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Abstract. Missing data are common in surveys regardless of research field, 

undermining statistical analyses and biasing results. One solution is to use an 

imputation method, which recovers missing data by estimating replacement 

values. Previously, we have evaluated the hot-deck k-Nearest Neighbour (k-

NN) method with Likert data in a software engineering context. In this paper, 

we extend the evaluation by benchmarking the method against four other 

imputation methods: Random Draw Substitution, Random Imputation, Median 

Imputation and Mode Imputation. By simulating both non-response and 

imputation, we obtain comparable performance measures for all methods. We 

discuss the performance of k-NN in the light of the other methods, but also for 

different values of k, different proportions of missing data, different neighbour 

selection strategies and different numbers of data attributes. Our results show 

that the k-NN method performs well, even when much data are missing, but has 

strong competition from both Median Imputation and Mode Imputation for our 

particular data. However, unlike these methods, k-NN has better performance 

with more data attributes. We suggest that a suitable value of k is approximately 

the square root of the number of complete cases, and that letting certain 

incomplete cases qualify as neighbours boosts the imputation ability of the 

method. 

1 Introduction 

Missing data pose a serious problem to researchers in many different fields of 

research, for example artificial intelligence (Gediga and Düntsch, 2003), machine 

learning (Batista and Monard, 2001) and psychology (Downey and King, 1998). The 
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situation is, unsurprisingly, similar in software engineering (Cartwright et al., 2003; 

Myrtveit et al., 2001; Strike et al., 2001). The absence of data may substantially affect 

data analysis as statistical tests will lose power and results may be biased because of 

underlying differences between cases with and without missing data (Huisman, 2000). 

Simple ways to deal with missing data are, for example, listwise deletion, in which 

incomplete cases are simply discarded from the data set, or variable deletion, in which 

variables with missing data are discarded. However, a consequence of using a 

deletion procedure is that potentially valuable data are discarded, which is even worse 

than having missing data in the first place. Another approach, advantageous because it 

does not require useful data to be removed, is to use a method for imputing data. 

Imputation methods work by substituting replacement values for the missing data, 

hence increasing the amount of usable data. 

A multitude of imputation methods exist (see, for example, the paper by Hu et al. 

(2000) for an overview), whereas this paper deals mainly with hot-deck k-Nearest 

Neighbour imputation, but also with Random Draw Substitution, Random Imputation, 

Median Imputation and Mode Imputation. In hot-deck imputation, a missing value is 

replaced by a value derived from one or more complete cases (the donors) in the same 

data set. The choice of donors should depend on the case being imputed, which means 

that Median Imputation, for example, in which a missing value is replaced with the 

median of the non-missing values, does not qualify as a hot-deck method (Sande, 

1983). There are different ways of picking a replacement value, for example by 

choosing a value from one of the donors by random (Huisman, 2000) or by 

calculating the mean of the values of the donors (Batista and Monard, 2001; 

Cartwright et al., 2003). 

The k-Nearest Neighbour (k-NN) method is a common hot-deck method, in which 

k donors are selected from the available neighbours (i.e., the complete cases) such that 

they minimise some similarity metric (Sande, 1983). The method is further described 

in Section 4.5. An advantage over many other methods, including Median and Mode 

Imputation, is that the replacement values are influenced only by the most similar 

cases rather than by all cases. Several studies have found that the k-NN method 

performs well or better than other methods, both in software engineering contexts 

(Cartwright et al., 2003; Song et al., 2005; Strike et al., 2001) and in non-software 



4      Per Jönsson and Claes Wohlin 

engineering contexts (Batista and Monard, 2001; Chen and Shao, 2000; Troyanskaya 

et al., 2001). 

We evaluated the k-NN method in a previous paper, and concluded that the 

performance of the method was satisfactory (Jönsson and Wohlin, 2004). In order to 

better assess the relative performance of the method, we extend the evaluation in this 

paper by benchmarking the k-NN method against four other methods: Random Draw 

Substitution, Random Imputation, Median Imputation and Mode Imputation. These 

methods are clearly simpler in terms of imputation logic than k-NN, but can be said to 

form an imputation baseline. Thus, the main research question concerns the 

performance of the k-NN method in relation to the other methods. 

The data used in the evaluation are of Likert type in a software engineering 

context. A Likert scale is ordinal, and consists of a number of alternatives, typically 

weighted from one and up, that concern level of agreement (e.g., disagree, agree, 

strongly agree). Such scales are commonly used when collecting subjective opinions 

of individuals in surveys (Robson, 2002). The evaluation is performed by running the 

k-NN method and the other imputation methods on data sets with simulated non-

response.  

Apart from the benchmarking, we discuss the following questions related to the k-

NN method: 

• How many donors should preferably be selected? 

• At which proportion of missing data is it no longer relevant to use the method? 

• Is it possible to decrease the sensitivity to the proportion of missing data by 

allowing imputation from certain incomplete cases as well? 

• What effect has the number of attributes (variables) on the results? 

The remainder of the paper is structured as follows. In Sections 2 and 3, we outline 

related work, describe the data used in the evaluation and discuss different 

mechanisms for missing data. In Section 4, we present the k-NN method as well as the 

other imputation methods against which we benchmark k-NN. In Section 5, we 

describe the process we have used for evaluating the k-NN method. Although the 

process is generic in the sense that it supports any imputation method, we focus on k-

NN. In Section 6, we briefly describe how we instantiated the process in a simulation, 
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but also how we performed additional simulations with other imputation methods. In 

Section 7, we present the results and relate them to our research questions. In Section 

8, we discuss validity threats and outline possible future work. Finally, we draw 

conclusions in Section 9. 

2 Related Work 

As Cartwright et al. (2003) point out, publications about imputation in empirical 

software engineering are few. To our knowledge, those that exist have focused on 

comparing the performance of different imputation methods. For example, Myrtveit et 

al. (2001) compare four methods for dealing with missing data: listwise deletion, 

mean imputation, full information maximum likelihood and similar response pattern 

imputation (which is related to k-NN with k = 1). They conclude, among other things, 

that similar response pattern imputation should only be used if the need for more data 

is urgent. Strike et al. (2001) describe a simulation of listwise deletion, mean 

imputation and hot-deck imputation (in fact, k-NN with k = 1), and conclude that hot-

deck imputation has the best performance in terms of bias and precision. Furthermore, 

they recommend the use of Euclidean distance as a similarity measure. In these two 

studies, the context is software cost estimation. Cartwright et al. (2003) themselves 

compare sample mean imputation and k-NN, and reach the conclusion that k-NN may 

be useful in software engineering research. Song et al. (2005) evaluate the difference 

between the missingness mechanisms MCAR and MAR (see Section 3.2) using k-NN 

and class mean imputation. Their findings indicate that the type of missingness does 

not have a significant effect on either of the imputation methods, and furthermore that 

class mean imputation performs slightly better than k-NN. In these two studies, the 

context is software project effort prediction. 

It is common to compare imputation methods in other research areas as well. 

Batista and Monard (2001) compare k-NN with the machine learning algorithms C4.5 

and C2, and conclude that k-NN outperforms the other two, and that it is suitable also 

when the proportion of cases with missing data is high (up to 60%). Engels and Diehr 

(2003) compare 14 imputation methods, among them one hot-deck method (however, 
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not k-NN), on longitudinal health care data. They report, however, that the hot-deck 

method did not perform as well as other methods. Huisman (2000) presents a 

comparison of imputation methods, including Random Draw Substitution and k-NN 

with k = 1. He concludes that Random Draw Substitution is among the worst 

performers, that the k-NN method performs better with more response options, but 

that corrected item mean imputation generally is the best imputation method. In the 

context of DNA research, Troyanskaya et al. (2001) report on a comparison of three 

imputation methods: one based on single value decomposition, one k-NN variant and 

row average. They conclude that the k-NN method is far better than the other 

methods, and also that it is robust with respect to proportion of missing data and type 

of data. Moreover, they recommend the use of Euclidean distance as a similarity 

measure. Gmel (2001) compares four different imputation methods, including single-

value imputation based on median and k-NN with k = 1. He argues that single-value 

imputation methods are considered poor in general as they disturb the data 

distribution by repeatedly imputing the same value. He concludes that the k-NN 

method seems to perform better than the other methods. Chen and Åstebro (2003) 

evaluate six methods for dealing with missing data, including Random Draw 

Substitution and Mode Imputation, by looking at the sample statistics mean and 

variance. They report that Random Draw Substitution systematically biases both the 

mean and the variance, whereas Mode Imputation only systematically biases the 

variance. 

Imputation in surveys is common, due to the fact that surveys often are faced with 

the problem of missing data. De Leeuw (2001) describes the problem of missing data 

in surveys and gives suggestions for how to deal with it. Downey and King (1998) 

evaluate two methods for imputing data of Likert type, which often are used in 

surveys. Their results show that both methods, item mean and person mean 

substitution, perform well if the proportion of missing data is less than 20%. 

Raaijmakers (1999) presents an imputation method, relative mean substitution, for 

imputing Likert data in large-scale surveys. In comparing the method to others, he 

concludes that it seems to be beneficial in this setting. He also suggests that it is of 

greater importance to study the effect of imputation on different types of data and 

research strategies than to study the effectiveness of different statistics. Nevertheless, 
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Chen and Shao (2000) evaluate k-NN imputation with k = 1 for survey data, and show 

that the method has good performance with respect to bias and variance of the mean 

of estimated values. 

Gediga and Düntsch (2003) present an imputation method based on non-numeric 

rule data analysis. Their method does not make assumptions about the distribution of 

data, and works with consistency between cases rather than distance. Two cases are 

said to be consistent when their non-missing values are the same whenever they occur 

in both cases. Thus, donorship is allowed both for complete and incomplete cases. 

This resembles our relaxation of the k-NN method rules when it comes to selecting 

neighbours (see Section 4.5), in that both approaches allow values that will not 

contribute to the similarity measure to be missing in the donor cases. 

3 Research Data 

In this section, we present the data used in the evaluation. We also discuss different 

missingness mechanisms (i.e., different ways in which data can be missing). 

3.1 Evaluation Data 

The data used in the evaluation come from a case study on software architecture 

documentation in a large Swedish organisation. The case study is described in detail 

elsewhere (Jönsson and Wohlin, 2005). In the case study, a questionnaire about 

viewpoints on architecture documentation was distributed to employees in the 

organisation. For the evaluation, we chose to use the answers to six questions, 

selected such that we could extract as many complete cases as possible. Initially, the 

questions were answered by 66 persons, of which 12 (18.2%) gave incomplete 

answers (resulting in a data set with 7.8% missing data). Thus, the evaluation data set 

contained 54 complete cases. 

Each of the six questions used a Likert scale for collecting answers, where the 

numbers 1 to 5 were used to represent different levels of agreement to some statement 

or query. Each of the numbers 1 to 5 was associated with a short text explaining its 
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meaning, and we tried to make sure that distances between two adjacent numbers 

were conceptually similar everywhere. 

We have previously examined the original data with respect to differences between 

roles, and found that there are no differences for the questions involved in this 

evaluation (Jönsson and Wohlin, 2005). We have also sought differences based on 

other ways to group the data, but found none. Hence, we presuppose that the data are 

homogeneous. Fig. 1 shows the distribution of response options of the six questions as 

well as on average (rightmost bar). As can be seen, options 1 and 5 are largely 

underrepresented, while in particular options 3 and 4 are common answers to most of 

the questions. 

 

Fig. 1. Distribution of Response Options 

3.2 Missing Data 

There are three main ways in which data can be missing from a data set (Batista and 

Monard, 2001; Cartwright et al., 2003; Scheffer, 2002). These ways, or missingness 

mechanisms, are: 
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• MCAR (Missing Completely At Random), means that the missing data are 

independent on any variable observed in the data set. 

• MAR (Missing At Random), means that the missing data may depend on variables 

observed in the data set, but not on the missing values themselves. 

• NMAR (Not Missing At Random, or NI, Non-Ignorable), means that the missing 

data depend on the missing values themselves, and not on any other observed 

variable. 

Any action for dealing with missing data must take the missingness mechanism 

into account. For example, to discard cases with missing data altogether is dangerous 

unless the missingness mechanism is MCAR (Scheffer, 2002). Otherwise, there is a 

risk that the remaining data are severely biased. NMAR is the hardest missingness 

mechanism to deal with, because it, obviously, is difficult to construct an imputation 

model based on unobserved data. 

When data are missing from the responses to a questionnaire, it is more likely that 

the missingness mechanism is MAR than MCAR (Raaijmakers, 1999). For example, 

a respondent could leave out an answer because of lack of interest, time, knowledge 

or because he or she did not consider a question relevant. If it is possible to 

distinguish between these different sources of missing data, an answer left out 

because of lack of question relevance could be regarded as useful information rather 

than a missing data point. If so, the degree of missingness would be different than if 

the source of missing data could not be distinguished. Thus, it is recommended to 

include a response option for lack of relevance. It should be noted, however, that the 

questions in our data did not offer such a response option. 

4 Imputation Methods 

In this section, we describe the k-NN imputation method as well as the imputation 

methods used for benchmarking. We divide the imputation methods into the three 

categories uninformed, informed and intelligent (see the paper by Huisman (2000) for 

other ways of categorising imputation methods): 
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• Uninformed imputation methods do not take into consideration properties of the 

data that are important from an imputation perspective, such as distribution of 

response options. Random Draw Substitution, where a replacement value is 

randomly drawn from the set of response options, falls into this category. 

• Informed imputation methods do take data properties into consideration. Random 

Imputation, where a replacement value is randomly drawn from the available 

(observed) answers, as well as Median Imputation and Mode Imputation fall into 

this category. 

• Intelligent imputation methods are those that base the imputation on hypothesised 

relationships in the data. The k-NN method falls into this category. 

We go deeper into details for the k-NN method than for the other methods, in 

particular with respect to how the properties of the method affect the imputation 

results. Based on this, we differentiate between two different strategies for selecting 

neighbours. The standard strategy adheres to the rules of the method in that only 

complete cases qualify as neighbours, while the other relaxes this restriction slightly. 

4.1 Random Draw Substitution 

Random Draw Substitution (RDS) is an imputation method in which a missing value 

is replaced by a value randomly drawn from the set of available response options 

(Huisman, 2000). In our case, this means that we randomly generate replacement 

values from 1 to 5 such that all values have equal possibilities of being generated. 

RDS falls into the category of uninformed imputation methods, as it does not 

consider data distribution or any other relevant properties. The relevance in 

benchmarking against RDS, or any other uninformed method for that matter, can of 

course be debated. However, we argue that a hallmark of any method necessarily 

must be to beat the entirely random case. 

4.2 Random Imputation 

Hu et al. (1998) describe generic Random Imputation (RI) as a method where 

replacement values are drawn at random from observed data, given some sampling 
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scheme. In our use of the method, we replace a missing value for a particular question 

with a value drawn randomly from all available answers to the question. Thus, we 

effectively set the probabilities of the response options in accordance with the 

distribution of response options for the question. This means that RI can be 

categorised as an informed imputation method. 

By obeying the distribution of observed response options, we can expect RI to 

outperform RDS unless the possible response options are equally distributed for each 

question. This is not the case in our data, where response options 1 and 5 in particular 

are largely underrepresented (see Fig. 1). 

4.3 Median Imputation 

Due to the fact that our original data are ordinal, we impute based on median rather 

than mean. In Median Imputation (MEI), a missing value is replaced by the median of 

all available answers to the question. As with any type of single-value imputation, this 

method disturbs the distribution of response options, since the same value is used to 

replace each missing value for a particular question (Gmel, 2001). 

If the number of available answers to a question is even, the median may become a 

non-integer value. Since non-integer values are not compatible with ordinal data, we 

round the value either downwards or upwards at random (for each missing value) in 

order to get an integer value. 

MEI is highly sensitive to the distribution of response options for a question. More 

specifically, if the median corresponds to a response option with low frequency, the 

percentage of correct imputations will be low. Conversely, if the median corresponds 

to a frequent response option, MEI will have good performance. 

4.4 Mode Imputation 

Mode Imputation (MOI) is similar to MEI, except the mode is used instead of the 

median. As with MEI, MOI disturbs the distribution by imputing the same value for 

all missing values for a particular question. 
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A problem with using the mode as replacement value is that the distribution of 

available answers may be multimodal (i.e., have several modes). If that is the case, we 

obtain a unique replacement value by randomly selecting one of the modes for each 

missing value. 

If the mode corresponds to a response option with high frequency compared to the 

other response options, the percentage of correct imputations will be high. Otherwise, 

that is if the difference in frequency to the next most common value is small, the 

imputation performance decreases. Similarly, if the mode is a response option towards 

one of the ends of the scale, and a response option in the other end is common as well, 

the relative error of incorrectly imputed values will be high. 

4.5 k-Nearest Neighbour 

In the k-NN method, missing values in a case are imputed using values calculated 

from the k nearest neighbours, hence the name. The nearest, most similar, neighbours 

are found by minimising a distance function, usually the Euclidean distance, defined 

as (see, for example, the paper by Wilson and Martinez (1997)) 

( ) ( )2, ai bi
i D

E a b x x
∈

= −∑  (1) 

where 

• E(a, b) is the distance between the two cases a and b, 

• xai and xbi are the values of attribute i in cases a and b, respectively, and 

• D is the set of attributes with non-missing values in both cases. 

The use of Euclidean distance as similarity measure is recommended by Strike et 

al. (2001) and Troyanskaya et al. (2001). The k-NN method does not suffer from the 

problem with reduced variance to the same extent as single-value imputation, because 

when mean imputation imputes the same value (the mean) for all cases, k-NN imputes 

different values depending on the case being imputed. 

Consider the data set shown in Table 1; when calculating the distance between the 

cases Bridget and Eric, the attributes for which both have values are Q1, Q3, Q4 and 

Q5. Thus, D = {Q1, Q3, Q4, Q5}. We see that Bridget’s answer to Q2 does not 
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contribute to the calculation of the distance, because it is not in D. This implies that 

whether a neighbour has values for attributes outside D or not does not affect its 

similarity to the case being imputed. For example, Bridget and Eric are equally 

similar to Susan, because 

( ) ( ) ( )2Bridget,Susan Eric,Susan 2 4 2 2.8E E= = × − ≈  

despite the fact that Bridget is more complete than Eric. 

Another consequence of how the Euclidean distance is calculated, is that it is easier 

to find near neighbours when D is small. This occurs because the number of terms 

under the radical sign has fairly large impact on the distance. Again, consider the data 

set in Table 1; based on the Euclidean distance, Bridget and Eric are equally similar to 

Quentin (in fact, their distances are zero). Still, they differ considerably on Q5, and 

Eric has not answered Q2 at all. This suggests that the distance function does not 

necessarily reflect the true similarity between cases when D is small. 

Table 1. Example Incomplete Data Set 

 Q1 Q2 Q3 Q4 Q5 

Bridget 2 3 4 2 1 

Eric 2 - 4 2 5 

Susan - - 2 4 - 

Quentin 2 - - - - 

Once the k nearest neighbours (donors) have been found, a replacement value to 

substitute for the missing attribute value must be estimated. How the replacement 

value is calculated depends on the type of data; the mode can be used for discrete data 

and the mean for continuous data (Batista and Monard, 2001). Because the mode may 

be tied (several values may have the same frequency), and because we use Likert data 

where the magnitude of a value matters, we will instead use the median for estimating 

a replacement value. 

An important parameter for the k-NN method is the value of k. Duda and Hart 

(1973) suggest, albeit in the context of probability density estimation within pattern 
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classification, the use of k N≈ , where N in our case corresponds to the number of 

neighbours. Cartwright et al. (2003), on the other hand, suggest a low k, typically 1 or 

2, but point out that k = 1 is sensitive to outliers and consequently use k = 2. Several 

others use k = 1, for example Myrtveit et al. (2001), Strike et al. (2001), Huisman 

(2000) and Chen and Shao (2000). Batista and Monard (2001), on the other hand, 

report on k = 10 for large data sets, while Troyanskaya et al. (2001) argue that the 

method is fairly insensitive to the choice of k. As k increases, the mean distance to the 

donors gets larger, which implies that the replacement values could be less precise. 

Eventually, as k approaches N, the method converges to ordinary mean imputation 

(median, in our case) where also the most distant cases contribute. 

Neighbour Strategy 

In hot-deck imputation, and consequently in k-NN imputation, only complete cases 

can be used for imputing missing values (Batista and Monard, 2001; Cartwright et al., 

2003; Sande, 1983). In other words, only complete cases qualify as neighbours. Based 

on the discussion in the previous section about how the Euclidean distance between 

cases is unaffected by values of attributes not in D, we suggest that it is possible to 

relax this restriction slightly. Thus, we see two distinct strategies for selecting 

neighbours. 

The first strategy is in line with how the method normally is used, and allows only 

the complete cases to be neighbours. This means that no incomplete cases can 

contribute to the substitution of a replacement value in an incomplete case. We will 

refer to this strategy as the CC (Complete Case) strategy. 

The second strategy allows all complete cases and certain incomplete cases to be 

neighbours. More specifically, a case can act as a neighbour if and only if it contains 

values for all attributes that the case being imputed has values for, and for the 

attribute being imputed. We will refer to this strategy as the IC (Incomplete Case) 

strategy. 

It is important to note that we do not permit already imputed cases to be donors in 

any of the strategies. Thus, imputed data will never be used to impute new data. For 

an example of the two strategies, consult again Table 1. Assuming we are about to 
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impute attribute Q1 for Susan, the CC strategy would only allow Bridget to be a 

neighbour. The IC strategy, however, would allow both Bridget and Eric to be 

neighbours, because Eric contains values for at least the necessary attributes: Q1, Q3 

and Q4. Because the IC strategy potentially has more neighbours to select donors 

from, it can be expected to be able to handle large proportions of missing data better 

than the CC strategy. 

5 Evaluation Process 

The process for evaluating the k-NN method consists of the three main steps data 

removal, imputation and evaluation (illustrated in Fig. 2). In this section, we describe 

each step with respect to consumed input, responsibility, calculated metrics and 

produced output. The process is generic in that it does not depend on any particular 

data removal mechanism or imputation method. Here, we present it using k-NN as the 

imputation method. In Section 6, we detail the actual simulation of the process and 

describe how we have reused parts of it for benchmarking k-NN against the other 

imputation methods. 

 

Fig. 2. Evaluation Process Outline 
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5.1 Data Removal – Step 1 

Input to the data removal step is a data set where no data are missing. The 

responsibility of the step is to generate one or more artificially incomplete data sets 

from the complete data set, in order to simulate non-response. The generated data sets 

are subsequently sent to the imputation step. 

In order to obtain a wide range of evaluation conditions for the k-NN method, it 

would be beneficial to use both the MCAR and MAR missingness mechanisms when 

generating incomplete data sets. In order to remove data to simulate MAR, a model 

for the non-responsiveness is required. For example, in a longitudinal study of health 

data, Engels and Diehr (2003) devised a model where the probability of removing a 

value increased if the previous value had been removed, thereby modelling a situation 

where a serious health condition could result in repeated non-response. 

Possible models for simulating MAR in our data could involve, for example, 

experience in software architecture issues, organisational role or number of years in 

the industry, where different values would yield different probabilities for removing 

data from a case. However, given that our data are homogeneous, these models would 

not affect the imputation in other ways than would an MCAR-based model. Thus, we 

use only MCAR, and remove data in a completely random fashion. 

We do not try to simulate different sources of missing data (e.g., lack of relevance, 

simple omission), which means that we consider all removed data points as being 

truly missing. 

There are two parameters that guide the data removal step, the case reduction limit 

and the data set reduction limit. These are called reduction limits because they 

prevent the data from being reduced to an unusable level. The effects of the 

parameters can be seen in Fig. 2. If it is decided in step 1-1 that a case contains too 

many missing values after data removal, as dictated by the case reduction limit, it is 

discarded from the data set. The reason for having this limit is to avoid single cases 

with so little data that it becomes meaningless to calculate the Euclidean distance to 

other cases. If it is decided in step 1-2 that too few cases remain in the data set, as 

dictated by the data set reduction limit, the entire data set is discarded. The idea with 
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this limit is to avoid a data set with so few cases that it no longer can be said to 

represent the original data set. 

These limits mean, in a way, that we combine the k-NN imputation method with 

simple listwise deletion. As discussed earlier, this is dangerous unless the missing 

data truly is MCAR. However, we argue that keeping cases with very little data left 

would also be dangerous, because the imputed data would contain loosely grounded 

estimates. In other words, it is a trade-off that has to be made. 

The removal step is executed for a number of different percentages. Furthermore, it 

is repeated several times for each percentage. Thus, the output from the removal step 

is a large number of incomplete data sets to be fed to the imputation step. For each 

incomplete data set coming from the removal step, we define: 

• A as the number of complete cases remaining, 

• A′  as the number of incomplete cases remaining, and thus 

• C A A′= +  as the total number of cases remaining. 

Since entire cases may be discarded in the removal step, the actual percentage of 

missing data may be different from the intended percentage. For the incomplete data 

sets generated in the simulation, both the intended percentages and the actual 

percentages of missing data are presented. When analysing and discussing the results, 

it is the actual percentages that are used, though. 

5.2 Imputation – Step 2 

Input to the imputation step is the incomplete data sets generated in the data removal 

step. Here, each data set is fed to the imputation method in order to have its missing 

values imputed. We exemplify this step using the k-NN method. 

With the k-NN method, several imputations using different k-values and different 

neighbour strategies are performed for each incomplete data set. As discussed earlier, 

a missing value is replaced by the median of the answers given by the k nearest 

neighbours, which means that the replacement value may become a non-integer value 

if k is even. However, since the data in the data set are of Likert type, non-integer 

values are not permitted. To avoid this problem, only odd k-values are used. 
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The k cases with least distances are chosen as donors, regardless of ties among the 

distances. That is, two cases with equal distances are treated as two unique 

neighbours. This means that it is not always possible to pick k cases such that the 

remaining K k−  cases (where K is the total number of neighbours) have distances 

greater to that of the kth case. Should such a situation occur, it is treated as follows. If 

l, 0 l k≤ <  cases have been picked, and there are m, ( ) ( )k l m K l− < ≤ −  cases with 

distance d, then the k l−  first cases of the m, in the order they appear in the original 

data set, are picked. This procedure is safe since the cases in the original data set are 

not ordered in a way that could affect the imputation. 

If there are not enough neighbours available, cases may get lost in the imputation 

process. For the CC strategy, this will always happen when k is greater than the 

number of complete cases in the incomplete data set. The IC strategy has greater 

imputation ability, though, but will inevitably lose cases when k is large enough. This 

second situation where cases can be discarded is numbered 2-1 in Fig. 2. 

The output from the imputation step is a number of imputed data sets, possibly 

several for each incomplete data set generated in the data removal step (depending on 

the imputation method used and its parameters). For each imputed data set, we define 

• A′′ , 0 A A′′ ′≤ ≤  as the number of cases that were imputed (i.e., that were not lost 

in step 2-1), and consequently 

• C A A′ ′′= +  as the total number of cases, and also 

• B as the number of imputed attribute values. 

5.3 Evaluation – Step 3 

In the evaluation step, each imputed data set from the imputation step is compared to 

the original data set in order to measure the performance of the imputation. Three 

separate metrics are used: one ability metric and two quality metrics. The two quality 

metrics differ both in what they measure and how they measure it. The first quality 

metric is a measure of how many of the imputed attribute values that were imputed 

correctly. In other words, it is a precision metric. The second quality metric is a 
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measure of how much those that were not imputed correctly differ from their correct 

values, which makes it a distance (or error) metric. 

We define the ability metric as 

AR
A
′′

=
′

 (2) 

which equals 0 if all incomplete cases were lost during the imputation (in step 2-1), 

and 1 if all incomplete cases were imputed. To define the precision metric, let B′  be 

the number of matching imputed attribute values. Then, the metric can be expressed 

as 

if 0

undefined if 0

B B
Q B

B

′⎧ >⎪= ⎨
⎪ =⎩

 (3) 

 

which equals 0 if all the imputed attribute values are incorrect, and 1 if all are correct. 

Finally, we calculate the mean square error of the incorrectly imputed attribute values 

as 
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∑
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where xi is the correct value and ˆix  is the imputed value of the ith incorrectly imputed 

attribute value. 

Since B = 0 when R = 0, it is apparent that both the precision metric and the mean 

square error are invalid when the ability metric is zero. Moreover, the mean square 

error becomes invalid when Q = 1. Consequently, the three metrics need to have 

different priorities: R is the primary performance metric, Q is the secondary, and MSE 

is the tertiary. Recognising that it would be difficult to create one single metric for 

measuring the performance, no attempts to accomplish this have been made. 

Average values of R, Q and MSE are presented in the results, because several 

imputations are performed with identical parameters (percentage, and for k-NN, value 

of k and neighbour strategy). For R, the mean includes all measured instances, while 
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for Q and MSE, only those instances where the metrics are not undefined are 

included. 

6 Simulation 

The previous section described the outline of the evaluation process. In this section, 

we briefly address the actual simulation of the process and which parameters we used 

to control it. We also provide some information about the simulation software used. 

Finally, we explain how we reused the process to run additional simulations with 

different imputation methods in order to obtain benchmarking figures. 

6.1 Parameters 

Each of the three steps in the process described in Section 5 is guided by a number of 

parameters. As discussed, two reduction limits, the case reduction limit and the data 

set reduction limit, constrain the data removal step. Based on the number of attributes 

and cases in the original data set, we used the following values in the simulation: 

• Case reduction limit = 3 (inclusive) 

• Data set reduction limit = 27 (inclusive) 

With six attributes in each case, the case reduction limit means that cases with less 

than 50% of the attribute values left were discarded in step 2-1. The reason for this 

limit is that we wanted each imputed case to have at least equally much real data as 

imputed data. 

With 54 cases in the original data set, the data set reduction limit means that data 

sets with less than 50% of the cases left were discarded in step 2-2. Since each case is 

a respondent, we wanted to make sure that each data set being imputed contained at 

least half of the respondents in the original data set. 

The removal step generated data sets where 5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55 

and 60 percent data had been removed (however, as discussed in Section 5.1, the 

actual percentages became different). For each percentage, 1 000 data sets were 

generated, which means that a total of 12 000 data sets were generated. The 
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simulation was controlled so that the removal step would generate the requested 

number of data sets even if some data sets were discarded because of the data set 

reduction limit. 

In the imputation step, the controlling parameters depend on the imputation 

method. For the k-NN method, the only controlling parameter is the choice of which 

k-values to use when imputing data sets. We decided to use odd values in an interval 

from 1 to C, inclusively. Even though we knew that the CC strategy would fail at 

k = A + 1, we expected the IC strategy to be able to handle larger k-values. 

6.2 Software 

In order to execute the simulation, an application for carrying out the data removal, 

imputation and evaluation steps was written. In addition, Microsoft Excel and 

Microsoft Access were used for analysing some of the results from the evaluation 

step. 

In order to validate that the application worked correctly with respect to the k-NN 

method, a special data set was designed. The data set contained a low number of 

cases, in order to make it feasible to impute data manually, and was crafted so that the 

imputation should give different results both for different k-values, and for the two 

neighbour strategies. By comparing the outcome of the imputations performed by the 

application to the outcome of imputations made manually, it was decided that the 

implementation of the k-NN method was correct. To further assess this fact, a number 

of application features were inspected in more detail: the calculation of Euclidean 

distance, the calculation of median, and the selection of k donors for both strategies. 

Finally, a number of entries in the simulation results were randomly picked and 

checked for feasibility and correctness. 

The implementation of the remaining imputation methods was deemed correct 

through code reviews. 
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6.3 Process Reuse 

To be able to benchmark k-NN against the other imputation methods, we took 

advantage of the fact that we could reuse the results from the data removal step. We 

instructed the application to save the 12 000 incomplete data sets before passing them 

on to the imputation step. To obtain the benchmarking figures, we ran the simulation 

again for each of the other imputation methods except Random Draw Substitution, 

this time skipping the data removal step and feeding the saved incomplete data sets 

directly to the imputation step. This way, the other imputation methods worked with 

the same incomplete data sets as the k-NN method. 

Moreover, we had constructed the application to accept a reference data set in the 

evaluation step, in case the data removal step was omitted. This allowed us to obtain 

values for the R, Q and MSE metrics. 

7 Results 

In this section, we present the results from the simulations of the k-NN method and 

the other imputation methods. First, we provide descriptive statistics of the 

incomplete data sets generated in the initial simulation (and reused in subsequent 

simulations). Then, we address the questions posed in Section 1 as follows:  

• We compare the results for different values of k in order to find the appropriate 

number of donors. In doing so, we also look at differences between the CC and IC 

strategies, to assess whether or not the IC strategy is appropriate to use. 

• We compare the results from the original simulation with results from simulations 

using data sets with 12 and 18 attributes, respectively. 

• We look at how the performance of k-NN changes for different percentages of 

missing data, in order to find a limit where the method stops being usable. 

• Finally, we compare the performance of k-NN with the performance of the other 

imputation methods described in Section 4, in order to be able to judge its relative 

effectiveness. 
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7.1 Incomplete Data Sets 

As discussed in Section 5.1, there is a difference between the amount of data removed 

from the original data set and the amount of data actually missing from the resulting, 

incomplete, data sets. The main reason for this is that entire cases may be discarded 

because of the case reduction limit. Another, less significant, reason is rounding 

effects. For example, removing 5% of the data in the original data set means 

removing 16 attribute values out of 324, which equals 4.9%. 

Table 2 shows descriptive statistics for the incomplete data sets generated in the 

removal step. Each row represents the 1 000 data sets generated for the percentage 

stated in the left-most column. The second and third columns contain the mean and 

standard deviation (expressed with the same magnitude as the mean) of the 

percentage of missing data, respectively. The fourth and fifth columns contain the 

average number of cases and the average number of complete cases in each data set, 

respectively. Finally, the sixth column contains the average number of imputations 

made on each data set. This corresponds roughly to the average number of cases ( C ), 

which is the upper limit of k. 

Table 2. Overview of Incomplete Data Sets 

Pct. Mean missing data (%) s C  A  Avg. #imp. 

5 4.9 0.1 54.0 39.8 54.0 

10 9.8 0.3 53.9 28.8 54.0 

15 14.5 0.5 53.7 20.4 53.9 

20 19.0 0.8 53.2 14.2 53.6 

25 23.4 1.0 52.1 9.6 52.6 

30 27.2 1.2 50.5 6.3 51.0 

35 30.8 1.3 48.4 4.0 48.9 

40 34.4 1.3 46.0 2.4 46.5 

45 38.0 1.3 43.1 1.5 43.6 

50 42.1 1.3 40.1 0.8 40.6 

55 46.5 1.3 37.4 0.4 37.9 
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60 51.5 1.3 34.9 0.2 35.4 

7.2 Comparison of k-Values and Strategies 

For each percentage of missing data, we plotted the ability metric and the quality 

metrics for different values of k and for both of the neighbour selection strategies. It is 

not necessary to show all the 24 resulting diagrams, as there is a common pattern for 

all percentages. To illustrate this pattern, we show the diagrams for the data sets with 

14.5% and 19.0% missing data, respectively, in Fig. 3. 

The diagrams in the figure show the ability and quality for both the CC strategy 

and the IC strategy. In the upper diagram, the ability (R) is 1.0 up until k is around 15 

for both strategies, after which it falls and reaches 0.5 when k is around 21 for the CC 

strategy and slightly more for the IC strategy. The latter limit coincides with the 

average number of complete cases ( A ) in the data sets for this percentage (see Table 

2). Similarly, in the lower diagram we see that the ability is 1.0 up until k is around 9, 

and falls to 0.5 when k is around 15. Such limits, albeit different, exist for other 

percentages as well. 

Both diagrams further show that the precision (Q) of the method starts at around 

0.4 when k is 1, and increases up to around 0.5 when k reaches 5. Thereafter, the 

precision is fairly unaffected by the value of k and varies only slightly on a “ledge” of 

k-values, an observation similar to that made by Troyanskaya et al. (2001). This is 

true for both strategies. Because of the priorities of the performance metrics, 

discussed in Section 5.3, the ledge has a natural upper limit as the ability of the 

method drops. The initial increase in precision and the ledge of k-values exist for 

other percentages as well, up to a percentage where the drop in ability occurs already 

for a low k. In our data, this happens when around 30% data are missing, in which 

case the ability drops to 0.8 for the CC strategy and 0.9 for the IC strategy already 

when k is 3. 
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Fig. 3. Performance at 14.5% and 19.0% Missing Data, CC and IC 

The mean square error (MSE), which is the tertiary performance metric, starts off 

high but shows a noticeable decrease as k increases to 7. Then, it slowly increases for 

higher k-values on the aforementioned ledge. Although the increase is minimal, it 

seems to concur with the observation made in Section 4.5 that the estimated 

replacement values get worse as the mean distance to the donors increase. The 

described pattern in mean square error occurs for both strategies and for other 

percentages as well. 

The differences between the neighbour strategies can be seen by comparing the 

black curves, representing the CC strategy, to the grey curves, representing the IC 

strategy. As can be seen, the curves for R, Q and MSE are nearly identical between the 

strategies. The main difference is that the ability (R) of the method, as expected, does 

not drop as fast for the IC strategy as it does for the CC strategy. Two important 
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observations regarding the IC strategy are that the precision is generally not lower 

than for the CC strategy, and the mean square error is not larger. 

We see, based on the discussion about the performance metrics above, that k 

should be selected so that it is large enough to be on the ledge, but low enough to 

minimise the mean square error. Since the ledge gradually diminishes for higher 

percentages of missing data, k would preferably depend on the proportion of missing 

data. In fact, the dependency should be on the number of available neighbours for at 

least two reasons. First, the drop in ability occurs because the number of available 

neighbours decreases. For the CC strategy, the number of available neighbours is the 

number of complete cases. For the IC strategy, it is slightly more, but not so much 

more that the number of complete cases is an unfit approximation. Second, removing 

a certain percentage of data from two data sets with different numbers of attributes 

but the same number of cases would result in different numbers of complete cases. 

Table 3 and Table 4 show the observed optimal k-values for the CC strategy and 

the IC strategy, respectively, given the average number of complete cases for the 

simulated percentages. It can be seen that the optimal value of k for a certain number 

of neighbours is the same regardless of strategy. The tables also show the values of R, 

Q and MSE for each optimal k-value. As can be seen, the quality metrics get gradually 

worse as the number of complete cases, and thus the ability of the method, decreases. 

Table 3. Optimal k-Values with R, Q and MSE for the CC Strategy 

A =  39.8 28.8 20.4 14.2 9.6 6.3 4.0 2.4 1.5 0.8 0.4 0.2 

k 7 7 7 7 5 3 1 1 1 1 1 1 

R 1.00 1.00 1.00 1.00 0.99 0.98 0.99 0.93 0.80 0.57 0.37 0.20 

Q 0.52 0.51 0.51 0.50 0.48 0.47 0.42 0.42 0.41 0.41 0.40 0.40 

MSE 1.56 1.54 1.53 1.55 1.58 1.63 1.88 1.89 1.94 1.93 1.95 1.95 



      27 

Table 4. Optimal k-Values with R, Q and MSE for the IC Strategy 

A =  39.8 28.8 20.4 14.2 9.6 6.3 4.0 2.4 1.5 0.8 0.4 0.2 

k 7 7 7 7 5 3 1 1 1 1 1 1 

R 1.00 1.00 1.00 1.00 1.00 0.99 0.99 0.98 0.92 0.82 0.69 0.56 

Q 0.52 0.51 0.51 0.50 0.49 0.47 0.43 0.42 0.42 0.42 0.42 0.42 

MSE 1.56 1.54 1.52 1.54 1.57 1.62 1.87 1.88 1.90 1.90 1.90 1.90 

Looking for an appropriate model for k, we compared each optimal k-value to the 

square root of the average number of complete cases, as suggested by Duda and Hart 

(1973). The reason they suggest this model is that k should be large enough to give a 

reliable result, but small enough to keep the donors as close as possible. This concurs 

with our own requirements on k. Thus, we have chosen to examine 

k = RoundOdd( A ), which is the square root of the average number of complete 

cases after data removal, rounded to the nearest odd integer. This function is 

compared to the optimal k-values in Table 5. As can be seen, the function 

underestimates k somewhat in the mid-range of missing data. This does not mean that 

the calculated k-values are inappropriate, though. The relative errors in R, Q and MSE 

between the non-matching calculated and optimal k-values are for the CC strategy 

within the ranges 0–0.80%, 0.63–4.03% and 0.44–4.19%, respectively, and for the IC 

strategy within the ranges 0–0.45%, 0.80–4.42% and 0.31–4.48%, respectively. It 

should be noted that, since lower k means that fewer donors are required, the 

imputation ability errs on the positive side. Furthermore, as the calculated k does not 

drop to 1 in the mid-range of missing data, both Q and MSE will be better than their 

initial, unfavourable values (see Fig. 3). 

Table 5. Optimal k vs. Calculated k 

A =  39.8 28.8 20.4 14.2 9.6 6.3 4.0- 

Optimal 7 7 7 7 5 3 1 

Calculated 7 5 5 3 3 3 1 
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7.3 Comparison of Attribute Counts 

As mentioned, the number of complete cases for a data set with a certain percentage 

of missing data depends on, among other things, the number of attributes in the data 

set. Thus, in order to further test our findings, we performed two additional 

simulations with the k-NN method. In the first, the number of attributes was increased 

to 12 by simply appending a copy of each case to itself. In the second simulation, the 

number of attributes was increased to 18 in a similar way. The case reduction limits 

were increased accordingly. Since the number of cases was unchanged in these 

extended data sets, a certain percentage of removed data yielded more incomplete 

cases compared to the data set with six attributes. Consequently, the ability of the 

method drops quicker with more attributes. 

For 12 attributes and 4.9% missing data (5% removed), using k = 3 and the IC 

strategy results in Q ≈ 0.65 and MSE ≈ 1.15. The results are the same with 18 

attributes, also with 4.9% missing data (5% removed), k = 3 and the IC strategy. 

The diagrams in Fig. 4 show the results of imputing data sets with on average 9.9% 

missing data using the IC strategy. With 12 attributes, the average number of 

complete cases at this percentage is 15.3, and with 18 attributes it is 8.0. The precision 

(Q) is highest at k = 3 in both diagrams, but declines as k increases instead of showing 

a ledge as was the case with six attributes. Another difference is that the precision 

generally is higher with more attributes. Also, the mean square error starts low in both 

diagrams, and the increase as k grows larger is articulated compared to the results 

with six attributes. These observations further support our requirements on k, as stated 

earlier. 

In total, the results from the two additional simulations indicate that it is suitable to 

use k = RoundOdd( A ) with higher numbers of attributes as well, although 

comparing the optimal k-values and the calculated ones reveals that the optimal 

values are slightly lower for low percentages of missing data. As with six attributes, 

both Q and MSE get gradually worse as the percentage of missing data increases. For 

12 attributes, the method can maintain maximum ability (at k = 1) up to 19.8% 

missing data (20% removed), whereas for 18 attributes, the corresponding limit is at 

14.9% missing data (15% removed).  
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Fig. 4. 9.9% Missing Data, 12 (top) and 18 (bottom) Attributes, IC 

7.4 Comparison of Percentages 

In addition to comparing the ability and quality for different k-values, we compared 

the ability of the method for different proportions of missing data, using for each 

percentage the optimal k-value found earlier. The diagram (for six attributes) can be 

seen in Fig. 5 (for the raw numbers, see Table 3 and Table 4). Both neighbour 

strategies provide nearly maximum ability (R) up to around 30% missing data (when, 

on average, 88% of the cases are incomplete). After that, the ability when using the 

CC strategy drops rapidly down to 0.2 at around 50% missing data (when, on average, 

98% of the cases are incomplete), meaning that only 20% of the incomplete cases 

were recovered. The IC strategy, on the other hand, drops less drastically and can 

recover nearly 60% of the incomplete cases at around 50% missing data. 
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The figure clearly shows that the IC strategy is more advantageous when more data 

are missing. Because the comparison of k-values showed that the IC strategy does not 

give lower precision (Q) or larger mean square error (MSE) than the CC strategy, we 

consider it more favourable regardless of the proportion of missing data. 

 

Fig. 5. Ability vs. Proportion of Missing Data 

7.5 Benchmarking 

Here, we present the benchmarking of the k-NN method against the four other 

imputation methods. As basis for the comparisons, we use only the results from the 

original data set with six attributes imputed using the IC strategy. 

For Random Draw Substitution, where the selection of replacement values does not 

depend on the data distribution, it is straightforward to calculate the expected values 

of R, Q and MSE. For the informed imputation methods, we have performed 

additional simulations reusing the incomplete data sets generated initially (see Section 

6.3). 

Random Draw Substitution 

With RDS, we randomly draw a replacement value from the set of response options 

(i.e., from 1 to 5). Each response option has a probability of 0.2 for being selected, 

which means that the expected value of Q is 0.2. Since this imputation technique 
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never can fail to impute (as opposed to k-NN, which fails when there are too few 

neighbours), the expected value of R is 1. 

The expected value of MSE can be calculated given the average distribution of 

response options in the original data set. Let P(z) denote the probability that the 

correct value of a missing value is z. Given the fact that the probability of imputing 

any value is 0.2, the expected total MSE (TMSE) for all imputations can be expressed 

as 

( )( )20.2
x y

TMSE P y x y= × × −∑∑  (5) 

where x is the imputed value and y is the correct value. The problem is that TMSE 

includes the errors also when the correct value is imputed. These errors are all zero, 

which means that TMSE is lower than the expected MSE, which is defined as the 

relative error for the incorrectly imputed values. To obtain the correct MSE, TMSE 

must be divided by the probability of imputing an incorrect value, thus 

0.8
TMSEMSE =  (6) 

With P(z) = {0.015, 0.296, 0.340, 0.327, 0.022}, 1 5z≤ ≤ , which is the average 

distribution of response options in the original data, we obtain MSE ≈ 3.465. 

Random Imputation 

With RI, we draw a replacement value from the set of available answers to the current 

question, which means that the distribution of response options is taken into 

consideration. Given that the missingness mechanism for our data is MCAR, the 

distributions in the incomplete data sets can be assumed to equal the distribution in 

the complete data set. Thus, RI can be expected to perform reasonably well. With 

MAR as the missingness mechanism, the performance could be worse. 

As with RDS, this imputation technique cannot fail, and the expected value of R is 

1. The simulation with RI as the imputation method resulted in Q ≈ 0.41 and 

MSE ≈ 1.97 averaged over all 12 000 incomplete data sets. The averages for each 

individual percentage did not deviate much from the total averages. 
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Median Imputation 

With MEI, the replacement value is the median of all available answers to the current 

question. As pointed out in Section 4.3, the frequency of the response option that 

corresponds to the median has large effect on the imputation performance. Fig. 1 

shows that our data are favourable for MEI in this aspect, since most questions have 

frequent median response options. 

MEI cannot fail to impute, which means that the expected value of R is 1. The 

simulation with MEI as the imputation method gave the values Q ≈ 0.50 and 

MSE ≈ 1.59 averaged over all incomplete data sets. The averages of Q for individual 

percentages did not differ much from the total average. However, for MSE, the 

averages ranged from 1.55 to 1.61. 

Mode Imputation 

With MOI, the replacement value is the mode of all available answers to the current 

question. If the distribution of answers is multimodal, one of the modes is selected 

randomly. As described in Section 4.4, MOI does not perform well if the response 

option that corresponds to the mode is only slightly more frequent than other response 

options. Fig. 1 clearly shows that this is not the case in our data, which means that we 

can expect MOI to perform well. 

MOI cannot fail to impute, which means that the expected value of R is 1. The 

simulation with MOI as the imputation method resulted in Q ≈ 0.54 and MSE ≈ 1.85 

averaged over all incomplete data sets. The variations in average Q and average MSE 

for individual percentages were noticeable; Q varied from 0.51 to 0.56, and MSE 

varied from 1.79 to 1.90. 

7.6 Summary and Interpretation of the Results 

The results indicate that the k-NN method performs well on the type of data we have 

used, provided that a suitable value of k is selected. Table 6 presents an overview of 

the comparisons made in evaluating k-NN, whereas Table 7 shows an overview of the 

benchmarking against the other imputation methods. 
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Table 6. Results Overview 

 CC IC 

6 attributes • R starts to drop at around 

30% missing data. 

• With maximum ability, Q is 

at best 0.52 and at worst 

0.42. 

• With maximum ability, MSE 

is at best 1.53 and at worst 

1.88. 

• The ability drops less drastically 

than CC when the percentage of 

missing data increases. 

• R starts to drop between 30 and 

35% missing data. 

• Q and MSE are similar to when 

using CC. 

12 attributes - • R drops earlier (as there are 

fewer complete cases), at 

around 20% missing data. 

• Q is higher, at best 0.65. 

• MSE is lower, at best 1.15.  

18 attributes - • R drops even earlier, at around 

15% missing data, than with 12 

attributes. 

• Q and MSE are similar to when 

using 12 attributes. 

Table 6 shows that the IC strategy is favourable over the CC strategy, since it 

allows k-NN to maintain high ability for higher percentages of missing data, while the 

precision and mean square error are equally good. In addition, Fig. 5 shows that, 

when using the IC strategy, nearly 60% of the incomplete cases could be saved when 

50% of the data were missing. 

It can be seen that k-NN performs better with more attributes, both with respect to 

precision and mean square error. This is due to the fact that with more attributes, the 

method has more information available to discriminate between neighbours when it 

comes to distance. 
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Table 7. Benchmarking Overview 

 R Q MSE 

k-NN (IC), 6 attr. 1 (up to 30-35% 

missing data) 

0.42 to 0.52 1.53 to 1.88 

k-NN (IC), 12/18 

attr. 

1 (up to 15-20% 

missing data) 

up to 0.65 down to 1.15 

RDS 1 0.2 3.465 

RI 1 0.41 1.97 

MEI 1 0.50 1.55 to 1.61 

MOI 1 0.51 to 0.56 1.79 to 1.90 

It can be seen in Table 7 that RDS, as expected, does not perform very well. 

Comparing with the values of Q and MSE for k-NN, it is clear that k-NN easily 

outperforms the entirely random case. Furthermore, RI performs much better than 

RDS. The precision (Q) is twice as high, and the error (MSE) is much lower. 

However, compared to k-NN, RI falls short. 

MEI touches upon the six-attribute k-NN in terms of both precision and mean 

square error, and given that the ability (R) is always 1, it seems to be a viable 

alternative. Disadvantages of MEI are that it is more sensitive than k-NN to the 

distribution of response options (see Section 4.3), and that it does not perform better 

when the number of attributes increases. Furthermore, as with all single-value 

imputation, MEI may result in a disturbed data distribution, which becomes 

particularly noticeable when much data are missing. 

MOI does perform slightly better than the six-attribute k-NN with respect to 

precision (Q), but performs worse with respect to relative error (MSE). As with MEI, 

MOI is sensitive for the distribution of response option and does not improve with 

more attributes. The reason for MOI having worse MSE than MEI is that the modes of 

the majority of the questions in our data set correspond to response options 2 or 4, 

which do not dominate the distributions. Thus, if the mode is not the correct value, the 

error will be rather large. 
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With 12 or 18 attributes, k-NN outperforms both MEI and MOI. These methods 

does not scale with respect to number of attributes, since they only work with one 

attribute at a time. 

Judging from the results, k-NN proved to have good performance. However, both 

Median Imputation and Mode Imputation could compete with k-NN, given that both 

these methods were favoured by the distribution of our data. Median Imputation had 

similar precision and similar relative error, whereas Mode Imputation had slightly 

better precision, but worse relative error. Both methods will always have maximum 

ability (i.e., save all incomplete cases), which makes them attractive when much data 

are missing and there are many incomplete cases. 

It is of course desirable to achieve good values on all three performance metrics. 

However, when the performance decreases for whichever of the metrics, it is the 

priorities between them that should determine whether the imputation was successful 

or not. For example, if the quality drops but the ability stays high, the imputation may 

still be considered successful, because resorting to listwise deletion (or any other type 

of deletion procedure) may not be an option. 

8 Validity and Future Work 

In this section, we discuss threats to the validity of the evaluation and outline possible 

future work. 

8.1 Threats to Validity 

In the k-NN method, we used Euclidean distance as the similarity measure. However, 

since the data were of Likert type (i.e., on an ordinal scale), it is debatable to perform 

distance calculations, which normally requires an interval scale. Still, we argue that 

the distance calculations were relevant, and thus the validity threat minimal, because 

effort was put into making the distances between Likert numbers similar. 

Furthermore, our results show that the k-NN imputations were successful after all. 
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In step 1 of the evaluation, we removed data from the original data set completely 

at random, which means that the missingness mechanism was MCAR. It is more 

likely, though, that missing responses to a questionnaire are MAR, as pointed out by 

Raaijmakers (1999). In other words, the missingness mechanism used in the 

evaluation did not fully represent a real-world situation. Due to the nature of our data, 

we could not avoid this problem. 

It may be dangerous to use incomplete cases as donors when the missingness 

mechanism is MAR, for example if incomplete cases can be said to contain less 

valuable data. This could be the case if missing answers were an indication that the 

respondents did not take the questionnaire seriously. As a precaution, we recommend 

using a limit to prevent cases with far too much missing data both from being imputed 

and from acting as donors. 

A threat to the generalisability of the results is that we used a fairly small data set 

with 54 cases as a basis for the simulation. With a small data set with missing data, 

the neighbours that can be used as donors are few. Hence, the outcome of the 

imputation is sensitive to disturbances in the data, such as outliers. We do, however, 

believe that it is not uncommon to get a small data set when collecting data from a 

survey, which means that our simulation should be relevant from this point of view. 

Furthermore, that k-NN in our case generates replacement values based on the median 

of the donors’ values should alleviate the effect of outliers. 

A threat to the evaluation of k-NN with 12 or 18 attributes is that we created these 

extended data sets by appending one or two copies of each case to itself. This means 

that the similarity, if any, between two cases is duplicated as well. In a real data set 

with 12 or 18 attributes, two cases could be similar for six of the attributes, but 

different for six other attributes. This means that the performance metrics for 12 and 

18 attributes may be overly positive. 

8.2 Future Work 

Due to the nature of our data, we used only MCAR as missingness mechanism (see 

Section 5.1). In future work, it would be interesting to study imputation of Likert data 

with systematic differences that allow MAR missingness. For example, Song et al. 
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(2005) have concluded that the missingness mechanism does not significantly affect 

the k-NN method in the context of software project effort data. 

Each of the questions in the original questionnaire used a Likert scale with five 

response options. However, it is also common to use Likert scales with more response 

options, for example seven or ten. Hypothetically speaking, k-NN should gain from 

the fact that more response options means that it would be easier to differentiate 

between neighbours (and find close donors), but should lose from the fact that more 

response options makes it easier for two respondents to answer similarly, yet 

differently. The other imputation methods would likely have worse performance, as 

more response options, provided they were used, would result in a wider distribution 

with smaller frequencies for individual response options. These hypotheses would be 

interesting to test in future work. 

9 Conclusions 

In this paper, we have presented an evaluation of the performance of the k-Nearest 

Neighbour imputation method when using homogeneous Likert data. This type of 

ordinal data is common in surveys that collect subjective opinions from individuals. 

We performed the evaluation by simulating non-responsiveness in questionnaire data 

and subsequent imputation of the incomplete data. 

Since we simulated the evaluation process, we were able to obtain great variation 

in the imputation parameters and operate on a large number of incomplete data sets. 

In the main imputation process, we used different values of k, and also two different 

strategies for selecting neighbours, the CC strategy and the IC strategy. The CC 

strategy, which concurs with the rules of the k-NN method, allows only complete 

cases to act as neighbours. The IC strategy allows as neighbours also incomplete 

cases where attribute values that would not contribute to the distance calculation are 

missing. 

In order to measure the performance of the method, we defined one ability metric 

and two quality metrics. Based on the results of the simulation, we compared these 

metrics for different values of k and for different proportions of missing data. We also 
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compared the ability of the method for different proportions of missing data using 

optimal values of k. Furthermore, we performed additional simulations with more 

attributes, in order to see how the number of attributes affected the performance of the 

method. Finally, we benchmarked the method against four other imputation methods, 

in order to be able to assess its relative effectiveness. The methods were Random 

Draw Substitution, Random Imputation, Median Imputation and Mode Imputation. 

The benchmarking was performed through additional simulations where the k-NN 

method was replaced by the other methods. 

Our findings lead us to conclude the following in response to our research 

questions: 

• What is the performance of the k-NN method in relation to the other 

methods? Our results show that the k-NN method performed well when imputing 

homogeneous Likert data, provided that an appropriate value of k was used. It 

outperformed both Random Draw Substitution and Random Imputation, while both 

Median Imputation and Mode Imputation performed equally good or slightly 

better. However, it is clear that our data were favourable both for Median 

Imputation and Mode Imputation. With a different distribution of response options, 

these methods could perform worse, whereas the k-NN method should not, given 

that it is less sensitive to the data distribution. 

• How many donors should preferably be selected? It is not best to use k = 1, as 

we have seen is common, in all situations. Our results show that using the square 

root of the number of complete cases, rounded to the nearest odd integer, is a 

suitable model for k. 

• At which proportion of missing data is it no longer relevant to use the 

method? The outcome of the imputation depends on the number of complete cases 

more than the proportion of missing data. The method was successful even for high 

proportions of incomplete cases. For example, with six attributes and the IC 

strategy, the method had close to maximum ability when 95% of the cases were 

incomplete. Thus, we are confident that the method would have been able to 

handle our initial situation with missing data (see Section 3.1) very well. 
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• Is it possible to decrease the sensitivity to the proportion of missing data by 

allowing imputation from certain incomplete cases as well? When using the IC 

strategy, the ability of the method increased substantially compared to the CC 

strategy for larger proportions of missing data, while there was no negative impact 

on the quality of the imputations for smaller proportions of missing data. 

Consequently, the IC strategy seems, from a quality perspective, safe to use in all 

situations. 

• What effect has the number of attributes (variables) on the results? The k-NN 

method proved to scale well to more attributes, as both the precision and the mean 

square error improved for 12 and 18 attributes compared to six attributes. It is also 

evident that the other imputation methods are not positively affected by the number 

of attributes, as they do not make use of the additional amount of information. 
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