied on a

set of company specific practices that have been introduced. The numbers (1 to 5) in

Figure 1 map to the enumeration of the following practices:

1. Product Backlog: The packaging of requirements for projects was driven by re-

quirement priorities. Requirements with the highest priorities were selected and

packaged to be implemented. Another criterion for the selection of requirements

was that they fit well together and thus could be implemented in one coherent

project.

2. Anatomy Plan: Furthermore, an anatomy plan was created, based on the depen-

dencies between the parts of the system being implemented in each project. The

dependencies were a result of system architecture, technical issues and requirements

dependencies. The anatomy plan resulted in a number of baselines called latest sys-

tem versions (LSV) that needed to be developed. It also determined the content of

each LSV and the point in time when a LSV was supposed to be completed. The

anatomy plan captured dependencies between features (e.g. one feature had to be

ready before another one was implemented) and technical dependencies. Technical

dependencies are critical in the telecommunication domain as platforms and com-

munication protocols change. For example, if a version of the software ran on one

protocol version it could not be integrated with the new protocol version. There-

fore, besides the prioritization in the product backlog the anatomy plan provided

important input on the order in which projects were run, and when increments

could be integrated and tested.

3. Small Teams and Time-line: The requirements packages were implemented by small

teams in short projects lasting approximately three month. The duration of the

project determined the number of requirements selected for a requirement package.

Each project included all phases of development, from pre-study to testing. As

emphasized in the figure, when planning the order in which the projects were

executed the prioritization as well as technical dependencies on the architecture

level had to be taken into consideration. Furthermore, the figure shows that an

interaction between requirements and architecture took place.

4. Use of Latest System Version: If a project was integrated with the last baseline

of the system, a new baseline was created (referred to as LSV). Therefore, only

one baseline existed at one point in time, helping to reduce the effort for product

maintenance. The LSV can also be considered as a container where the results of

the projects (including software and documentation) are put together. When the

results of the projects had been integrated a system test took place in the LSV,

referred to as LSV test. When in time a test should be conducted was defined by

testing cycles and for each testing cycle it was defined which projects should drop

within the next cycle. Comparing the work done on team level with the work done

in the LSV one can say that on the project level the goal was to focus on the

development of the requirements packages while the LSV focused on the overall

system where the results of the projects were integrated. With the completion of

the LSV the system was ready for release.

9

5. Decoupling Development from Customer Release: If every release would have been

pushed on the market, there would be too many releases in use by customers needing

support. In order to avoid this, not every LSV was to be released, but it had to

be of sufficient quality to be possible to release to customers. LSVs not released

to the customer were referred to as potential releases (see practice 5 in Figure 1).

The release project in itself was responsible for making the product commercially

available and to package it in the way that the system could be released.

R1

R2

R3

R4

R5

� Anatomy Plan

� Prioritized
Requirement Stack

Time

SP1

SP2
SP3

SP4

� Small Project Time-Line

� LSV
LSV Test LSV Test LSV Test

� Potential Release

Fig. 1 Development Process

The transition from the plan-driven to an incremental approach with additional

agile practices has been done stepwise. The implementation of the incremental process

formed the basis for the introduction of additional agile practices. Therefore, it was

essential to establish the practices small teams, LSV, and product backlog together in

the first step. This enabled the teams to deliver continuously from a product backlog

towards a baseline for testing (LSV). With this basic process in place the second

step could be implemented, i.e. the teams moving towards an agile way of working

through continuous reflection and improvement, and frequent face to face interactions

through stand-up meetings. Furthermore, the introduction of the last system version

optional releases were enabled. In the future Ericsson plans to further extend the agile

way of working by introducing additional practices, such as test driven development,

requirements formulated as user stories, refactoring, low dependency architecture,

10

3.3 Comparison with General Process Models

Ericsson’s process model was created based on practices applied in general incremental

and agile process models. To be able to generalize the results of this study, the char-

acteristics of the incremental and agile model used at Ericsson (C) were mapped to

the existing models of incremental and iterative development (ID), Extreme program-

ming (XP), and Scrum (SC). That is, if the application of a specific practice leads to

problems in the model investigated in this case study, it might also cause problems in

models applying the same principle. Table 1 (created based on the information pro-

vided in [Larman(2003)] who provides a description of the general models) shows that

4 out of 5 incremental principles are fulfilled which means that lessons learned in this

study are generalizable to ID. Furthermore, the model used at Ericsson shares 5 out of

12 principles with XP and 6 out of 10 principles with Scrum.

Table 1 Comparison with General Process Models (Practices Identified Using
[Larman(2003)])

Principle ID XP SC C

Iterations and Increments
√ √ √ √

Internal and External Releases
√ √

Time Boxing
√ √ √ √

No Change of Started Projects
√ √ √

Incremental Deliveries
√ √

On-site Customer
√ √

Frequent Face-to-Face Interaction
√ √ √

Self-organizing Teams
√ √

Empirical Process
√ √

Sustainable Discipline
√

Flexible Product Backlog
√ √ √

Fast decision making
√

Frequent Integration
√ √ √

Simplicity of design
√

Refactoring
√

Team Code Ownership
√

Ericsson’s model realizes the principles shared with ID, XP and Scrum as follows:

– Iterations and Increments: Each new LSV was an increment of the product. Projects

were conducted in an iterative manner where a set of the projects’ increments was

dropped to the LSV.

– Internal and External Releases: Software products delivered and tested in the LSV

could be potentially delivered to the market. Instead of delivering to the market,

they could also be used as an input to the next internally or externally used incre-

ment.

– Time Boxing: Time boxing means that projects have a pre-defined duration with

a fixed deadline. In Ericsson’s model the time box was set to approximately three

month. Furthermore, the LSV cycles determined when a project had to finish and

drop its components to the LSV.

– No Change to Started Projects: If a feature was selected and the implementation

realizing the feature has been started then it was completed.

11

– Frequent Face-to-Face Interaction: Projects were realized in small teams sitting

together, the teams consisting of six or seven persons including the team leader.

Each team consisted of people fulfilling different roles. Furthermore, frequent team

meetings were conducted in the form of stand-up meetings as used in Scrum.

– Flexible Product Backlog: A prioritized requirements list where the highest priori-

tized requirements were taken from the top and implemented first was one of the

core principles of company’s model of development. The product backlog could be

continuously re-prioritized based on market-changes allowing for flexibility.

– Frequent Integration: Within each LSV cycle the results from different projects were

integrated and tested. As the cycles have fixed time frames frequent integration was

assured.

Overall it was visible that the model shares nearly all principles with ID and re-

alizes approximately half of the XP and Scrum principles. Agile software development

literature points to why the principles used at Ericsson should increase the agility,

i.e. the ability of the company to respond to changing requirements. The main source

of agility was the prioritized requirements list, which was very similar to the flexi-

ble product backlog in Scrum [Schwaber(2004)]. Hence, the development was flexible

when the needs of the customers change as the backlog was continuously re-prioritized.

Furthermore, new features were selected from the backlog continuously and are inte-

grated frequently, which means that one can deliver less functionality more frequently,

which provides flexibility and the opportunity for adaptive planning [Schwaber(2004),

Larman(2003),Koch(2005)]. This is very much in line with agile saying that the pri-

mary measure of progress is working software and that the software should be useful

[Larman(2003)]. In contrast, waterfall development would define the whole require-

ments list upfront and integrate the implementation in the end and hence working

software would not be produced continuously [Petersen et al. (2009)]. Consequently

requirements become obsolete as they are only delivered together creating very long

lead-times. The need for change in the backlog was communicated through market

units as the process was market-driven without a specific customer, but a large num-

ber of potential customers. Requirements engineers and system experts then discuss

the change that is needed. The primary method for prioritizing the requirements was to

have a ranked list. We acknowledge that not all agile practices of a specific model were

fulfilled. However, due to the specific nature of the development at Ericsson (market-

driven with unknown customers and large-scale products) the practitioners made the

decision to select practices they considered to be most beneficial in their specific con-

text.

4 Case Study Design

4.1 Study Context

It is of importance to describe the context in order to aid in the generalizability of the

study results (cf. [Petersen and Wohlin(2009b)]). Ericsson is one of the major telecom-

munication companies in the world offering products and services in this domain includ-

ing charging solutions for mobile phones, multimedia solutions and network solutions.

The company is ISO 9001:2000 certified. The development of Ericsson is market-driven

and characterized by a frequently changing market. Furthermore, the market demands

12

highly customized solutions (for example customizations for specific countries). Further

details regarding the context of the study are shown in Table 2.

Table 2 Context Elements

Context Element Description
Maturity All systems older than 5 years
Size Large-scale system with more than 5,000,000 LOC overall
Domain Telecommunication and multimedia solution
Market Highly dynamic and customized market
Process On the principle level incremental process with additional agile prac-

tices
Certification ISO 9001:2000
Requirements
engineering

Market-driven process, i.e. requirements were collected by market
units from large customer base. Actual customers that will buy the
product are to a large extent unknown while developing. Require-
ments handed over to development unit and were available to devel-
opment and implementation in form of a prioritized backlog.

Requirements
documentation

Requirements written in natural language on two abstractions, high
level requirements and detailed requirements for development teams
(in both development approaches).

Requirements
tracking

Requirements proprietary tool for managing requirements on prod-
uct level (i.e. across projects). Requirements database is can be
searched and requirements have been tagged with multiple attributes
(e.g. source, target release)

Practices Iterations and increments, internal and external releases, time box-
ing, no change of started projects, frequent face to face interaction,
product backlog, frequent integration (see Table 1)

Incremental and
agile maturity

Stepwise implementation of incremental and agile practices started
in 2005.

Testing practices
and tools

Unit and component test (Tools: Purify, JUnit), Application and
integration test verifying if components work together (JUnit,
TTCN3), LSV test verifying load and stability, load balancing, sta-
bility and upgradability, compatibility, and security (TTCN3). Unit
tests were conducted by the persons writing the code to be unit
tested, while the LSV test is done by testing experts.

Defect tracking Company-proprietary tool capturing where defects were found and
should have been found, status in defect analysis process, etc.

Team-size Six to seven team members.
Size of develop-
ment unit

Approx. 500 people in research and development.

Distribution Systems investigated were developed locally.

4.2 Research Questions and Propositions

In this study, we aimed at answering the following research questions:

– RQ1 What issues in terms of bottlenecks, unnecessary work, and rework were per-

ceived before and after the migration from plan-driven to incremental and agile

practices? The first research question is the basis for further improvement of the

process models.

– RQ2: How commonly perceived are the issues (bottlenecks, unnecessary work, and

rework) for the each of the development approaches and in comparison to each

other? The second research questions aims at capturing the effect of the change

13

from a plan-driven to an incremental process with agile practices by determining

the change in how commonly perceived the issues were in each of the approaches.

– RQ3: Does the quantitative performance data (requirements waste and data on soft-

ware quality) support or contradict the qualitative findings in RQ1 or RQ2? Collect-

ing these measures provides quantitative measures on the actual change in process

performance at Ericsson, thus being able to serve as an additional source of evidence

as support for the qualitative analysis.

Based on the research questions, research propositions are formulated. Study propo-

sitions point the researcher into a direction where to look for evidence in order to

answer the research questions of the case study [Yin(2002)]. A proposition is similar

to a hypotheses, stating what the expecting outcome of the study is. The following

propositions are made for this case study:

– Proposition 1 (related to RQ1): Different issues are mentioned by the interviewees

for the process models. Literature reports problems specific for plan-driven and

agile development (see Section 2). Thus, we assume to also find different problems

before and after the migration.

– Proposition 2 (related to RQ2 and RQ3): The qualitative and quantitative data

shows improvements when using agile and incremental practices. The agile and

incremental model used at Ericsson was specifically designed to avoid problems that

the organization was facing when using a plan-driven approach. For example, too

long durations in the requirements phase leading to a vast amount of requirements

changes prior to development. Therefore, we hypothesize that 1) the issues raised

for the incremental/agile way of working are less commonly perceived than those

raised for the plan-driven approach, and 2) there is an improvement regarding

performance measures with the introduction of the new practices.

In order to answer the research questions and evaluate the propositions, one of

Ericsson’s development sites was selected as a case. The case and units of analysis are

described in more detail in the following section.

4.3 Case Selection and Units of Analysis

The case selection allows to gain insights into issues related to process performance

in the situation where a large scale system is developed within a frequently changing

environment. This can be used as input to identify issues that need to be addressed in

large scale development to develop a flexible process, as flexibility and short time to

market are essential requirements posed on the process in our study context.

As the process models presented earlier were used company-wide, the processes

investigated can be considered as representative for the whole development site as well

as company-wide. Within the studied system, three different subsystem components

were studied which represent the units of analysis (subsystem 1 to 3). A subsystem

was a large system component of the overall system. Table 3 provides information of

the system complexity in lines of code (LOC) and number of persons involved. The

LOC measure only included code produced at Ericsson (i.e., third-party frameworks

and libraries are excluded). Furthermore, as a comparison to the Ericsson systems,

the size measure in LOC for the open source product Apache web server (largest web

server available) is shown as well, the LOC being counted in the same way.

14

Table 3 Units of Analysis

Language Size (LOC) No. Persons

Overall System >5,000,000 -
Subsystem 1 C++ 300,000 43
Subsystem 2 C++ 850,000 53
Subsystem 3 Java 24,000 17
Apache C++ 220,000 90

The figures show that the systems were quite large, all together more than 20 times

larger than the Apache web server. To study the processes of the subsystems, a number

of people were interviewed and the measures for each subsystem were collected. The

distribution of interviewees and the data collection procedures are explained in the

following.

4.4 Data Collection Procedures

The data was collected from different sources, following the approach of triangulation.

The first source driving the qualitative analysis was a set of interviews. The second

source was process documentation and presentations on the progress of introducing

incremental and agile practices. The third source were performance measures collected

by Ericsson. This section explains the data collection procedures for each source in

detail.

4.4.1 Selection of Interviewees

The interviewees were selected so that the overall development life cycle were covered,

from requirements to testing and product packaging. Furthermore, each role in the

development process should be represented by at least two persons if possible. That

is, these persons fill out the role as their primary responsibility. Only interviewees

with process experience were selected. Prior to the main part of the interview the

interviewees were asked regarding their experience. We asked for the duration the

interviewees have been working at Ericsson, and the experience with the old process

model (plan-driven) and the new process model with the use of incremental and agile

practices. The experience was captured by asking for activities that support good

knowledge with regard to the process model, such as study of documentation, discussion

with colleagues, seminar and workshops, and the actual use in one or more projects.

The average duration of the interviewees working at the studied company was 9.4 years.

Only two persons interviewed worked less than two years at Ericsson. Ten persons had

at least 10 years of experience working at Ericsson. This indicates that the interviewees

had very good knowledge of the domain and the company’s processes. They were very

familiar with the old process model with regard to all learning activities mentioned

before. With regard to the new process model trainings have been given to the all

interviewees. In addition, the new process model was widely discussed in the corridors

which supported the spread of knowledge about it. Eighteen of the interviewees already

completed at least one project with the new development approach, for the remaining

interviewees projects using the new approach were currently ongoing, i.e. they were

15

in a transition phase. Overall, the result of the experience questionnaire showed good

knowledge and awareness of the processes, which was also visible in their answers.

The selection process of interviewees was done using the following steps:

1. A complete list of people available for each subsystem was provided by management,

not including newly employed personal not familiar with the processes.

2. At least two persons from each role were randomly selected from the list. The more

persons were available for one role the more persons were selected.

3. The selected interviewees received an e-mail explaining why they had been selected

for the study. Furthermore, the mail contained information of the purpose of the

study and an invitation for the interview. Overall, 44 persons had been contacted

of which 33 accepted the invitation.

The distribution of people between different primary responsibilities and the three

subsystems (S1-S3) is shown in Table 4. The roles are divided into What, When, How,

Quality Assurance, and Life Cycle Management.

Table 4 Distribution of Interviewees Between Primary Responsibilities and Units of Analysis

S1 S2 S3 Total

Requirements 2 1 1 4
Project Planning 3 2 1 6
Implementation 3 2 1 6
Quality Assurance 4 3 - 7
Life Cycle Management 6 4 - 10

Total 18 12 3 33

– Requirements: This group is concerned with the decision of what to develop and in-

cludes people from strategic product management, technical managers and system

managers. Their responsibility is to document high-level requirements and detail-

ing them for design and development. Roles involved in this group are product

managers and system managers specifying detailed requirements.

– Project Planning: People in this group plan the time-line of software development

from both technical and project management perspectives. This includes system

managers being aware of the anatomy plan, as well as line and project managers

who have to commit resources.

– Implementation: Here, the architecture is defined and the actual implementation

of the system takes place. Developers writing code also unit test their code.

– Quality Assurance: Quality assurance is responsible for testing the software and

reviewing documentation. This group primarily contains expert testers having re-

sponsibility for the LSV.

– Life Cycle Management: This includes all activities supporting the overall devel-

opment process, like configuration management, maintenance and support, and

packaging and making the product available on the market.

4.4.2 Interview Design

The design of the interview consisted of five parts, the duration of the interviews was

one hour. In the first part of the interview, an introduction of the study’s goals was

16

provided. Furthermore, the interviewees were informed why they had been selected for

the interview. It was also made clear that they were selected randomly from a list of

people, and that everything they say would be treated confidentially. In the second

part, the interviewees were asked for their experience and background regarding work

at Ericsson in general, and experience with the plan-driven and incremental/agile de-

velopment approaches in particular. Therefore, the interviewees filled in a questionnaire

rating their experience with the two process models. Thereafter, the actual issues were

collected through a semi-structured interview, asking for issues that could be charac-

terized as bottlenecks, avoidable rework and unnecessary work (for descriptions see

Table 5). Asking for those areas stimulated the discussion by helping the interviewee

to look at issues from different perspectives and thus allowing to collect many relevant

issues. We asked for issues regarding the plan-driven approach and the approach with

incremental and agile practices.

Table 5 Questions for Issue Elicitation

Area Description

Bottlenecks Bottlenecks are single components hindering the
performance of the overall development process.
A cause for a bottleneck is the low capacity of-
fered by the component [Anderson(2003)].

Unnecessary
Work

We understand unnecessary work as activities
that do not contribute to the creation of cus-
tomer value. In lean development, this is re-
ferred to as producing waste ([Anderson(2003)]
[Poppendieck and Poppendieck(2003)]).

Avoidable
Rework

Rework can be avoided when doing things
completely, consistently and correctly
[Fairley and Willshire(2005)]. For example,
having the right test strategy to discover faults
as early as possible ([Damm et al. (2006)]
[Damm and Lundberg(2007)]).

The interviewees should always state the cause of the issue and where the symptoms

of the issue became visible in the process. During the course of the interview, follow-up

questions were asked when interesting issues surfaces during the course of the interview.

All interviews were recorded and transcribed. The interview protocol can be found in

Appendix A.

4.4.3 Process Documentation

Ericsson provided process documentation to their employees, as well as presentations

on the process for training purposes. This documentation was used to facilitate a

good understanding of the process in the organization (see Section 3). Furthermore,

presentations given at meetings were collected which showed the progress and first

results of the introduction of incremental and agile practices from the management

perspective. In addition to that, the documentation provided information of problems

with plan-driven development, which led Ericsson to the decision of migrating. Overall

the documentation served two main purposes: (1) Help the interviewer to gain an

initial understanding of how the processes work prior to the interview. In addition, the

17

interviewer needed to become familiar with the terminology used at Ericsson, which

was also well supported by documentation; (2) To extract context information relevant

for this study.

4.4.4 Performance Measures

Ericsson collected a number of performance measures on their development processes

and projects. The performance measures were identified at the company to provide an

indication of performance changes after introducing the incremental and agile practices.

The measurements were selected based on availability and usefulness for this study.

– Requirements waste and change requests: Requirements waste means that require-

ments are elicited, documented and verified, but they are not implemented. The

analysis focused on the ratio of implemented requirements in comparison to wasted

requirements. Furthermore, the change requests per requirement were analyzed.

Requirements waste and change requests indicate whether Ericsson increases its

ability to develop requirements in a timely manner after the customer need was

raised. If there are fewer change requests and less discarded requirements then this

is an indicator for that the current market needs are fulfilled in a better way. The

information for waste and change requests was attributed to the plan-driven and

incremental development model through releases, i.e. it was known which releases

used the purely plan-driven process, and which releases used the new incremental

process with additional agile practices.

– Quality Data: The change in software quality was analyzed through fault-slip

through and maintenance effort. Fault-slip-through [Damm et al. (2006)] shows

how many faults were identified in the LSV which should have been found ear-

lier. In order to be able to measure the fault-slip-through a testing strategy has

to be developed. The strategy needs to document which type of fault should be

detected in a specific phase (e.g. performance related issues should be detected in

system test, buffer overflows should be detected in unit testing and static code anal-

ysis, etc.) and when they were actually detected. That way one can determine how

many faults should have been detected before a specific quality assurance phase.

In this case study the quality of basic test and function test conducted before in-

tegration and system test was measured. For example, a fault-slip of x% in the

system testing phase means that x% of all faults discovered in this phase should

have been found in earlier phases (e.g. function testing). The data source for the

fault-slip through measurements was the defect tracking system employed at the

company, which was introduced in Table 2. The maintenance effort was a an in-

dicator of the overall quality of the product released on the market. Quality data

was considered as quality is an important aspect of the market Ericsson operates

in. For telecommunication operators performance and availability are particularly

important quality characteristics.

4.5 Data Analysis

The data analysis was done in six different steps, as shown in Figure 2. The first four

activities led to a set of issues related to process performance in both development

approaches. The first author transcribed all interviews resulting in more than 30 hours

18

of interview data. Thereafter, the author conducted the first four steps over a three

month period based on the transcriptions.

1. Clustering of Raw Data: The statements from each interviewee were mapped to

process phases, the role of the interviewee, and the process model they refer to (i.e.

either plan-driven or incremental/agile development). The information was main-

tained using a matrix. For each statement the identity-number of the interviewee

was documented as well to assure traceability.

2. Derivation of Issues from Raw Data: As the raw data contained detailed explana-

tions using company specific terminology the data was summarized and reformu-

lated by deriving issues from the clustered data. Each issue was shortly described

in one or two sentences. The result was a quite high number of issues in each group,

as the issues were on different abstraction levels.

3. Mapping of Issues: The issues were grouped based on their relation to each other,

and their abstraction level. For example, issues that negatively affect the coverage of

the system by test cases were grouped within one branch called “low test coverage”.

The grouping was documented in the form of a mind map. Issues with higher

abstraction level were closer to the center of the mind map than issues with lower

abstraction level.

4. Issue Summary and Comparison: The issues on the highest abstraction level were

summarized in the form of short statements and used for further analysis (as pre-

sented in the Sections 5 and 6).

An example of the analysis steps is illustrated in Appendix B.

Clustering of
Raw Data

Derivation of
Factors from

Raw Data

Mapping of
Factors

(Mindmap
Factors)

Factor
Summary

and
Comparison

Steps to

Identify

Factors

Review of
Factors in

Workshops

Factor

Validation

Identify
Support for

Factors

Determine

Factor

Importance

Fig. 2 Data Analysis Process for Qualitative Data

Furthermore, the last two activities were concerned with validating the list of issues

and determining the importance of the issues within the organization.

5. Validation of Issues: The fifth step was the validation of the derived issues. The

authors and three representatives from Ericsson participated in a workshop to

19

review the issues. All representatives from Ericsson had an in-depth knowledge

of both process models. The validation was done by randomly selecting issues and

each of the representatives of Ericsson reviewed the steps of issue derivation outlined

before. There was no disagreement on the interpretation of the raw data and the

issues derived. Furthermore, all participants of the workshop reviewed the final

list of issues, only having small improvement suggestions on how to formulate the

issues. That is, the list of issues could be considered of high quality.

6. Weight of Issues: The sixth step aimed at identifying the most commonly perceived

issues with regard to the approaches (plan-driven and incremental/ agile). As we

asked the interviewees to state three bottlenecks/ unnecessary works/ reworks for

each of the models we were able to determine which issues mentioned were most

commonly perceived. For example, if an interviewee identified an issue as critical

for plan-driven, but not for the approach using incremental and agile practices, this

is an indication for an improvement of the issue. We explicitly asked the intervie-

wees for the situation before and after the migration, and used follow-up questions

whenever it was unclear whether an issue was only considered important for one

of the process models. In order to determine which issues were the most common,

the data was first divided into global and local issues. The division in global and

local issues was defined as follows:

– Global Issues: Global issues were stated by interviewees representing more than

one role and representing more than one subsystem component (i.e., they were

spread across the units of analysis).

– Local Issues: Local issues were stated by one or several interviewees representing

one role or one subsystem component.

To systematize the global issues, four different subgroups were defined. The main

objective of the grouping was to structure the responses based on the number of

interviewees mentioning each issue. It was hence a way of assigning some weight to

each issue based on the responses. The following four subgroups were defined:

– General Issues: More than 1/3 of the interviewees mentioned the issue.

– Very Common Issues: More than 1/5 of the interviewees mentioned the issue.

– Common Issues: More than 1/10 of the interviewees mentioned the issue.

– Other Issues: Less than 1/10 of the interviewees mentioned the issue, but it was

still mentioned by more than one person representing different roles or different

subsystem components.

In addition to that, the interviewees explicitly talked about inferences with regard

to improvements that they have recognized after introducing incremental and agile

practices. The improvements were grouped into commonly perceived and observa-

tion. One should observe that the threshold for commonly perceived improvements

was much lower compared to the above thresholds, and fewer groups were formu-

lated. This was due to that we did not explicitly ask for the improvements as the

interviews focused on issues determining how the commonality of issues changed

after migration. However, in several cases the interviewee also talked about the

actual differences between the situation before and after the migration and hence

the improvements perceived when moving from a plan-driven approach to the use

of incremental and agile practices. Thus, the improvements perceived were only

divided into two groups:

– Commonly perceived: More than 1/10 of the interviewees representing more

than one subsystem component mentioned the issue.

20

– Observation: Less than 1/10 of the interviewees mentioned the issue.

It should be observed that local issues also could be of high importance. However,

they may be perceived as local since the issue is not visible outside a certain phase,

although major problems inside a phase were communicated to others. Thus, it is

believed that the main issues influencing process performance are captured in the

global issues.

4.6 Threats to Validity

Research based on empirical studies does have threats, and hence so does the case

study in this paper. However, the success of an empirical study is to a large extent

based on early identification of threats and hence allowing for actions to be taken to

mitigate or at least minimize the threats to the findings. Threats to case studies can

be found in for example [Yin(2002)], and threats in a software engineering context is

discussed in for example [Wohlin et al. (2000)]. The threats to validity can be divided

into four types: construct validity, internal validity, external validity and reliability (or

conclusion validity). Construct validity is concerned with obtaining the right measures

for the concept being studies. Internal validity is primarily for explanatory and causal

studies, where the objective is to establish a causal relationship. External validity

is about generalizability to determine to which context the findings in a study can

be generalized. Finally, reliability is concerned with repetition or replication, and in

particular that the same result would be found if re-doing the study in the same setting.

4.6.1 Construct Validity

The following threats were identified and the corresponding actions were taken:

– Selection of people: The results are highly dependent on the people being inter-

viewed. To obtain the best possible sample, the selection of people was done by

people having worked at Ericsson for a long time and hence knowing people in the

organization very well.

– Reactive bias: There is a risk that the presence of a researcher influences the out-

come. This is not perceived as a large risk given a long term collaboration between

Ericsson and the university. Furthermore, the main author is also employed at Er-

icsson and not viewed as an external researcher. However, as the new model was

strongly supported by management the interviews are likely to be biased towards

the new model to reflect the political drift. In order to reduce this threat, the

interviewees were informed that they had been randomly selected. Furthermore,

anonymity of the individuals’ responses was guaranteed.

– Correct data interview: The questions of the interviewer may be misunderstood

or the data may be misinterpreted. To avoid this threat, several actions have been

taken. First of all, pre-tests were conducted regarding the interviews to ensure a cor-

rect interpretation of the questions. Furthermore, all interviews were taped allowing

the researcher to listen to the interview again if some parts were misunderstood or

unclear.

– Correct data measurements: The data sources for requirements waste, faults, and

maintenance effort were summarized by Ericsson and the process of data collection

and the data sources were not made available to the researchers. In consequence,

21

there is a validity threat regarding potential problems of the rigor of the data

collection. In addition, the interpretation of the data is limited due to the high

abstraction of the measurements. Hence, the data can only be used as an additional

data source for triangulation purposes in order to support the (main) qualitative

findings, but not to make inferences such as to which quantified improvement is

possible due to the introduction of incremental and agile practices.

4.6.2 Internal Validity

– Confounding factors influencing measurements: There is a risk that changes in the

performance measurements reported are not solely due to the employment of in-

cremental and agile practices, but also due to confounding factors. As the studied

company is a complex organization we were not able to rule out confounding factors

as an influence on the measurement outcome. In addition one person involved in

reporting the measurements were asked about possible confounding factors, such

as major difference in the products, or a change in personnel. The response was

that the products compared had similar complexity and that the products were

developed by the same work-force. The person believed that changes in the mea-

surements can, at least partly, be attributed to the migration. However, it is im-

portant to point out that the main outcome of the study is the qualitative data

from the interviews and that the quantitative data was consulted as an additional

data-source to identify whether the quantitative data contradicts the qualitative

data, which was not the case.

– Ability to make inferences about improvements (qualitative data): Another threat

to internal validity is that the instrument and analysis did not capture the change

due to the migration. However, this threat was reduced by explicitly asking for

the situation before and after the migration. In addition, the interviewer asked

follow-up questions whenever it was unclear whether an issue was only considered

important for one of the process models by the interviewee, or whether the issue

was equally relevant to both development approaches. Hence, this threat to validity

is considered being under control.

4.6.3 External Validity

– Process models: It is impossible to collect data for a general process, i.e., as de-

scribed in the literature. Both the plan-driven and the new approach using incre-

mental and agile practices were adaptations of general processes presented in the

literature. This is obvious when it comes to the incremental and agile practices,

but it is the same for the plan-driven model. It is after all a specific instantiation of

the generally described plan-driven model. The incremental and agile approach is

a little more complicated in the mapping to the general process models since it was

inspired by two different approaches: incremental development and agile develop-

ment. To ensure that the findings are not only relevant for these instantiations, care

has been taken to carefully describe the context of the study. Furthermore, Table 1

illustrates which practices from the general process models have been employed at

Ericsson. As the instantiated model and the general process models share practices

lessens learned in this study are of relevance for the general process models as well.

– A specific company: A potential threat is of course that the actual case study has

been conducted within one company. It has been impossible to conduct a similar

22

study at another company. This type of in-depth study requires a lot of effort and

that the research is embedded into the organization, which has made it impossible

to approach more than one company. To minimize the influence of the study being

conducted at one company, the objective is to map the findings from Ericsson

specific processes and issues to general processes and higher level issues. This allows

others to learn from the findings and to understand how the results map to another

specific context.

4.6.4 Reliability

– Interpretation of data: There is always a risk that the outcome of the study is

affected by the interpretation of the researcher. To mitigate this threat, the study

has been designed so that data is collected from different sources, i.e., to conduct

triangulation to ensure the correctness of the findings. Another risk is that the in-

terpretation of the data is not traceable and very much depended on the researcher

conducting the analysis. To reduce the risk a workshop was conducted with both

authors of the paper and three company representatives being present (see fifth

step in the analysis process presented in Section 4.5). In the workshop the steps of

the researcher were repeated on a number of issues in order to identify potential

problems in the analysis steps and interpretations. The practitioners as well as the

authors of the paper agreed on the interpretation of the raw data. Hence, the threat

to the interpretation of data is considered under control.

4.6.5 Summary

In summary, the case study has been designed according to guidelines and tactics

provided in [Yin(2002)]. Measures have been taken whenever possible to mitigate the

risks identified in the design. The objective has been to always work in two dimensions:

situation specific and general models. The former will in particular be used when

continuing the improvement work at Ericsson, where the findings will drive the further

improvement work. This is very much the industry view. The latter represents more

of an academic view where the intention has been to understand the issues inhibiting

process performance in different process models.

5 Qualitative Data Analysis

Section 4 explains the classification of issues into general and local. In total 64 issues

were identified of which 24 were of general nature and the remaining 40 were local

problems relating to experiences of individuals or specific subsystems. We focused the

detailed qualitative analysis on issues that received high weights in terms of number of

responses for each issue. That gave 13 issues for the detailed analysis of which 2 were

considered general, 3 were considered very common and 8 were considered common. An

overview of the issues is provided in Table 6. In the column “Classification” we stated

the number of interviewees and the number of systems for each issue in the brackets.

Commonly perceived improvements are shown in Table 7. The table shows the

ID, commonality, process model (either plan-driven=PD or incremental/agile=IA),

and a description of the issue. The improvements explain why specific issues were not

that important anymore when using the incremental and agile practices introduced at

23

Ericsson. The general issue F01, for example, was mitigated by improvements in re-

quirements engineering (e.g., I02 and I03). A number of improvements on verification

were also identified (I04 and I05), which reduced the effect of issue F03 and F04. That

is, the introduction of the new practices enabled early testing and regular feedback to

developers. Furthermore, improvement I06 positively influenced the number of docu-

mentation which was raised as an important issue (F06). Overall, the tables indicate

that the mentioned improvements were in-line with the classification of issues related

to process performance. In the following subsections a detailed description of issues

and improvements is provided.

5.1 General Issues

The most general issues were related to plan-driven development, one being related to

the requirements phase and one to the testing phase.

F01: Requirements change and rework: All requirements had to be ready before

the next phase starts. That means, when developing a highly complex system the re-

quirements gathering, specification and validation took a very long time. Furthermore,

it was hard to estimate the resources needed for a complex system resulting in a too

big scope. As interviewees pointed out “the problem is that the capacity of the project

is only that and that means that we need to get all the requirements, discuss them,

take them down, look at them and then fit the people and the time frame that we will

usually be given. And this negotiation time that was the part that took so long time. It

was always and often frustrating.” Another interviewee added that “there is always a

lot of meetings and discussions and goes back and forth and nobody is putting the foot

down.” The long lead times of requirements engineering have negative consequences.

The market tended to change significantly in the considered domain. In consequence,

a high amount of requirements gathered became obsolete or changed drastically which

led to wasted effort as the discarded requirements had been negotiated and validated

before or requirements had to be reworked. Requirements changes were caused by a

lack of customer communication (i.e., the customer was far away from the point of

view of the developers or system managers). In addition, misunderstandings were more

likely to happen, which result in changed requirements. Regarding the reasons for in-

flexibility one interviewee added that “in the old model (plan-driven) because its very

strict to these tollgates (quality doors) and so on and the requirement handling can be

very complex because the process almost requires to have all the requirements clearly

defined in the beginning and you should not change them during the way, its not very

flexible.”

F02: Reduction of test coverage due to limited testing time in the end: Test coverage

in the plan-driven approach was low for multiple reasons. Testing was done late in

the project and thus if there were delays before in development testing had to be

compromised as it was one of the last steps in development. As one interviewee put

it testing “takes a long time to get the requirements specification, all the pre-phases,

analysis and so on takes a lot of time, design starts too late and also takes a lot of time,

and then there is no time for testing in the end”. Furthermore, too much had to be

tested at once after the overall system had been implemented. Due to the complexity of

the overall system to verify in the end, testers focused on the same parts of the system

twice due to coordination problems instead of covering different parts of the system.

24

Table 6 Classification of Identified Issues

ID Classification Model Process Area Description

F01 General
(12/3)

PD Requirements Requirements work was wasted as documented
and validated requirements had to be dis-
carded or reworked.

F02 General
(13/2)

PD Verification Reduction of test coverage due to limited test-
ing time in the end.

F03 Very Com-
mon (10/2)

PD Verification Amount of faults found increased with late
testing.

F04 Very Com-
mon (7/3)

PD Verification Faults found late in the process were hard and
expensive to fix.

F05 Very Com-
mon (7/2)

IA Verification LSV cycle times may extend lead-time for
package deliveries as if a package was not ready
or rejected by testing it had to wait for the next
cycle.

F06 Common
(6/3)

PD Requirements Too much documentation was produced in re-
quirements engineering that was not used in
later stages of the process.

F07 Common
(6/3)

PD Design Design had free capacity due to long require-
ments engineering lead times.

F08 Common
(4/3)

PD Design Confusion on who implemented which version
of the requirements.

F09 Common
(4/2)

PD Maintenance High number of corrections for faults reported
by customers were released.

F10 Common
(4/2)

PD Project Mgt. Specialized competence focus and lack of con-
fidence.

F11 Common
(4/3)

IA Verification Low test coverage.

F12 Common
(4/2)

IA Release Release was involved too late in the develop-
ment process.

F13 Common
(4/2)

IA Project Mgt. Management overhead due to a high number of
teams requiring much coordination and com-
munication.

Table 7 Commonly Perceived Improvements

ID Process Area Description

I01 Requirements More stable requirements led to less rework.
I02 Requirements Everything that was started was implemented.
I03 Requirements Estimations were more precise.
I04 Verification Early fault detection and feedback from test.
I05 Verification The lead-time for testing was reduced.
I06 Project Mgt. Moving people together reduced the amount of documentation

that was not reused due to direct communication.

5.2 Very Common Issues

Two important issues were identified in the plan-driven development (F03, F04):

F03: Amount of faults found increases with late testing: With late testing one does

not know the quality of the system until shortly before release. As testing was not

done continuously faults made in the beginning of the implementation were still in

the software product. Another issue that increased the number of faults was limited

25

communication between implementation and test. That is, testing started verifying

unfinished components of the system which led to a high number of false positives as

they did not know the status of the components.

F04: Faults found late in the process were hard and expensive to fix: Late testing

resulted in faults hard to fix, which was especially true for faults rooted in the archi-

tecture of the system. Changes to the architecture had a major impact on the overall

system and required considerable effort. One interviewee reported from experience that

“the risk when you start late is that you find serious problems late in the project phases,

and that have occurred a couple of times always causing a lot of problems. Usually the

problems I find are not the problems you fix in an afternoon, because they can be deep

architectural problems, overall capacity problems and stuff like that which is sometimes

very hard to fix. So I have always lobbied for having time for a pre-test even if not all

the functionality is there.”

Issue F05 is related to testing in the new approach using incremental and agile

practices:

F05: LSV cycle times may extend lead-time for package deliveries as if a package

is not ready or rejected by testing it had to wait for the next cycle. The lead-time of

testing was not optimized yet which extended the overall lead time of the development

process. An LSV was separated in cycles. Within one cycle (time-window with a fixed

end-date) the projects needed to drop their completed component to the LSV. The LSV

cycles (4 weeks) did not match with the target dates of the availability of the product

on the market. That is, coordination between selling the product and developing the

product was complicated. The LSV concept also required a component to wait for

another complete LSV cycle if not delivered within the cycle it was supposed to be

delivered. Furthermore, if a package was rejected from the LSV due to quality problems

and could not be fixed and retested in time, it also had to wait for the next cycle.

5.3 Common Issues

The following important issues are related to plan-driven development:

F06: Documentation produced was not used: The interviewees emphasized that

quite a high number of documentation was produced in the requirements phase, one

interviewee added that “it (documentation) takes much effort because it is not only

that documents should be written, it should be reviewed, then there should be a review

protocol and a second round around the table.” One of the reasons mentioned was bad

reuse of documentation, which was pointed out by another interviewee saying that

“even though documentation might be good for the quality it might not be good overall

because much of the documentation will not be reused or used at all.” Hence, the review

of requirements documents required a too high amount of documentation and complex

checklists.

F07: Design had free capacity due to long requirements engineering lead times: The

requirements lead-time in plan-driven development were quite long. The reasons being

that requirements had to be specified in too much detail, decision making took a long

time, or requirements resources were tied up because of a too big scope. This had a

negative impact on the utilization of personnel. One interviewee nicely summarized

the issue saying that “the whole waterfall principle is not suited for such large projects

with so many people involved because half the workforce ends up working for the rest,

and I guess thats why the projects were so long. Because you start off with months of

26

requirements handling and during that time you have a number of developers more or

less doing nothing.”

F08: Confusion on who implements which version of the requirements: From a

design perspective, it was not always clear which version of the requirements should

be implemented and by whom. The cause of this problem was that work often started

on unfinished or unapproved requirements which had not been properly base-lined.

F09: High number of corrections for faults reported by customers were released:

Support was required to release a high number of corrections on already released soft-

ware. This was due to the overall length of the plan-driven projects resulting in very

long release cycles. In consequence, the customers could not wait for the corrections to

be fixed for the next release, making corrections a time-pressing issue.

F10: Specialized competence focus and lack of confidence: The competence focus of

people in plan-driven development was narrowed, but specialized. This was due to that

people were clearly separated in their phases and disciplines, and that knowledge was

not well spread among them. Interesting was that not only the specific competence

focus was recognized as an issue, but also the focus on confidence. One interviewee

described the relevance of confidence by saying “It is not only competence, it is also

confidence. Because you can be very competent, but you are not confident you will not

put your finger down and say this is the way we are going to do it, you might say it

could be done in this way, or in this way, or also in these two ways. This will not

create a productive way of working. Competence is one thing, confidence is the other

one required.”

Important issues in the use of incremental and agile practices are:

F11: Low test coverage: The reasons for low test coverage changed with the in-

troduction of the new practices and were mainly related to the LSV concept. Quality

testing takes too much time on the LSV level, the reason being that there was a lack of

powerful hardware available to developers to do quality testing earlier. In consequence,

there was a higher risk of finding faults late. Furthermore, the interviewees had worries

on the length of the projects as it would be hard to squeeze everything into a three

month project (including developing configurations and business logic, testing etc.).

In addition to that test coverage was influenced negatively by a lack of independent

verification and validation. That is, developers and testers in one team were influencing

each other what to test. In consequence, the testing scope was reduced.

F12: Release personnel was involved too late in the development process: This means

that release personnel got the information required for packaging the product after

requirements, implementation and testing were finished. In consequence, the scope

of the product was not known to release and came as a surprise. With regard to

this observation one interviewee stated that “In release we are supposed to combine

everything and send it to the market, we were never involved in the beginning. We can

have problems with delivering everything that we could have foreseen if we were involved

early.” Furthermore, the requirements were not written from a sales perspective, but

mainly from a technical perspective. This made it harder for release to create a product

that is appealing to the customer. During the interviews it was explicitly mentioned

that this situation has not changed with the migration.

F13: Management overhead due to a high number of teams requiring much coordina-

tion and communication: Many small projects working toward the same goal required

much coordination and management effort. This included planning of the technical

structure and matching it against a time-line for project planning. Thus, project man-

agers had much more responsibility in the new development approach. Furthermore,

27

there was one more level of management (more team leaders) required for the coor-

dination of the small teams. The interviewees also had worries that the added level

of management had problems to agree on overall product behavior (hardware, appli-

cation, performance, overall capacity) which delayed decision making. Thus, decisions

were not taken when they were needed.

5.4 Comparison of Issues

Table 6 clearly shows that a majority of general problems was related to plan-driven

development. Furthermore, only one issue raised for the situation with incremental and

agile practices was considered very common (none was general), while four issues for the

plan-driven approach were considered general or very common. It is hence clear that the

change was perceived as having addressed some of the main issues raised for the plan-

driven approach. Having said this, it does not mean that the new development approach

is unproblematic. However, the problems are at least not perceived as commonly as

for plan-driven development. Furthermore, the problem related to test coverage was

still perceived as present, but the severity and nature of the issue has changed for the

better. Additional detail on improvements and open issues based on the comparison is

provided in Section 7.

5.5 Commonly Perceived Improvements

The following improvements due to the introduction of incremental and agile develop-

ment practices were mentioned by the interviewees:

I01: More stable requirements led to less rework and changes: Requirements were

more stable as requirements coming into the project could be designed fast due to

that they were implemented in small coherent packages and projects. That is, the time

window was much smaller and the requirements were thus not subjected to change to

the same degree. Furthermore, the flexibility was higher in terms of how to specify the

requirements. For example, requirements with very low priorities did not need to be

specified in detail. If requirements are just seen as the whole scope of the system, this

distinction is not made (as is the case in plan-driven development). Also, the communi-

cation and interaction between design and requirements improved, allowing clarifying

things and thus implementing them correctly. This communication was improved, but

not to the degree as the communication between design and implementation had been

improved (see issues for test/ design). One interviewee summarized the increased flexi-

bility by saying that “within the new ways of working its easier to steer around changes

and problems if you notice something is wrong, its much easier to change the scope and

if you have change requests on a requirement, I think its more easy.”

I02: Everything that is started is implemented: If a requirement was prioritized

it was implemented, the time of implementation depending on the position of the

requirement in the priority list. As one interviewee (requirements engineer) reported,

before a large part of all requirements engineering work was waste, while now only

approximately 10 % of the work is wasted. In partuclar, the new situation allows to

complete tasks continuously with not being so dependend on others to be ready, which

was explained by one interviewee saying that “when you talk about the waterfall you

always end up in a situation where everybody had to be ready before you continue with

28

next task, but with the new method what we see is that one activity is done, they can

pick the next to do, they are not supposed to do anything else.”

I03: Estimations are more precise: The effort can be estimated in a better way as

there were less requirements coming into the project, and the requirements were more

specific. Furthermore, the use of incremental and agile practices contributed to more

realistic estimations. With the plan-driven approach the deadlines and effort estimates

were unrealistic when being compared to the requirements scope. When only estimating

a part of the prioritized list (highest priority requirements first), then the estimations

became much more realistic.

I04: Early fault detection and feedback from test: Problems could be traced and

identified much easier as one component was rejected back to the project if a problem

occurs. The ability to reject an increment back to a development team has advantages

as pointed out by an interviewee stating the following: “I know that it will be tougher

for the design units to deliver the software to testing in incremental and agile develop-

ment than it was in waterfall because if they (design and implementation) don’t have

the proper quality it (the increment) will be rejected back to the design organization.

This is good as it will put more pressure on the design organization. It will be more

visible, you can always say it does not work, we can not take that. It will be more visible

to people outside (management).” Besides that, there was better focus on parts of the

system and feedback was provided much earlier. Furthermore, the understanding of

testing priorities was improved due to the explicit prioritization of features in require-

ments engineering. These benefits were summarized by an interviewee who pointed out

that “testing is done on smaller areas, providing better focus. Everything will improve

because of the improved focus on feature level and the improved focus of being able to

come through an LSV cycle. We will catch the need for rework earlier. The feedback

loop will be shorter.” With that the interviewee already points to the improvement in

lead-time (I05).

I05: The lead-time for testing is reduced: Time of testers was used more efficiently

as in small teams, it was easier to oversee who does what. That is, different people in

a team did not do the same things twice anymore. Furthermore, parallelization was

possible as designers were located close to testers who could do instant testing when

some part of the subsystem had been finished.

I06: Moving people together reduced the amount of documentation: People worked

in cross-functional and small teams. As the teams were cross-functional less documen-

tation was required as it was replaced with direct communication. That is, no handover

items were required anymore as input from previous phases because people were more

involved in several phases now. The perceived improvement with regard to communi-

cation was pointed out by one interviewee saying that “now we are working in small

teams with 6 people, something like that. It is pretty much easier to communicate, we

have these daily meetings. Each one knows what the other one days just this day. The

next day we have a follow up meeting, this was done yesterday and I will proceed it

today. Might take a while to have those meetings because you have it each day, but it

is 15 minutes that is still very useful.”. Another interviewee talked about walls being

broken down between the design/implementation and testing organization saying ”We

have a better way of working between test and design and they are working side by

side so to say. We could do it even better and we work side by side and take small

steps. We look at what we test, we look at what part we could start function test on

and then we implement it. This wall is totally broken now between our test and design

organization.”

29

6 Quantitative Data Analysis

An overview of the quantitative data is used to confirm or contradict the findings of

the qualitative analysis. This section just presents the data, its implications together

with the qualitative results are discussed in Section 7.

6.1 Requirements Waste

Requirements are considered waste if they have been elicited, documented and re-

viewed, but are not implemented. The absolute number and ratio of the number of

requirements that were implemented and discarded are shown in Figure 3. The data

includes two products as well as two generations of an additional product developed

at the studied development site.

Waterfall Incremental / Agile

Waste 28 3,666666667 SUM 2505 1856

Implemented 72 96,33333333 WASTE 649

100 100

Implemented 1856 Implemented 1614

Waste 649 Waste 73

1856; 74%

649; 26%

1614; 96%

73; 4%

Implemented

Waste

Fig. 3 Requirements Waste - Plan-Driven (left) vs. Incremental and Agile Practices (right)

Furthermore, the number of change requests per requirement decreased for the same

products. Change requests require adjustments and extensions to the requirements.

After introducing incremental and agile practices, the number of change requests per

requirement decreased from 0.076 to 0.043. Thus, the requirements became more stable.

6.2 Software Quality

Table 8 shows the fault-slip-through before and after the introduction of agile and

incremental practices. The system testing phase of plan-driven development is compa-

rable to the test on the LSV level in the new development approach. As mentioned

earlier, the fault-slip shows how many faults have been discovered in a specific phase

that should have been found earlier. In this case, in total 30 faults should have been

found before system test, and 20 faults should have been found in before LSV test-

ing. Comparing this with the overall amount of faults considered, then 31 % of faults

slipped through earlier testing phases in plan-driven development, and only 19 % in

the new development model.

Therefore, the data is an indication that the testing efficiency of functional testing

of the packages before delivered to the LSV and basic unit testing by programmers has

been improved.

Figure 4 shows the maintenance effort for products on the market. The maintenance

effort includes costs related to fixing faults that have been found and reported by the

customers. Thus, those faults should have been found earlier in testing. The figure

30

Table 8 Fault Slip Before System Test / LSV

Test Number of Faults Slippage

System Test (Plan-Driven) 30 31 %
LSV (Incremental and Agile) 20 19 %

shows that the maintenance costs were constantly increasing when new products were

released on the market. Projecting the increase of costs in previous years into the future

(dashed line showing the maintenance cost baseline) the costs would be 40 % higher

than in the year 2005.

C
o

s
t

(i
n

 %
)

�

�����

�����

�����

�������� 	��
�����

2002 2003 2004 2005 2006 2007 2008

YearMaintenace Cost (Baseline)

Maintenance Cost Actual

Fig. 4 Maintenance Effort

After introducing incremental and agile practices the actual cost (bold line) still

increased, but the slope of the curve was much smaller. In 2006, after the introduction

of incremental and agile practices has been further progressed a slight decrease in

maintenance cost is visible. Thus, this is an indication of improved quality assurance

which was visible in the fault-slip-through, but is also an indication for improvements

in the actual system testing.

7 Discussion

The discussion draws together the results from the qualitative and quantitative analy-

sis. It is divided in two parts, namely improvement areas and open issues. Open issues

are problems that still have to be addressed after the migration.

31

7.1 Improvement Areas

Release frequency: The qualitative data showed that a higher release frequency is possi-

ble due to building the product in increments using the LSV concept. However, there is

no conclusive evidence that the overall productivity of the development has increased.

That is, the same workforce does not produce the same amount of software artifacts

in shorter time than before. Instead, Ericsson is able to deliver functionality more fre-

quently which benefits the organization. Frequent releases lead to earlier return on

investments. In plan-driven development, a large up-front investment is required which

starts paying off when the overall development has been completed.

Reduction in waste: A clear improvement can be seen in the reduction of waste,

shown in the qualitative analysis which is supported by the quantitative analysis. Fur-

thermore, the number of change requests have been reduced which is an indicator for

that the requirements are a better reflection of the customers’ needs than with the

plan-driven model. The benefits of this are also explicitly mentioned in the qualitative

data (see I01 in Section 5). Overall, improvements related to waste in requirements

can be considered essential as this type of waste has been identified as one of the most

crucial problems in plan-driven development (see F01 in Section 5). A good reflection

of the needs of the users in the requirements is also essential to make sense of the

improvement that everything that is started is implemented (see I03 in Section 5).

If the requirements would not be reflected in the current needs, this implementation

could be considered waste, even though it has been identified as an improvement. Fi-

nally, the reduced scope in the new development approach helps to have more accurate

estimations (I06), meaning that the requirements scope is set appropriately for each in-

crement. Thus, it is less likely that requirements have to be discarded due to inaccurate

planning.

Software Quality Improvements: The quantitative data shows improvement in early

testing done before system testing (LSV), reflected in a reduced fault-slip-through in

comparison to the plan-driven approach. Furthermore, the constantly rising mainte-

nance effort decreased after introducing incremental and agile practices, even though

there have not been any major tendencies for it to go below the level of 2005 (see Fig-

ure 4). In the qualitative data, we identified one improvement raised in the interviews.

That is, testing has improved due to early fault detection and feedback from test (see

I03 in Section 5). Furthermore, if an increment is dropped to the LSV for test one

can trace which increments are of high or low quality and who is responsible for them.

Consequently, this creates incentives for teams to deliver high quality as their work

result is visibly linked to them. By testing early many verification issues identified in

plan-driven development can be addressed. These are reduction of test coverage due

to complex testing in the end (F02), increase of the number of faults discovered with

late testing (F03), and that problems are harder to fix when discovered late (F02). The

study shows that even though there has been improvements in testing, very important

and important issues relate to verification when using incremental and agile practices,

further discussed in the context of open issues.

Improved Communication: The qualitative data suggests an improvement in com-

munication when moving people together (I06). This positively affects several issues

that have been identified for plan-driven development. Firstly, the amount of documen-

tation can be reduced because much of the documentation was related to hand-overs

between phases (F06). As a project team focuses on several phases now, direct commu-

nication can replace parts of the documentation. Furthermore, in plan-driven develop-

32

ment the knowledge of people is very specialized and they is a lack of confidence. This

can be hindering in the beginning when moving from plan-driven to incremental and

agile practices as having small teams requires very broad knowledge of the team mem-

bers (see for example [Merisalo-Rantanen et al. (2005)]). However, at the same time

face-to-face interaction helps team members to learn from each other and gain insight

and understanding of the overall development process [Svensson and Höst(2005)].

The perceived improvements are further strengthened by the fact that incremental

and agile practices have not been employed for a long time at the studied companies.

The positive results already achieved are also important as a motivator and buy-in to

further progress with the agile implementation by adding further agile practices such

as test driven development or pair programming.

7.2 Open Issues

Based on the classification, the most important issues that remained after the migration

were related to verification, project management, and release planning.

Verification: For verification, the improvement of reduced lead-times for testing

have been identified (I06). However, the issue relates to that the LSV cycle times are

not optimized and that there is room of improvement to shorten the lead-time of testing,

the issue being the only issue related to incremental and agile development classified as

very important. Thus, although the lead time is perceived to have improved, it is still

an area needing attention. Furthermore, the test coverage is considered a problem in

both development models (see F02 for plan-driven development and F11 in incremental

and agile development), even though the classification shows that it is less common for

the latter development model. The descriptions of the issues related to test coverage

show that test coverage is a problem due to different reasons in both development

models. In plan-driven development, the test coverage is reduced because too much

has to be tested at once, and the testing time is always compromised in the end

of the plan-driven project. After introducing incremental and agile practices though

the problems are more specific: quality testing in the LSV takes too much time; the

project cycles are too short to squeeze everything into the project; and there is a lack

of independent verification for basic and component testing. This still being a problem,

it is less common in incremental and agile than in plan-driven development. However,

due to the explicitly identified problems in testing it is clear that there is room for

improvement to achieve more significant improvements, e.g., by implementing test-

driven development or increase the degree of automated testing to speed up the testing

process.

Management Overhead: Due to the high number of teams, the work on the team

level gets more clear and simplistic with the new development approach. However,

many projects working toward the same goal have to be coordinated. As discussed

earlier (see F13 in Section 5) this requires much communication and planning involving

many different people. Therefore, this issue is specifically related to the scalability of

incremental and agile approaches. To address the issue, the first step taken was the

anatomy plan which helps to structure the system and dependencies. This is used as

input for deciding on the order of projects to build the increments.

Release Project: The release project is responsible for bringing the product into

a shippable state. The release project is very specific for Ericsson as it is related to

building customizable solutions. That is, in the release project a tool has to be created

33

that allows the selection of features so that the product is customizable. As raised in

the earlier discussion (F12) people of the release project are involved too late in the

development process and thus the product is not viewed from a commercial perspective.

Consequently, an action for improvement would be to integrate people from the release

project already in the requirements engineering phase.

7.3 Implications

The results of the case study indicate that it is beneficial for large-scale organization

using a plan-driven approach to introduce incremental and agile practices. In fact, the

study came to the surprising result that plan-driven development is not suitable for a

large-scale organization as it produces too much waste in development (specifically in

the requirements phase). The most pressing issues identified in the organization were in-

fact related to the plan-driven approach. On the other hand, important improvements

can be achieved by introducing incremental and agile practices. We have shown that

specific areas of improvements are reduction of waste and better responsiveness to

market changes. Furthermore, there are opportunities for faster return of investment.

However, the case study also shows that even though benefits can be gained on the one

hand, challenges are raised on the other hand. Areas that specifically show room for

improvements are testing and support for coordinating a large number of development

teams. The challenges are important to recognize and address when further progressing

with the agile implementation.

8 Conclusions and Future Work

This paper investigates the effect of introducing incremental and agile practices in an

organization that has been working in a plan-driven way. The study shows that the

most commonly perceived problems in the development models can be found in plan-

driven development, and introducing incremental and agile practices allows to improve

on these most common issues. Returning to the research questions and propositions,

we can conclude:

Issues: Several issues were identified for both the plan-driven and the approach

using incremental and agile practices. However, more commonly perceived issues across

roles and systems were identified for the plan-driven approach.

General issues: The two most commonly perceived issues overall were identified for

the plan-driven approach: 1) requirements change and rework; and 2) reduction of test

coverage due to limited test time at the end. Several other issues were identified both

approaches.

Performance measures: It was only possible to collect two comparable performance

measures: waste in terms of investment in requirements never delivered and fault-slip-

through. Both these measures were in favor of the situation after introducing incre-

mental and agile practices.

Proposition 1 is partially true, i.e. both different and in some cases similar issues

were identified for the two models. Proposition 2 holds. Improvements in the quanti-

tative data have been observed and thereby supporting the primary evidence reported

for the qualitative data.

34

Thus, in summary the main improvements identified are 1) ability to increase re-

lease frequency and shorten requirements lead-times; 2) significant reduction of waste

and better reflection of the current customers’ needs measured as reduced number

of change requests; 3) improvements in software quality for basic testing (unit and

component testing) and overall system quality, and 4) improved communication which

facilitates better understanding and allows to reduce documentation. However, the use

of incremental and agile practices raise a number of challenges at the same time, which

are: 1) needs for coordinating testing and increase test coverage; 2) support for coordi-

nating a high number of teams and making decisions related to planning time-lines for

concurrent projects; and 3) integration of release projects in the overall development

process. In future work, more qualitative as well as quantitative studies are needed to

compare development models for large-scale development.

References

[Anderson(2003)] Anderson DJ (2003) Agile Management for Software Engineering: Applying
the Theory of Constraints for Business Results (The Coad Series). Prentice Hall PTR

[Bahli and Abou-Zeid(2005)] Bahli B, Abou-Zeid ES (2005) The role of knowledge creation
in adopting xp programming model: An empirical study. In: ITI 3rd International Confer-
ence on Information and Communications Technology: Enabling Technologies for the New
Knowledge Society

[Baskerville et al. (2003)] Baskerville R, Ramesh B, Levine L, Pries-Heje J, Slaughter S (2003)
Is internet-speed software development different? IEEE Software 20(6):70–77

[Beck(1999)] Beck K (1999) Embracing change with extreme programming. IEEE Computer
32(10):70–77

[Benediktsson et al. (2006)] Benediktsson O, Dalcher D, thorbergsson H (2006) Comparison
of software development life cycles: a multiproject experiment. IEE Proceedings Software
153(3):323–332

[Ceschi et al. (2005)] Ceschi M, Sillitti A, Succi G, Panfilis SD (2005) Project management in
plan-based and agile companies. IEEE Software 22(3):21–27

[Cohen et al. (2001)] Cohen D, Larson G, Ware B (2001) Improving software investments
through requirements validation. In: Proceedings of the 26th Annual NASA Goddard
Software Engineering Workshop (SEW 2001), IEEE Computer Society, Washington, DC,
USA, p 106

[Cohen et al. (2004)] Cohen D, Lindvall M, Costa P (2004) Advances in Computers, Advances
in Software Engineering, Elsevier, Amsterdam, chap An Introduction to Agile Methods.
DOI 10.1002/14356007.b02 02

[Dagnino et al. (2004)] Dagnino A, Smiley K, Srikanth H, Antón AI, Williams LA (2004)
Experiences in applying agile software development practices in new product development.
In: Proceedings of the IASTED Conference on Software Engineering and Applications
(IASTED-SEA 2004, pp 501–506

[Dai and Guo(2007)] Dai L, Guo W (2007) Concurrent subsystem-component development
model (cscdm) for developing adaptive e-commerce systems. In: Proceedings of the In-
ternational Conference on Computational Science and its Applications (ICCSA 2007), pp
81–91

[Damm and Lundberg(2007)] Damm LO, Lundberg L (2007) Company-wide implementation
of metrics for early software fault detection. In: Proceedings of the 9th International Con-
ference on Software Engineering (ICSE 2007), pp 560–570

[Damm et al. (2006)] Damm LO, Lundberg L, Wohlin C (2006) Faults-slip-through - a con-
cept for measuring the efficiency of the test process. Software Process: Improvement and
Practice 11(1):47–59

[Dyb̊a and Dingsøyr(2008)] Dyb̊a T, Dingsøyr T (2008) Empirical studies of agile software
development: A systematic review. Information & Software Technology 50(9-10):833–859

[Fairley and Willshire(2005)] Fairley RE, Willshire MJ (2005) Iterative rework: The good, the
bad, and the ugly. IEEE Computer 38(9):34–41

35

[Hanssen et al. (2005)] Hanssen GK, Westerheim H, Bjørnson FO (2005) Using rational uni-
fied process in an sme - a case study. In: Proceedings of the 12th European Conference on
Software Process Improvement (EuroSPI 2005), pp 142–150

[Heijstek and Chaudron(2008)] Heijstek W, Chaudron MRV (2008) Evaluating rup software
development processes through visualization of effort distribution. In: Proceedings of the
34th Conference on Software Engineering and Advanced Applications (SEAA 2008), pp
266–273

[Hirsch(2005)] Hirsch M (2005) Moving from a plan driven culture to agile development. In:
Proceedings of the 27th International Conference on Software Engineering (ICSE 2005),
p 38

[Ilieva et al(2004)] Ilieva S, Ivanov P, Stefanova E (2004) Analyses of an agile methodology
implementation. In: Proceedings of the 30th EUROMICRO Conference (EUROMICRO
2004), pp 326–333

[Jarzombek(1999)] Jarzombek J (1999) The 5th annual jaws s3 proceedings
[Johnson(2002)] Johnson J (2002) Keynote speech: Build only the features you need. In: Pro-

ceedings of the 4th International Conference on Extreme Programming and Agile Processes
in Software Engineering (XP 2002)

[Jones(1995)] Jones C (1995) Patterns of Software Systems: Failure and Success. International
Thomson Computer Press

[Karlström and Runeson(2005)] Karlström D, Runeson P (2005) Combining agile methods
with stage-gate project management. IEEE Software 22(3):43–49

[Koch(2005)] Koch AS (2005) Agile software development: evaluating the methods for your
organization. Artech House, Boston

[Laplante and Neill(2004)] Laplante PA, Neill CJ (2004) Opinion: The demise of the waterfall
model is imminent. ACM Queue 1(10):10–15

[Larman(2003)] Larman C (2003) Agile and Iterative Development: A Manager’s Guide. Pear-
son Education

[Layman et al(2004)] Layman L, Williams LA, Cunningham L (2004) Exploring extreme pro-
gramming in context: An industrial case study. In: Proceedings of the Agile Development
Conference (ADC 2004), pp 32–41

[Mannaro et al. (2004)] Mannaro K, Melis M, Marchesi M (2004) Empirical analysis on the
satisfaction of it employees comparing xp practices with other software development
methodologies. In: Proceedings of the 5th International Conference on Extreme Program-
ming and Agile Processes in Software Engineering (XP 2005), pp 166–174

[Martin et al. (2004)] Martin A, Biddle R, Noble J (2004) The xp customer role in practice:
Three studies. In: Agile Development Conference, pp 42–54

[McBreen(2003)] McBreen P (2003) Questioning Extreme Programming. Pearson Education,
Boston, MA, USA

[Merisalo-Rantanen et al. (2005)] Merisalo-Rantanen H, Tuunanen T, Rossi M (2005) Is ex-
treme programming just old wine in new bottles: A comparison of two cases. J Database
Manag 16(4):41–61

[Petersen and Wohlin(2009a)] Petersen K, Wohlin C (2009a) A comparison of issues and ad-
vantages in agile and incremental development between state of the art and an industrial
case. Journal of Systems and Software, in print 82(9):1479–1490

[Petersen and Wohlin(2009b)] Petersen K, Wohlin C (2009b) Context in industrial software
engineering research. In: Proceedings of the 3rd International Symposium on Empirical
Software Engineering and Measurement (ESEM 2009), pp 401–404

[Petersen et al. (2009)] Petersen K, Wohlin C, Baca D (2009) The waterfall model in large-
scale development. In: Proceedings of the 10th International Conference on Product Fo-
cused Software Development and Process Improvement (PROFES 2009), pp 386–400

[Poppendieck and Poppendieck(2003)] Poppendieck M, Poppendieck T (2003) Lean Software
Development: An Agile Toolkit (The Agile Software Development Series). Addison-Wesley
Professional

[Raccoon(1997)] Raccoon LBS (1997) Fifty years of progress in software engineering. SIG-
SOFT Softw Eng Notes 22(1):88–104, DOI http://doi.acm.org/10.1145/251759.251878

[Runeson and Höst(2009)] Runeson P, Höst M (2009) Guidelines for conducting and reporting
case study research in software engineering. Empirical Software Engineering 14(2):131–164

[Schwaber(2004)] Schwaber K (2004) Agile project management with Scrum. Microsoft Press,
Redmond, Wash.

[Sillitti et al. (2005)] Sillitti A, Ceschi M, Russo B, Succi G (2005) Managing uncertainty in
requirements: A survey in documentation-driven and agile companies. In: Proceedings of
the 11th IEEE International Symposium on Software Metrics (METRICS 2005), p 17

36

[Stephens and Rosenberg(2003)] Stephens M, Rosenberg D (2003) Extreme Programming
Refactored: The Case Against XP. Apress, Berkeley, CA

[Svensson and Höst(2005)] Svensson H, Höst M (2005) Introducing an agile process in a soft-
ware maintenance and evolution organization. In: Proceedings of the 9th European Con-
ference on Software Maintenance and Reengineering (CSMR 2005), pp 256–264

[Tessem(2003)] Tessem B (2003) Experiences in learning xp practices: A qualitative study.
In: Proceedings of the 4th International Conference on Extreme Programming and Agile
Processes in Software Engineering (XP 2004), pp 131–137

[Thomas(2001)] Thomas M (2001) It projects sink or swim. British Computer Society Review
2001

[Tomaszewski(2006)] Tomaszewski P (2006) Software development productivity - evaluation
and improvement for large industrial projects. PhD thesis, Detp. of Systems and Software
Engineering, Blekinge Institute of Technology

[Wils et al. (2006)] Wils A, Baelen SV, Holvoet T, Vlaminck KD (2006) Agility in the avionics
software world. In: XP, pp 123–132

[Wohlin et al. (2000)] Wohlin C, Runeson P, Höst M, Ohlsson MC, Regnell B, Wesslen A
(2000) Experimentation in Software Engineering: An Introduction (International Series in
Software Engineering). Springer

[Yin(2002)] Yin RK (2002) Case Study Research: Design and Methods, 3rd Edition, Applied
Social Research Methods Series, Vol. 5. Prentice Hall

A Interview Protocol

A.1 Introduction

– Explain the nature of the study to the respondent, telling how or through whom he came
to be selected:
– Goal of the study: Understanding hindering factors in the different development models

(traditional, streamline, streamline enhanced).
– What is done: Compare the different models against each other in terms of bottlenecks,

avoidable rework and unnecessary work.
– Benefit for the interviewee: Interview is the basis for further improving the different

models considering the different views of people within the organization, gives inter-
viewee the chance to contribute to the improvement of the model they are supposed
to apply in the future

– Give assurance that respondent will remain anonymous in any written reports growing out
of the study, and that his responses will be treated with strictest confidence.

– Indicate that he may find some of the questions far-fetched, silly or difficult to answer, for
the reason that questions that are appropriate for one person are not always appropriate
for another. Since there are no right or wrong answers, he is not to worry about these
but to do as best he can with them. We are only interested in his opinions and personal
experiences.

– Interviewee is to feel perfectly free to interrupt, ask clarification of the interviewer, criticize
a line of questioning etc.

– Interviewer is to ask permission to tape record the interview, explaining why he wishes to
do this.

A.2 Warm-up and Experience

– What is your professional background (how long at the company, education)?
– What is your role within the development life-cycle at Ericsson (short description)? Include

information such as department, discipline (there are a number of pre-defined disciplines
at the company for different development activities). How long have you been working in
this role?

– In which other disciplines have you been working and for how long?

37

– What is your experience with traditional development and streamline development? Select
from the following options with multiple selections being possible (has to be done once for
each model):
– No previous experience
– Studied documentation
– Informal discussion with colleagues
– Seminar and group discussions
– Used in one project (started or completed)
– Used in several projects

A.3 Main Body of the Interview

A.3.1 Plan-Driven Development

The first question concerns bottlenecks.
Definition provided to the interviewee: Bottlenecks is a phenomena that hinders the per-

formance or capacity of the entire development lifecycle due to a single component causing it
(=bottleneck). Bottlenecks are therefore a cause for reduction in throughput.

Question: What are three critical bottlenecks you experienced / you think are present in
the traditional way of working (plan-driven)?

When describing three bottlenecks, please focus on:

– Which product was developed?
– Where in the development process does the bottleneck occur?
– Why is it a bottleneck (ask for the cause)?
– How does the bottleneck affect the overall development lifecycle?

The following questions concern waste. When talking about waste, we distinguish two
types of waste we would like to investigate. These types of waste are unnecessary work and
avoidable rework. A definition for each type is presented to the interviewee.

Type 1 - Avoidable Rework: Investigating avoidable rework helps us to answer: “are we
doing things right”? That is, if something has been done incorrectly, incompletely or incon-
sistently then it needs to be corrected through reworked.

Question: What avoidable rework (three for each) has been done in the plan-driven ap-
proach?

When describing the avoidable rework, please focus on:

– Which product was developed?
– Where in the development process is the avoidable rework done?
– What was done incorrectly, incompletely or inconsistently?
– Why is the rework avoidable?

Type 2 - Unnecessary work: Investigating unnecessary work helps us to answer: “are we
doing the right things”? That is, unnecessary work has been conducted that does not contribute
to customer value. It is not avoidable rework, as it is not connected to correcting things that
have been done wrong.

Question: What is unnecessary work (three for each) done in the plan-driven approach?
When describing the unnecessary work, please focus on:

– Which product was developed?
– Where in the development process is the unnecessary work done?
– Why is the unnecessary work executed?
– How is the unnecessary work used in the development?

A.3.2 Incremental and Agile Approach

After having identified the critical issues in plan-driven development we would like to capture
what the situation is after introducing the new incremental and agile practices.

Note: In this part the same questions were asked as was the case for the plan-driven
approach, now focusing on the situation after migrating to the incremental and agile approach.

38

A.4 Closing

Is there anything else you would like to add that you think is interesting in this context, but
not covered by the questions asked?

B Example of the Qualitative Analysis

Figure 5 illustrates the analysis steps presented in the description of the research methodology
with an example of the identification of factor F01 shown in Table 6.

��������	
��
�����

���������	
��������
	
��������	��������	���	

�������	�����	���	
��������
	
��������	��	

�����������
�	�������������	��
����	������	��	���
	

��
�	���	��������	�
	����	������	���	��	

�������� �

���������	��
�
������

!��	���	�����������
	��	���	�����������
	����	

�����	����	���	���������	���	�
��	������ 	
�������	

���������� �	!�	
�	�
��	��	�
�	���	������
	��	���	

�����	��� 	����	
���	������
��	��	���	��	���	
����	

�������
�	"��������
	���#	��	���	��������	

$���
 %������

&��	�����������
�	��
�	 ��	
�����	���	����	����	

���	
��	���	����	������	��	�
	�����	��	��������	����	��	

�������	��
	�����������	��	����	��	�������	���	

�����������
	��
�	
��	��	���	���	��	����	���������	��	

!'(��	$'(����	��	����	�����	���	��� 	����	��#�	��	

����	��
	���	����	��	������	���	����	��	���	��	

����
���	���	����
�	���	

�)*"��+	!��	�����������
	���	���	�����	������	����	��� 	�����	��
���	
�	

����	��� 	���������	
��������	��
�	����	
�� ���	���	�����	�$",��	$",-�	

$".��	$".-�

�������
�	"��������
	���#	��	���	��������	

�����������	�$",��	$",-�	�����

��	�������	
��
��������

/�����	�	����������	��	
��������
	���	

��������
	����	�������	
�
��	��	�����	

��������	��	����	�����	�����	�������� 	��	������	

�������	������
	����	������	�

��������	�����	

����	���
��	��	���	������	��	���	����

���+	"����������
	���#	��
	

��
���	�
	����������	���	

���������	�����������
	���	��	

�	��
������	���	�����#��

�)*"��+	0��#	
������	
�
��	

��	�������	�����������
�	

���
	���������	�����#

�)*"�1+	2���	����*����
	��	

�����������
 ���
�

�)*"�,+	2��#	��	��
�����	

�������������

"���

��1+	"��������	��	��
�	

��������	���	��	�������	

��
����	����	��	���	���

3
3

3

Fig. 5 Example of Analysis Illustrating the Identification of Factor F01

39

Kai Petersen is an industrial PhD student at Ericsson AB and Blekinge Insti-

tute of Technology. He received his Master of Science in Software Engineering (M.Sc.)

from Blekinge Institute of Technology. Thereafter, he worked as a research assistant

at University of Duisburg Essen, focusing on software product-line engineering and

service-oriented architecture. His current research interests are empirical software en-

gineering, software process improvement, lean and agile development, and software

measurement.

Claes Wohlin is a professor of software engineering and the Pro Vice Chancellor of

Blekinge Institute of Technology, Sweden. He has previously held professor chairs at the

universities in Lund and Linköping. His research interests include empirical methods in

software engineering, software metrics, software quality, and requirements engineering.

Wohlin received a PhD in communication systems from Lund University. He is Editor-

in-Chief of Information and Software Technology and member of three other journal

editorial boards. Claes Wohlin was the recipient of Telenors Nordic Research Prize in

2004 for his achievements in software engineering and improvement of reliability for

telecommunication systems.

