

M. Svahnberg and C. Wohlin, "An Investigation of a Method for Identifying a Software
Architecture Candidate with Respect to Quality Attributes", Empirical Software

Engineering: An International Journal, Vol. 10, No. 2, pp. 149-181, 2005.

An Investigation of a Method for Identifying a Software
Architecture Candidate with respect to Quality Attributes

Department of Software Engineering and Computer Science
Blekinge Institute of Technology, PO Box 520, S-372 25 Ronneby, SWEDEN

Phone: +46 457 385000

Mikael Svahnberg
Mikael.Svahnberg@bth.se

Claes Wohlin
Claes.Wohlin@bth.se
ABSTRACT
To sustain the qualities of a software system during
evolution, and to adapt the quality attributes as the
requirements evolve, it is necessary to have a clear
software architecture that is understood by all develop-
ers and to which all changes to the system adheres.
This software architecture can be created beforehand,
but must also be updated to reflect changes in the
domain, and hence the requirements of the software.
The choice of which software architecture to use is
typically based on informal decisions. There exist, to
the best of our knowledge, little factual knowledge of
which quality attributes are supported or obstructed by
different architecture approaches. In this paper we
present an empirical study of a method that enables
quantification of the perceived support different soft-
ware architectures give for different quality attributes.
This in turn enables an informed decision of which
architecture candidate best fit the mixture of quality
attributes required by a system being designed.

Keywords
Software Architectures, Quality Attributes, Analytic
Hierarchy Process

1. INTRODUCTION
In (Parnas 1994) Parnas describes the phenomenon of
software aging. He ascribes this to two causes: (1) the
domain changes around the software and (2) changes
to the system are introduced in a careless manner,
which degrades the system. Part of the solution to both
of these problems may be found in having and main-
taining a clear and updated software architecture for a
software system. To keep this architecture consistent
with a changing domain, it needs to be regularly re-
evaluated. By doing this on a regular basis, we believe
that the first form of aging can be, if not hindered, so
at least relieved.

An appropriate architecture is not only governed by
functional requirements, but to a large extent by qual-
ity attributes (Bass et al. 1998; Bosch 2000; Hofmeis-
ter et al. 2000). However, knowing this it is still a non-
trivial task to create an appropriate architecture. There
are usually more than one quality attribute involved in
a system, and the knowledge of the benefits and draw-
backs of different software architecture approaches
with respect to different quality attributes is not yet an
exact science. Decisions are often taken on intuition,
relying on the experience of senior software develop-
ers.

This imposes a problem because, as shown by
(Johansson et al. 2001), different stakeholders tend to
have different views of the importance of various qual-
ity requirements for a system, and the differing experi-
ences of the software developers may also lead to a
different interpretation of the strengths and weak-
nesses of architecture structures.

A structured decision support method facilitates in this
situation because it enables us to identify where stake-
holders and developers have differing opinions and
discuss these at an early stage, before these differences
of opinion may cause problems during the develop-
ment process. Moreover, a decision support method
that facilitates in structuring the knowledge of differ-
ent architectures may increase the confidence in the
decisions taken.

This paper presents an investigation of a method that
structures the knowledge and previous experiences of
subjects when assessing the support given for different
quality attributes in a set of software architecture can-
didates for a system being built. The goal of this
method is to enable software designers to select,
among a set of architecture candidates, the architecture
candidate which is most suitable for a particular sys-
tem. This is determined by assessing which architec-

ture candidate has the best potential for fulfilling the
blend of quality requirements for the system in ques-
tion. The method also pinpoints where the subjects do
not share a common view of the benefits and liabilities
of the architecture candidates so that focussed discus-
sions can be held.

The investigation illustrates how different individuals
understand and judge the support of quality attributes
in a comparison between software architectures. The
investigated method provides one important input to
decision-makers when selecting a suitable system
architecture, together with other considerations. For
example, these other considerations involve all aspects
of software development that are not measurable on
the software architecture or indeed the developed soft-
ware system, such as the development organisation.

We do not put any restrictions of the size or scope of
the software architectures or the software systems to
which the method is applied. This can range from parts
of a system to subsystems or the entire system. We
perceive a software architecture to consist of the over-
all structure of a software system, e.g. using the triplet
elements, form and rationale as described by (Perry &
Wolf 1992), or the tuple components and connectors
that (Shaw & Garlan 1996) and (Bass et al. 1998) dis-
cuss. However, for the sake of the method evaluated in
this paper any definition of software architecture is
usable, as long as all involved participants agree that
the used definition of software architecture provides
sufficient detail to enable a comparison of different
architecture candidates.

Similarly, we do not put any constraints on the com-
plexity of the quality attributes. However, in our expe-
rience it is beneficial if all quality attributes are on the
same level of granularity, as this facilitates comparison
between the quality attributes. Otherwise there is a risk
that a more complex quality attribute may dominate
the simpler quality attributes. Moreover it may be eas-
ier if the specific quality attributes are grouped into
categories to facilitate the prioritization process. The
reason why this is easier is simply that the number of
inputs to the creation of the framework decreases,
which reduces the number of comparisons that need to
be made.

The paper is organised as follows. Related work is pre-
sented in Section 2. Section 3 discusses the problem
addressed and the research questions related to the

problem. In Section 4, the study design is presented to
set the foundation for the results obtained. The opera-
tion of the study is described in Section 5. The results
of the investigation and an interpretation of the results
are provided in Section 6. Finally, a summary and
some conclusions are presented in Section 7. In the
remainder of this section we describe the scope of the
study, an outline of the studied architecture evaluation
method, and a description of the context in which the
architecture evaluation method is intended to be used,
since this differs slightly from the scope and the way
we perform this study.

1.1 Scope of Study

This paper is part of a technology transfer process con-
sisting of innovation, evaluation and application. This
process is illustrated in Figure 1. This process is a sub-
set of the technology transfer processes described in
(Wohlin et al. 1996) and (Linkman & Rombach 1997).

In this process the first step consists of innovation,
where an idea is born and developed to a “product”.
The next step is to test, or evaluate, the method. This is
preferably done in a lab environment, where more
parameters can be controlled and where the cost for
making mistakes is relatively low. Based on what is
learnt here one can either move back to the innovation
phase to further understand the phenomenon and
evolve the idea or move on to the application phase
where the idea or hypothesis is tested in real life set-
tings. The application phase is thus the last step. In this
step the idea has been tested in a lab environment and
is proven to be useful. Moreover, many of the teething
problems that any innovation suffers from have been
ironed out. In other words, the idea is developed to
such a level that it is ready to be tested in a live envi-
ronment, where not all parameters can be controlled. It
is possible to go back to the previous steps also from
the application step, if issues are found that need to be
further investigated or tested. Otherwise, the now fully
developed product remains in the application phase,

Figure 1. Technology Transfer Process

Innovation Evaluation Application

where it is used in live settings. At this stage it may
also be economically viable to develop tool support for
the idea.

The contribution of this paper is in the evaluation
phase, where we test certain aspects of an architecture
evaluation method in a lab environment (in our case,
an academic setting). As described in Section 1.3, the
intended usage of the investigated method is ulti-
mately in an industrial context where there is a known
target system and the architecture candidates and qual-
ity attributes used in the method are specific for this
known target system. However, before testing the
method in an industry setting, it is important to study
whether people will be in reasonable agreement about
well known architecture candidates with well known
benefits and liabilities. If it is difficult to study agree-
ments and pinpoint causes for disagreements in this
generic setting, this would be grounds for revising the
method further before applying it in an industrial set-
ting. Hence, we focus in this study on an academic set-
ting using generic architecture styles (i.e. templates on
which to base a concrete software architecture) with
known benefits and liabilities, and generic quality
attributes, rather than specific architecture candidates
and quality requirements for a particular software sys-
tem.

1.2 Method Outline
In (Svahnberg et al. 2002) we present a method for
pinpointing a suitable software architecture for a sys-
tem among a number of architecture candidates. The
method provides a structured and formalised way to
identify the most suitable software architecture candi-
date. This involves creating three different vectors or
sets of vectors containing:
• A prioritized list of quality attributes for the target

system.
• A comparison of the different software architec-

ture candidates for each software quality attribute.
• A comparison of the different quality attributes for

each software architecture candidate.
This method consists of the following steps:
Prepare Data. In this step we create and describe the
software architecture candidates and the quality
attributes to use in the study.
Create Individual Frameworks. Each of the partici-
pant in the study completes a questionnaire to create
an individual version of the two aforementioned sets
of vectors (i.e. two sets of vectors for each participant

in the study are created). In addition, each participant
in the study also creates a prioritized list of the quality
attributes. We focus the study in this paper on this par-
ticular step.

Analyse Individual Frameworks. The individual
frameworks are then analysed for internal consistency
and are then compared to the other individual frame-
works. The outcome of this step is to identify where
the participants are in agreement and where there are
differing opinions regarding the strengths and weak-
nesses of the different architecture candidates.

Discuss Individual Frameworks. In this step the
points where there are disagreement, as identified in
the analysis of the individual frameworks, are dis-
cussed in a meeting. These discussions are used to cre-
ate a joint understanding of the benefits and liabilities
of the software architecture candidates. The outcome
of these discussions is to have a joint understanding of
the architecture candidates, the quality attributes, and
where more work is needed to really understand the
impact of the quality attributes.

Suggest Software Architecture. The different indi-
vidual results are combined and used to calculate
which architecture candidate best match the quality
requirements (i.e. the blend of quality attributes) of the
system. However, we do not suggest that this recom-
mendation should be used without reflection. Instead,
we suggest that the recommendation is used to spark
discussions during the discussion meeting described
above.

1.3 Context of Method
The intention of the method investigated in this paper
is to act as one input to decision makers, together with
other inputs. The method focus on the perceived
potential different architecture candidates have to sup-
port different quality attributes. The keywords here are
thus perceived and potential.

The method measures the perceptions different per-
sons have of what the benefits and liabilities are of dif-
ferent architecture candidates. These perceptions are
coloured by the participants’ previous experiences,
and any bias they may have towards a particular archi-
tecture candidate, e.g. stemming from having built
systems using a similar architecture previously. We
argue that this is not a problem, since this experience
and bias is also likely to facilitate development of a
system using the favoured architecture candidate com-

pared to using a new and previously untested type of
architecture.

A software architecture can, at the early development
stages, only express a potential for achieving particu-
lar quality goals. There are many other aspects of soft-
ware development, e.g. lower level design and
implementation decisions and even the organisation of
the development department that may cause a system’s
quality levels to deviate from this potential. However,
this should not hinder at least making an effort to
ascertain a software architecture that has a potential
for supporting a particular blend of quality require-
ments at an early stage, to avoid forcing the system
into a mould that is unsuitable for the required blend
of quality attributes.

We would like to stress again that although we in this
evaluative study use generic architecture styles and
generic quality attributes without a specific target sys-
tem, this is not the intended application of the method.
As stated in Section 1.1, the purpose of this study is to
establish some initial results and determine whether it
is feasible to continue to an application of the method
in its real, industrial context. In the intended industrial
setting the method would take as input a known target
system, a number of concrete architecture suggestions
for this target system, and a set of quality attributes
that are relevant for this particular target system. In
this context, the main purpose of the method is to iden-
tify those aspects where people have different opinions
so that further investigations can be made before prob-
lems arise from these different opinions during devel-
opment, and to act as a decision support when
selecting a software architecture for the software sys-
tem.

2. RELATED WORK
Architecture evaluations can be separated into early
architecture evaluations and late architecture evalua-
tions (Lindvall et al. 2003), and different methods are
more or less suitable for either of these two types.

Late architecture evaluation is conducted during later
stages of the software development process when there
is a software system or at least a detailed design avail-
able on which more concrete metrics can be collected.
(Lindvall et al. 2003) is an example of this.

Early architecture evaluation, on the other hand, is
concerned with deciding at an early stage during the

software development process what qualities a soft-
ware architecture have a potential for exhibiting. The
intention of an early architecture evaluation is thus to
act as a decision support when determining whether to
continue development with a particular software archi-
tecture candidate, whether a developed software archi-
tecture candidate can be or need to be further
improved before development commences, or whether
a new software architecture candidate needs to be
developed. This is also the intention of the method
evaluated in this paper.

Early architecture evaluations are commonly based on
the experiences of the software developers and logical
reasoning, as there are usually no tangible artifacts on
which to e.g. perform simulations or collecting met-
rics. Oftentimes, this is aided by first specifying, cate-
gorising and prioritizing scenarios. These scenarios
then enables the evaluators to focus on one issue at a
time.

Examples of evaluation methods focused on early
evaluation and using scenarios are the Software Archi-
tecture Analysis Method (SAAM) (Bass et al. 1998)
that is solely based on the use of scenarios, its succes-
sor the Architecture Tradeoff Analysis Method
(ATAM) (Clements et al. 2002) that is more flexible in
the possible evaluation techniques, and various meth-
ods focusing on specific quality attributes such as
modifiability (Bengtsson 2002).

Part of the evaluation in ATAM may be done by using
Attribute Based Architectural Styles (ABAS), which is
basically a description of a particular architecture style
aimed at a particular quality attribute. Hence, an
ABAS includes a certain architecture style and a spe-
cific method for evaluating architectures based on this
style with respect to a certain quality attribute.

Another method that uses scenarios is Global Analysis
(Hofmeister et al. 2000). In Global Analysis, scenarios
are used to drive the design of the software architec-
ture forward through different perspectives. Global
Analysis is primarily aimed towards the creation of a
software architecture than evaluation of software
architectures, but this is done through continuously
evaluating what has been done before.

As mentioned, all of these methods are focused on
assessing the potential different software architecture
candidates have for fulfilling a certain specification or
blend of quality attributes. The method evaluated in

this paper is in this respect not different. There are,
however, some aspects that differ between the afore-
mentioned methods and the method evaluated in this
paper.

While the aforementioned methods tend to be per-
formed as a group activity, the method used in this
paper allows each participant to first form his or her
own opinion, and then the method facilitates in focus-
ing discussions around those issues where the involved
parties have different opinions. This means, of course,
that issues that all participants agree on are not cov-
ered, thus focusing on the areas where opinions are
different, and that the outcome is an increased joint
understanding of the benefits and liabilities of the dif-
ferent architecture candidates, what needs to be further
investigated, and how to go ahead with development.

Moreover, the methods above are focused on evaluat-
ing a single architecture to find out if and where there
may be problems in it. The method evaluated in this
paper is more aimed towards finding out which archi-
tecture candidate, of a set of architecture candidates,
has the most potential to support the mix of quality
attributes for a particular system to build. Accordingly,
the method used in this paper does not produce any
absolute measures on the architecture candidates.
Rather, it produces judgements relative to the other
architecture candidates on how good or bad the archi-
tecture candidates are with respect to a particular qual-
ity attribute, much in the same way as (Morisio et al.
2002) compares software artifacts with predefined
ideal artifacts.

A final difference is that the method in this paper is not
based on scenarios as the aforementioned methods are
(except for (Morisio et al. 2002)). This may, however,
be a possible and interesting future extension.

3. PROBLEM STATEMENT
In (Svahnberg et al. 2002) we simply assume that the
vector sets in step two of the method (described in
Section 1.2) can be created. In this paper we investi-
gate whether it is at all possible to create these vector
sets. This investigation consists of two parts:
1. It is generally held that some architectures are bet-

ter at certain tasks than others. For example, archi-
tectures based on the Layered (Buschmann et al.
1996) architecture style are considered to be bad at
performance but good at modifiability. Our first
task is to find out if these generally held opinions

in fact are so generally held, i.e. whether people
will agree on the strengths and weaknesses of dif-
ferent architectures (or more specifically the archi-
tecture styles).

2. The second task is to find out whether there actu-
ally are any grounds to use a particular architec-
ture in favour of another, or whether all
architectures are in fact perceived equal and that
the quality attributes a system presents are the
results of an engineering effort. As previously
mentioned, in this study we use generic architec-
ture styles instead of the concrete architecture can-
didates for which the architecture evaluation
method is intended. The reason for this is that with
the abstract styles, there is no target system or tar-
get domain that imposes any special traits on the
architecture candidates. Hence, if differences
between the architecture styles are found, we can
be more certain that these differences are in fact
manifested in the styles and not quirks of the tar-
get domain.

The overall goal of the study is thus to investigate a
specific approach for creating the individual frame-
works used in the method outlined in Section 1.2. This
approach should elicit the understanding of different
software architecture candidates with respect to a set
of quality attributes.

3.1 Research Questions
The research questions addressed in this paper are the
following:

Q11. Is the perception of the strengths and weaknesses
of different architecture candidates with respect to dif-
ferent quality attributes the same among a set of sub-
jects?

Q12. Is the perception of which architecture candi-
dates that best fulfil different quality attributes the
same among a set of subjects?

These two questions correspond to the first task set out
in Section 3, to seek an answer to whether it is at all
possible to create an agreement among persons with
different backgrounds. The answers to these two ques-
tions determine how accurate the answers to the fol-
lowing questions will be:

Q21. Is the perceived influence of different quality
attributes ranked differently for different software
architectures?

Q22. Are software architecture perceived as support-
ing different quality attributes differently?

Q21 and Q22 correspond to the second task in Section
3, to find out whether stakeholders perceive large
enough differences between different architecture can-
didates in terms of support for different quality
attributes to motivate the choice of a particular archi-
tecture candidate over the others. The purpose of these
two questions is thus to find out if we are able to quan-
tify the perceived differences between architecture
candidates.

The reason to divide each question (Q1x and Q2x) into
two separate questions can be explained by examining
the situation in Figure 2. In this figure, two architec-
tures are rated compared to each other with respect to
quality attribute C (the y-axis is assumed to represent a
measure of architecture fitness or an absolute measure
of support provided for different quality attributes).
Moreover, within each architecture three quality
attributes are rated. Just looking at the ranking of the
quality attributes within each architecture one is lead
to believe that architecture B is better than architecture
A with respect to quality attribute C. However, when
ranking the two architectures from the other perspec-
tive, i.e. with respect a certain quality attribute
(attribute C in the figure) along the y-axis, it is clearly
seen that even though quality attribute C is architec-
ture B’s best quality it is still completely surpassed by
architecture A. Hence, comparisons from both per-
spectives are necessary to get a complete picture.

4. STUDY DESIGN

In this section, we describe the planning and design of
the study conducted to gather data to answer the ques-
tions posed in Section 3.1.

4.1 Context
The investigation is conducted in a university setting
with academic people with a good knowledge of soft-
ware architectures and software quality. In many
empirical studies the university setting would be
regarded as a validity threat. We prefer to see it as a
step along the way, as discussed in Section 1.1. The
contribution of this paper is in the evaluation phase,
which is preferably performed in a lab environment.
Based on what is learnt here, one can either move back
to the innovation phase to further understand the phe-
nomenon and evolve the theories, or move on to the
application phase where the theories are tested in real
life settings. Hence, the context of the study differs
from that of the architecture evaluation method (as
described in Section 1.3). In this study we focus on
some particular aspects of the architecture evaluation
method, and thus construct a setting where these can
be measured in a controlled way. The results from this
study are not intended to be usable in the full context
of the architecture evaluation method.

4.2 Variables
Two sets of variables are used in the study. The first
set is related to which software architecture candidates
to include in the study, and the other concerns which
quality attributes to use. From the perspective of the
method any quality attributes and architecture candi-
dates can be used. In an industrial setting, i.e. where
the method is intended to be used, the architecture can-
didates would be concrete architecture suggestions for
a system to design or re-evaluate and the quality
attributes would be those relevant for this particular
system and for the company as a whole.

In this study, however, we evaluate whether it is at all
possible to discern between different software archi-
tectures with respect to quality attributes. In order to
avoid that the quirks of a particular problem space
clouds the results, we choose to use generic software
architecture styles instead of concrete architecture can-
didates. These architecture styles are patterns, or tem-
plates, from which a concrete software architecture
can be built. The architecture styles used in this study
(presented below) are well tested styles with well
known benefits and liabilities. The question to answer
in this study is thus whether these benefits and liabili-
ties are generally agreed upon and comparable.

We set no restrictions on the size of the software entity
in which the software architecture styles are used. The

Figure 2. Ranking of two Architectures

Architecture A
• Quality Attribute A
• Quality Attribute B
• Quality Attribute C Architecture B

• Quality Attribute C
• Quality Attribute B
• Quality Attribute A

Architecture “fitness”

software entity may be an entire product, but may also
be a module, a subsystem, or a component within a
software system. The same goes for the selected qual-
ity attributes: in this study we have chosen the very
top-level categories of quality attributes, but there are
no restrictions in applying the evaluated method to
lower-level, more concrete, quality attributes.

Architecture Candidates. In this study we use the
following five architecture patterns of the eight pat-
terns presented by (Buschmann et al. 1996), namely:
• Layered
• Pipes and Filters
• Blackboard
• Model-View-Controller
• Microkernel
We choose to exclude the patterns Reflection, because
of its relative high complexity in comparison to the
other patterns, Presentation-Abstraction-Controller, as
it can be seen as merely a higher-level usage of the
Model-View-Controller pattern, and Broker, as it is
just a solution to a distributed problem that would if
the problem was not distributed be represented as
lower level design patterns (Gamma et al. 1995) and
not as a system structure.

The benefits of choosing the architecture styles above
is that they are familiar to most software engineers.
They also represent the same level of abstraction, i.e.
system or subsystem level. Being on this level of
abstraction also ensures that it is possible to reason
about quality attributes for each of the architecture
styles. This is already today done in an informal way
e.g. when deciding which architecture style to base a
software architecture for a particular system on.

These architecture patterns can for the sake of this
study be replaced with other styles, e.g. those pre-
sented in (Shaw & Garlan 1996). Likewise, the Design
Patterns from (Gamma et al. 1995) also possible alter-
natives to use.

As presented in Section 5.1, for each of the patterns we
provide the participants with copies of the text from
(Buschmann et al. 1996) presenting an abstract of the
pattern, an example, the context, the problem, solution
and structure of the patterns. We avoided including the
section covering benefits and liabilities of each pat-
tern, in order to elicit the participants’ own interpreta-
tions and experiences of the architecture patterns.

Quality Attributes. For the same reason that we use
architecture styles in this study instead of concrete
architectures, we also use generic quality attributes,
not directly aimed at a particular software system. In
order to get an as disparate set of quality attributes as
possible, we choose to use one of the many different
categorisations of quality attributes (see e.g. (McCall
1994)), i.e. the ISO 9126 standard (ISO 9126).

As indicated, one purpose of a classification of quality
attributes is to provide a wide coverage of different
aspects of a software system. The classification of
these aspects thus focus on ordering the aspects in to
high level groups where each group contains a set of
aspects that logically belong together. It is the goal of
every classification to try to maintain disparate sets of
characteristica, or at least reduce the amount of over-
lap between different categories. Because of interac-
tions between different quality attributes, this has
proven to be a considerable challenge, and it is likely
that categories of quality attributes in any categorisa-
tion will interact and support or compete with each
other. However, we argue that it is still possible to
compare different architecture candidates based on
quality attributes - be they high level categories of
quality attributes or low-level specific quality
attributes. Q21 and Q22 aims at providing support for
this claim.

For this study, with its academic context and the pur-
pose of evaluating the potential of a particular archi-
tecture evaluation method, we choose to use the well
known and generic quality attributes defined by the
ISO 9126 standard (ISO 9126), categorised into the
following main categories:
• Functionality
• Reliability
• Usability
• Efficiency
• Maintainability
• Portability
The set of quality attributes used in this study can eas-
ily be replaced with another set, should there be any
objections to the ones defined in this ISO standard.
The intention is to select a well known set of quality
attributes and then it is more important to study the
research questions based on these, than to ponder
whether these are an optimal selection.

We provide the participants with copies of pages 7 thru
11 of ISO 9126 (ISO 9126), where the high-level cate-

gories of quality attributes and the lower-level quality
attributes these contain are presented.

There are many quality attributes (and parts of some of
the chosen quality attributes) that are not represented
in the software architecture. Such quality attributes
may have impact on development lead time, organisa-
tion structure, cost and so on. The architecture evalua-
tion method studied in this paper focus on those
aspects that are discernible by examining the software
architecture, leaving other aspects to other methods.
Hence, this method provides only one aspect neces-
sary to make an informed decision, and it should be
used together with other methods to create a full pic-
ture before a decision is taken.

4.3 Subjects
We choose to use a small board of experts in the field
for the study, i.e. people from academia. More particu-
larly, we use our colleagues and ourselves, which
amounts to eight participants. Most of these partici-
pants have considerable industrial experience as well
and some are even part time employed by industry,
which ensures that the knowledge of the participants is
not only based on theory, but also grounded in prac-

tise. Table 1 lists a brief description of the experiences
of each participant1. The practical experiences of the
participants range from large scale parallel applica-
tions to large scale database systems, general informa-
tion systems, telecommunications applications,
compilers and embedded applications.

None of these participants have anything invested in
the results of this study, not even ourselves. There is a
risk that the participants are biased in favour of previ-
ously used architecture styles, but considering the
broad range of previous experiences from different
application domains, a bias from one participant for a
particular architecture style is levelled out by the other
participants. Moreover, this would only affect one half
of the results (covering the comparison of architecture
structures with respect to each quality attribute, as dis-
cussed in Section 3.1 and in Section 4.5). The answers
from a small number of biased participants would also
be visible during the analysis of the results, as outliers.

1. Please note that the names are not the real
names of the participants.

Table 1. Experiences of Subjects

Name Title Experience

Bob Ph.D.
Student

Have done research on software development together with industry partners.
Have participated in several large development projects.

Larry Professor Some industry practise.
Have done research on conflicts between quality attributes in software systems together with industry partners.
Have done research on several large industry applications, involving their software architecture.

Edward Ph.D. Have done research related to specific quality attributes.
Have experience supervising development projects.
Have been teaching object-oriented design methods and quality attributes in object-oriented design.

Kenneth Ph.D. Have done research on software architectures together with industry partners.
Have done research on software product-line architectures together with industry partners.
Have done research on object-oriented frameworks together with industry partners.

Ivan Ph.D. Several years of industry practise.
Part-time industry employed.
Have done research on conflicts between quality attributes in software systems together with industry partners.

Nathan Ph.D.
Student

Ph.D. studies specialised in software architectures and architecture evaluation, conducted together with industry
partners.
Have participated in several large development projects.
Have conducted numerous software architecture evaluations together with industry partners.

George Professor Several years of industry practise.
Have done research on software evaluations and software architecture evaluation together with industry partners.

Eric Ph.D. Several years of industry practise.
Have done research on software architecture evaluation.
Have done research on software architectures together with industry partners.
Have participated in several large development projects.
Have conducted numerous software architecture evaluations together with industry partners.

Hence, we can expect an objective result but are pre-
pared to manage biased results.

4.4 Decision Method
When creating the individual frameworks, as outlined
in Section 1.2, we need a decision method that enables
a quantitative comparison between different quality
attributes and architecture candidates. One such deci-
sion method is the Analytic Hierarchy Process (AHP)
(Saaty 1980; Saaty & Vargas 2001), used in multi-cri-
teria decision making and management science
(Anderson et al. 2000). AHP is further presented in
Appendix A.

AHP does not measure any absolute qualities of the
software architecture candidates. Instead, it structures
the experiences and knowledge of individuals with
respect to the effect different architecture solutions
have on different quality attributes. For the intended
usages of the method in this study, we argue that this
relative assessment is ample. According to (Helmer &
Rescher 1959), using AHP need not even be a breech
of objectivity. This may, however, be of lesser impor-
tance when considering the use to which the created
data sets are put in the studied architecture evaluation
method. As the data sets are used to drive discussions
with the purpose of eliciting any problematic or misin-
terpreted issues, subjectivity in the form of personal
experiences and background is in fact an almost
desired quality, when applying the architecture evalua-
tion method in a real life context.

4.5 Instrumentation
Each participant gets a different form, where the order
of the questions is randomized according to three sim-
ple principles:
• One half of the subjects starts with questions

related to Q11 and Q21. The other half starts with
questions related to Q12 and Q22.

• For each of the two main questions (Q11+Q21 and
Q12+Q22, respectively), the order of the architec-
ture candidates and quality attributes is random-
ized.

• Finally, the questions (i.e. the pair-wise AHP com-
parisons) for each architecture candidate and qual-
ity attribute are asked in a random order.

Using these simple principles the questions are
answered in a random order. The main reason of
course being that the results should be independent of
the order on the forms.

4.6 Validity Evaluation
In this section, the threats to the investigation are dis-
cussed. For a thorough description of possible threats
to studies, see (Wohlin et al. 2000).
Conclusion Validity. As the answer to each question
in the form is a subjective judgement, the answers will
not be exactly the same for all participants. Indeed, it
is not even certain that a participant will answer
exactly the same, should the study be repeated. The
reliability of each person’s individual measures is thus
not as high as one would hope. However, the consis-
tency index within the AHP method helps to check the
consistency of the individuals. Hence, as it is part of
the study to measure the amount by which different
participants disagree, as long as each participant is
internally consistent this is not a problem.

The questions to answer are of such a character that
the answer to each question is independent of when the
previous questions were answered. Because of this we
see no troubles if the exercise is interrupted for shorter
time intervals, e.g. by e.g. phone calls, coffee breaks or
fire drills. If, however, the breaks are longer, e.g. over-
night, this may influence the consistency of the
answers. This because it is possible to mature while
completing the study, and one may sometimes wish to
go back and correct some earlier answers, provided
these are still fresh in memory.

If, during coffee breaks the participants discuss their
answers, this may lead to participants changing their
opinion on some questions. However, as a subsequent
step in the studied method is to hold a discussion
meeting to create a collective result (as outlined in
Section 1.2), the only result of this would be to facili-
tate the process of creating a joint understanding.

As discussed in Section 4.3, the participants may be
biased based on their previous experiences to favour a
particular architecture structure. Because of the wide
range of different experiences, we expect this effect to
be equal for all architecture candidates and hence not
visible. Moreover, if a participant favours a certain
architecture structure when the general consensus have
a different opinion this will be visible as outliers dur-
ing the analysis.

The lack of a concrete and common target system may
cause the participants to envision a target system based
on their respective experiences when evaluating the
software architecture candidates. There is a risk that

this may lead to a bias, as discussed above, in favour
of the most common architecture style for each envi-
sioned target system. This may also mean that the
architectures are assessed in light of the characteristica
of that particular target domain. However, because it is
a separate part of the architecture evaluation method to
also rate the quality attribute requirements for the tar-
get system, the assessment of the architecture candi-
dates should be done without considering the typical
requirements from the target domain.

Hence, envisioning different target systems and thus
different instantiations of the architecture styles should
not influence the results unduly. This is of course dif-
ferent between this study and the intended context of
the method, where there indeed are concrete architec-
tures and it is with a particular target system in mind
that the architecture candidates are assessed. More-
over, because of the wide range of experiences as dis-
cussed above, we expect the envisioned target
systems, if any, to be as different as the architecture
candidates favoured out of bias, and any bias stem-
ming from an envisioned target system as easy to
detect as the bias stemming from previous experience.
Internal Validity. As the participants answer more
and more questions, we expect them to become more
acquainted with the AHP method, and possibly grow
bolder in their answers, spreading them more from the
centre value. To counter this effect, the forms are con-
structed in a random way, as described in Section 4.5.
This ensures that questions asked last for one partici-
pant, i.e. when the participant has matured, are poten-
tially asked first for another participant, when this
person is still unmatured.
Construct Validity. We see no threat if the partici-
pants are aware of the hypothesis we try to prove, and
hence make no secret of it. As we have no interest in
favouring any particular architecture candidate or
quality attribute, but rather to get a view of the partici-
pants opinions of all the architecture candidates and
quality attributes, there is no way in which the partici-
pants can tweak their answers to satisfy any hidden
hypothesis we may have.

The risk of bias based on experience to envision a tar-
get system or favour a particular architecture candi-
date, as discussed above, is in the context of this study
reduced since the participants are themselves profes-
sional researchers trained at assessing alternatives
objectively. Moreover, not having to actually build a

system based on the assessment also increases the
probability that the participants can relax and answer
in an unbiased way. If anything, we expect the partici-
pants to be more critical towards the architecture can-
didates and the quality attributes they are familiar
with. It is, of course, a different situation if the method
is applied in an industry context with industry partici-
pants and the “threat” of having to build a system
based on the architecture assessment.

We are aware that the method used in this study can
also be used to evaluate persons, e.g. to see how close
to some company norm their answers fall, and that
some persons may perform differently as the result of
knowing that they are being evaluated. However, we
do not expect this to be a problem for the study in this
paper. The participants are aware that this is not a per-
sonal evaluation, and are all professional researchers,
aware of the intended usage of their answers.

External Validity. The construction of the study is
such that it should work just as well at another place
with a different set of participants with different back-
grounds, a different set of quality attributes and a dif-
ferent set of architecture candidates.

5. OPERATION
In this section we describe the execution of the study,
starting with the preparation, and continuing with the
actual execution.

5.1 Preparation
Before the meeting, information was handed out to the
participants concerning quality attributes and architec-
ture candidates. This was handed out to ensure that
people had approximately the same view on the archi-
tecture candidates and quality attributes, although we
knew that most of the researchers were familiar with
both the architecture styles and quality attributes any-
way.

Specifically, pages 7 thru 11 of ISO 9126 (ISO 9126)
was handed out as information regarding quality
attributes, and a selection of the pages describing the
patterns used in (Buschmann et al. 1996). The full text
for the patterns is 100 pages, which would introduce a
threat that the material has not been read before the
meeting. Instead, the first pages of each pattern was
used, presenting an abstract of the pattern, an example,
the context, the problem, solution and structure of the
patterns. We considered including the consequences-

section for each pattern, where the benefits and liabili-
ties of using a particular pattern is presented, but opted
not to, as this may introduce a threat that it is not the
participants judgements of the patterns that emerge
during the study but that of the authors of the patterns
book.

Moreover, material presenting the decision method
used, i.e. AHP, and a short introduction to the study
was handed out. The brief description of AHP is to be
seen more as background reading.

If the full method is applied, the preparations would
also consist of creating the architecture candidates and
describing the quality attributes used, before sending
this out to the participants to study.

5.2 Execution
Based on previous experiences with AHP (Karlsson et
al. 1998) we estimated that it would take approxi-
mately 20 seconds per question. Assuming six quality
attributes there will be 15 (n*(n-1)/2) questions asked
for each architecture candidate. With five architecture
candidates we have 75 questions. Moreover, as we
wish to consider both the comparison of quality
attributes per architecture candidate (Qx1) as well as
the comparison of architecture candidates with respect
to each quality attribute (Qx2) so the number of ques-
tions is increased by another 60 questions ((5*(5-1)/
2)*6), totalling 135 questions. This results in approxi-
mately 1½ hours of concentrated work for the partici-
pants.

As it turned out, the participants preferred to fill in the
forms in their own offices, so after the introduction
most of the participants left the meeting room and
came back with the filled in form later. All participants
had handed in the form after 1 ½ hour, which indicates
that they worked relatively undisturbed. Hence, we do
not believe that this introduced an extra threat to the
study.

Moreover, during the introduction the following ques-
tions were defined as being the ones to answer:
• Which Quality Attribute, A or B, is most sup-

ported by the Architecture Candidate, and how
much more supported is it?

• Which Architecture Candidate, A or B, is most
fulfilling the Quality Attribute, and how much
more does it fulfill it?

The texts on AHP presents the different answers as
different grades of importance, e.g. “more important”,

“highly more important” or “extremely more impor-
tant”. In our study, we defined the answers to be “more
supported”, “highly more supported” and “extremely
more supported”.

5.3 Data Validation
As one of the research questions is to find out whether
people agree or not, it seems unreasonable to disqual-
ify some participants because their answers are not in
conformance to the others, although people with dis-
parate opinions were observed extra carefully during
the analysis as this may for example indicate bias in
favour of a particular architecture style.

AHP provides a consistency ratio that can be used to
determine whether the participants have answered
consistently, i.e. in agreement with themselves. Study-
ing the consistency ratios, the participants were sur-
prisingly consistent. Not one exceeded a ratio of 0.13,
only one exceeded 0.12, most participants achieved a
ratio of around 0.11 and one even scored a ratio of
0.03. These are very good values and indicate that the
participants have indeed been consistent while com-
pleting the forms.

6. ANALYSIS AND INTERPRETATION
The data from the forms are, in accordance with the
AHP method, reformatted into 11 vectors (one for
each architecture candidate and one for each quality
attribute) per participant. These 11 vectors per partici-
pant are used as input to the analysis phase.

6.1 Analysis for Q11 and Q12

In the analysis for Q11 and Q12, we identify the
amount of agreement or disagreement for each of the
11 vector sets. This is important to answer the question
whether it can be expected that people with different
backgrounds can come to a general agreement. If this
turns out to be the case, this also means that it is possi-
ble to easily identify participants with an opinion that
differs from the majority. It is important to discuss
such a difference of opinion and understand the cause
of it before development commences. For example,
differences in opinion may indicate that further inves-
tigations are necessary or that an important aspect has
been overlooked. Hence, identifying where partici-
pants have different opinions is part of the prepara-
tions for the subsequent discussion meeting as
described in Section 1.2.

Comparing each vector set for all participants, the fol-
lowing four scenarios are possible:
1. All participants agree.
2. Most participants agree.
3. The participants form separate groups.
4. The participants disagree and form no groups.
Rather than setting some arbitrary thresholds as to
what would constitute a group or not, we chose for this
study to use principal component analysis (PCA)
(Kachigan 1986) to find groups among how the partic-
ipants have answered.

For the 11 vectors, this technique arranges the partici-
pants into groups in all cases, resulting in the values in
Table 2. This table displays the number of groups of
agreeing people and the sizes of these groups for each
architecture candidate and quality attribute. For exam-
ple, for Model-View-Controller and Usability five of
the participants were in agreement, two more agreed

with each other, and a single person did not agree with
anyone else. Based on these values, it would be possi-
ble to conclude that cases 1 and 4 never occurred:
never did all participants agree or disagree.

However, PCA does not take into account how small
the differences between groups are. If all participants
mostly agree, the technique simply becomes that more
sensitive to smaller discrepancies. For example, the
Layered architecture was expected to result in one, or
at most two groups. The grounds for this assumption
can be found by visually examining the values of the
participants plotted into a graph. This graph is pre-
sented in Figure 3. As can be seen, there is a large con-
sensus that Maintainability and Portability should
score high, whereas the remaining quality attributes
only have a minor role to play in the Layered architec-
ture. However, PCA identifies several groups, consist-
ing of:
• Edward and George
• Bob and Eric
• Kenneth, Ivan, Larry and Nathan.
These groups are not obviously identifiable in the
graph in Figure 3. Hence, we conclude that we need a
different way to measure where the participants agree
or not.

To come to terms with that PCA sometimes finds too
many groups, we need a number on how far away
from each other the participants really are. For this we
use the sum of the square of the distance to the mean
value, according to the following formula:

Table 2. Number of persons per group and vector set

Vector

si
ng

le
s

2-
gr

ou
ps

3-
gr

ou
ps

4-
gr

ou
ps

5-
gr

ou
ps

Blackboard 1 2 1
Layered 2 1
Microkernel 3 1 1
Model-View-Controller 1 1 1
Pipes and Filters 1 1 1
Efficiency 2 1
Functionality 3 1 1
Maintainability 4 2
Portability 1 1 1
Reliability 2 2
Usability 1 1 1

Figure 3. Layered architecture

0
0,05
0,1

0,15
0,2

0,25
0,3

0,35
0,4

0,45

Bob Larry Edw ard Kenneth Ivan Nathan George Eric

Eff iciency

Functionality

Usability

Reliability

Maintainability

Portability

Rating

xi x–()2

persons
∑

attributes
∑

Where attributes are the 5 architecture candidates or
the 6 quality attributes that are compared within one
vector set. These sums are presented in Table 3. This
table shows a measure for each of the 11 vector sets a
total over all data points in the vector how much the
opinions differ.

We had hoped that these two measures would together
give an indication of how well the participants agreed.
However, much to our dismay many of the vector sets

which we by examining the graphs would judge as
being in agreement still score high values. By examin-
ing the graphs further, identifying the groups indicated
by the PCA, it becomes clear that many high values
can be explained by a few participants or groups of
participants with extremely different opinions com-
pared to the others. This is the case with for example
the Microkernel architecture (Figure 4) and the quality
attribute Usability (Figure 5).

The values for Microkernel are presented in the graph
in Figure 4. In this case, we see that the largest dis-
crepancy, which is also the likely basis for the PCA to
divide the participants into two relatively large groups
is that there are two disparate opinions regarding
Maintainability and Portability.

For Usability, there is almost complete agreement,
which is also indicated by the PCA and can be visually
confirmed in the graph in Figure 5. Two persons,
Edward and Kenneth have a slightly different opinion,
albeit in agreement with each other, and a third partici-
pant, Ivan, is of a completely different opinion com-
pared to the others.

Table 3. Sum of squared distance to the mean

Vector sum of squared distance to mean

Blackboard 0.505
Layered 0.150
Microkernel 0.693
Model-View-Controller 0.373
Pipes and Filters 0.385
Efficiency 0.453
Functionality 0.495
Maintainability 0.519
Portability 0.435
Reliability 0.592
Usability 0.468

Figure 4. Microkernel architecture

0

0,1

0,2

0,3

0,4

0,5

0,6

Efficiency Functionality Usability Reliability Maintainability Portability

Bob

Larry

Edw ard

Kenneth

Ivan

Nathan

George

Eric

Rating

Figure 5. Usability

0

0,1

0,2

0,3

0,4

0,5

Microkernel Blackboard Layered Model-View -
Controller

Pipes and Filters

Bob

Larry

Edw ard

Kenneth

Ivan

Nathan

George

Eric

Rating

Studying graphs of the vectors, such as the ones pre-
sented in Figure 3, 4 and 5, it is clear that PCA is too
sensitive for our needs, and hence we instead recom-
mend that the squared distance to the mean value is
used for each data point (i.e. not summed over all
attributes) to identify those points where there are dis-
agreements so that discussions can be held around
these points.

To continue the analysis of the answers, when taking
outliers such as the ones visually identified in the
graphs and with the help of the calculations above into
account, there is mostly agreement between the partic-
ipants on six of the eleven vector sets (i.e. Layered,
Model-View-Controller, Pipes and Filters, Efficiency,
Portability and Usability), and on three more (i.e.
Blackboard, Microkernel and Functionality) the par-
ticipants are reasonably in agreement, albeit forming
separate groups. In two cases (Maintainability and
Reliability) there is enough spread between the
answers to claim that there is mostly disagreement
among the participants.1

This means that there is a reasonably good joint under-
standing of several of the software architecture styles
and quality attributes used. One major result here is
that we are able to pinpoint (in a quantifiable way)
where people agree and disagree, which can be used to
spark discussions to resolve the disagreements during
the subsequent discussion meeting described in Sec-
tion 1.2.

Although not as important as the general agreement or
disagreement, we also wanted to study whether certain
individuals often had the same opinion. Thus, the next
step in this analysis is to see how often different peo-
ple agree. To this end we count the number of times
two persons appear in the same group (i.e. agree on a
vector set) for all 28 possible combinations of the eight
participants. This count is found in Table 4.

We consider any group appearing five times or more to
be in relative agreement. There are seven such groups,
whereas a rough calculation yields that, statistically, a
completely random ordering of persons into the same
types of groups that PCA renders would give eight
groups appearing five times or more. Hence, this may

be a statistical artifact. On the other hand, it may not
be that important whether certain individuals have the
same opinion; it is most likely more important to
understand where there seem to be a general agree-
ment and where there is not.

6.1.1 Summary

Q11 and Q12 concerns whether it is possible to create
an agreement between subjects with different back-
grounds. Using PCA we study how different people
are grouped together and how many persons there are
in each group. To come to terms with that PCA
becomes more sensitive when there are smaller differ-
ences, we also study how far from the mean value the
participants are. This is used as input when visually
studying graphs of the vector sets.

After accounting for outliers, we conclude that there is
an agreement for most of the architecture candidates
and quality attributes, and more importantly that it is
possible to identify participants with differing opin-
ions. Although outside the scope of this paper, it is
important to understand why participants have differ-
ent opinions as there may be reasons to conduct further
investigations or discuss the architecture candidates
further to reach an increased joint understanding.

It should be noted that the sample size (eight partici-
pants) is not as large as one would hope for. This
means that a small number outlying data points consti-
tute a rather large part of the data set. Hence, we
encourage replications of this study, if possible with
larger sample sizes.

To answer questions Q11 and Q12, the perception of
architecture candidates with respect to quality
attributes is mostly similar among our set of subjects.

6.2 Analysis of Q21 and Q22

As the outcome of the analysis of Q11 and Q12 is
mostly positive, it is meaningful to continue with an

1. For reasons of brevity we choose not to present all
data sets in this paper. However, the data can be obtained
by sending an e-mail to the first author.

Table 4. Number of groups that occur a number of times

Number of times Number of groups

One time 1
Two times 9
Three times 6
Four times 5
Five times 2
Six times 4
Seven times 1

analysis of Q21 and Q22, which is done below. We
would, however like to point out that analysing differ-
ent architecture patterns and abstract quality attributes
is not the main intended usage of the method in this
paper. Rather, in an industrial setting, the elements to
analyse would be concrete architecture candidates for
a particular software system, and the relevant quality
attributes for this system. The analysis below should
hence be seen more as an example of how to analyse
the collected data, and the discussions held are exam-
ples of conclusions one can draw from the analysed
data.

For the analysis of Q21 and Q22, the mean values of
the participants results are used to create a unified
view of the 11 vectors.

6.2.1 Analysis of Q21
For this analysis we calculate the correlation between
the different architecture candidates, as it is simpler to
calculate than PCA while still providing sufficient
information.

We use a standard Pearson correlation, and the num-
bers that would indicate that there is a similarity
between the ranking of quality attributes for an archi-
tecture candidate are large numbers, positive or nega-
tive. Large positive numbers indicate a perceived
similarity between architecture candidates, whereas
negative numbers would indicate that two architecture
candidates are perceived to have tendencies to be
mutually exclusive with respect to the quality
attributes they support. A number near zero would
indicate no perceived similarities between the archi-
tecture candidates.

The correlations between the vector sets for the soft-
ware architecture styles are presented in Table 5.

Based on this data (visually confirmed in graphs), we
see that the Microkernel, Layered and Pipes and Fil-
ters architecture styles are perceived to have similar
pros and cons with respect to the quality attributes they
support. Slightly similar is also the Blackboard archi-
tecture.

One possible conclusion from this would be that one
or more of these software architectures are perceived
as unnecessary: other architectures are perceived to
support almost the same mixture of quality attributes,
and can hence be used instead. However, a more likely
conclusion is that there are additional aspects and
quality attributes, not included in this study, that dif-
ferentiate between e.g. the Microkernel and Layered
architecture styles. It would be an interesting future
study to investigate exactly on what aspects these two
architecture styles differ.

Moreover, there are very few negative relationships in
Table 5. This may indicate that new software architec-
ture patterns are needed that support an inverted mix
of quality attributes as compared to the software archi-
tecture styles used in this study. This is not surprising,
considering that the architecture styles (or patterns)
presented in (Buschmann et al. 1996) are to some
extent focused on a few quality attributes. For exam-
ple, maintainability is in general rated highly for all
the studied architecture styles from (Buschmann et al.
1996).

6.2.2 Analysis of Q22
This analysis is done in a similar way as for Q21 but
with the six vectors of quality attributes, ranking the
architecture candidates for each of the quality
attributes. The correlations between the rankings are
presented in Table 6. As can be seen, Efficiency and
Functionality separates themselves nicely from all
other quality attributes, indicating that the rankings of
the architecture candidates for these are truly different
than for the other quality attributes. What this means is
that the participants in this study think that it will be
difficult to combine requirements on Usability, Reli-
ability, Maintainability and/or Portability together
with requirements on Efficiency or Functionality when
choosing among the software architecture styles
included in this study.

For the other quality attributes (except for Efficiency
and Functionality), we see that the participants per-
ceive a high correlation between most of them, and

Table 5. Correlation between software architectures

Comparison Correlation

Microkernel vs. Blackboard -0.0744
Microkernel vs. Layered 0.650
Microkernel vs. Model-View-Controller -0.423
Microkernel vs. Pipes and Filters 0.565
Blackboard vs. Layered -0.0168
Blackboard vs. Model-View-Controller 0.368
Blackboard vs. Pipes and Filters 0.528
Layered vs. Model-View-Controller 0.364
Layered vs. Pipes and Filters 0.351
Model-View-Controller vs. Pipes and Filters 0.145

this is visually confirmed when plotting their respec-
tive vectors together in a graph. This may indicate that
these quality attributes are in fact related to each other,
or simply recessive when compared to Efficiency and
Functionality. The mostly high correlations between
Usability, Reliability, Maintainability and Portability
indicate that by selecting one of the architecture styles
in this study that performs well on one of these quality
attributes, it is believed that the other quality attributes
may also perform reasonably well.

The opinions of the participants in this study regarding
the quality attributes reconfirm the view expressed e.g.
by (McCall 1994), that there exist quality attributes
that are related to each other (either supporting each
other or in conflict with each other). In (McCall 1994)
this is derived in two ways: one is experience-based,
and the other is by breaking down higher-level quality
attributes to lower levels where it is found that many
quality attributes depend on the same factors or met-
rics. This can be seen as a top-down approach. In our
case, the conclusion is reached through a bottom-up
approach, using the indirect evidence that the assessed
software architectures are ranked similarly for the dif-
ferent quality attributes, and hence the quality
attributes are at least not in conflict with each other,
except for efficiency and functionality.

6.2.3 Summary

Q21 and Q22 concerns whether there is any perceived
difference between different architecture candidates
with respect to a set of quality attributes. To this end

we study the correlation between the ratings given for
the different architecture candidates and quality
attributes.

For Q21, we conclude that the participants indeed per-
ceive differences between the architecture candidates
even if some are perceived as similar with respect to
the support provided for the evaluated quality
attributes.

For Q22, we conclude that for two of the quality
attributes, i.e. efficiency and functionality, the sets of
supporting architecture candidates are perceived to be
very dissimilar compared to the other quality
attributes. For the other quality attributes, the ranking
of the architecture candidates seems to be fairly simi-
lar, meaning that the participants perceive no conflict
in trying to support several of these quality attributes
simultaneously.

In summary, we conclude that the architecture candi-
dates are indeed different enough to warrant the choice
of one candidate over another, given a particular set of
quality attributes. However, except in some cases, the
differences are not very large. This signifies that there
are more factors that influence the success or failure of
a software system than the choice of which architec-
ture to use. The studied architecture evaluation method
should thus only be seen as a small part of the overall
design process, as one input among others for the deci-
sion makers.

As previously discussed, when deciding between dif-
ferent architecture candidates, it is also important to
consider the required blend of quality attributes, i.e.
the priorities of the quality attributes, since this ulti-
mately decides which of the architecture candidates
that best match the needs for a particular software sys-
tem.

7. SUMMARY AND CONCLUSIONS
In this paper we evaluate a method for measuring the
perceived amount of support different architecture
candidates give for different quality attributes, and a
way to rank different architecture candidates for any
set of quality attributes. The main objective of this
study is to show that it is possible to measure these
things in the proposed way. To this end we have set up
a number of research questions and conducted an
empirical study.

Table 6. Correlation between quality attributes

Comparison Correlation

Efficiency vs. Functionality -0.124
Efficiency vs. Usability -0.812
Efficiency vs. Reliability -0.421
Efficiency vs. Maintainability -0.462
Efficiency vs. Portability -0.251
Functionality vs. Usability -0.404
Functionality vs. Reliability -0.566
Functionality vs. Maintainability -0.653
Functionality vs. Portability -0.575
Usability vs. Reliability 0.721
Usability vs. Maintainability 0.588
Usability vs. Portability 0.404
Reliability vs. Maintainability 0.495
Reliability vs. Portability 0.805
Maintainability vs. Portability 0.719

7.1 Study Results

Based on the data analysis in Section 6 we draw the
following conclusions regarding the research ques-
tions:

The first two questions, Q11 and Q12, seek an answer
to whether it is possible to create an agreement among
subjects with different backgrounds with respect to the
strengths and weaknesses of a set of software architec-
tures and the ranking of software architectures for dif-
ferent quality attributes. It is our belief that we make a
strong argument that it is possible to obtain a shared
perception about the strengths and weaknesses of dif-
ferent software architecture styles and their relative
ranking for different quality attributes. We believe that
it is easier to come to an agreement when using con-
crete software architectures rather than abstract archi-
tecture styles, and hence this result should be
generalisable to concrete software architectures as
well. However, there are discrepancies, and there is
not as strong an agreement that could be expected,
considering the ubiquity of the data set used.

The next question, Q21, concerns whether there is a
perceived difference in the influence of different qual-
ity attributes for a set of architecture candidates. With
a few exceptions (Microkernel, Layered and Pipes and
Filters), the answer to this question is: yes, the differ-
ent software architecture styles in our study are per-
ceived to have disparate qualities, i.e. they are
perceived to fulfil different quality attributes differ-
ently well. Moreover, there seem to be plenty of com-
binations of quality attributes that the participants
think that no architecture candidate in our study sup-
ports very well, which means that there may be room
for new software architecture styles that meet these
combinations of quality attributes.

Lastly, for Q22, concerning whether software architec-
tures support different quality attributes differently, the
data clearly indicates that there is a considerable dif-
ference in the ranking of the architecture styles in our
study, in particular between Efficiency and the other
quality attributes and Functionality and the other qual-
ity attributes. For the other quality attributes, however,
the differences in ranking of the architecture candi-
dates are not so significant, being in some cases almost
the same. The conclusion of this is that, except for
when Efficiency or Functionality is required, some of
the software architecture styles used in our study score

high regardless of the quality attribute most wanted,
whereas other software architecture styles are per-
ceived to be bad at supporting all quality attributes in
our study except for Efficiency or Functionality. The
answer to Q22 is thus: yes regarding Efficiency and
Functionality different software architecture styles in
our study are perceived to support these differently
well, and no regarding the other quality attributes there
is no perceived major difference when the architecture
styles are ranked in terms of provided support for the
quality attributes.

7.2 Method Results
The answers to our research questions are such that we
can conclude that it is indeed possible to use the
method outlined in this paper together with AHP to
measure the differences between software architecture
candidates and quality attributes for a system to build
or re-evaluate. More importantly, it is possible to iden-
tify areas where the participants disagree so that
focused discussions can be held and an increased joint
understanding can be reached.

Difficulties we have experienced while evaluating this
method stem mainly from our choice of architecture
candidates and quality attributes, in that we chose to
use generic architecture patterns and generic ISO 9126
quality attributes. We believe that many of these diffi-
culties would not arise if we applied the method in a
company setting, letting developers in the company
select between different architecture proposals for a
software system. We are currently in the process of
replicating this study in such a setting.

7.3 Data results
As a side result, we have during this study created two
vector sets, the first comparing software architecture
patterns with each other, and the second comparing
quality attributes with each other. These vector sets are
presented in Table 7 and Table 8. In Table 7, the archi-
tecture patterns are ranked for each quality attribute,
and the table should hence be read row-wise. For
example, Pipes and Filters, scoring 0.309 for Effi-
ciency, is by the participants in this study considered
to be able to support Efficiency almost three times as
well as Layered, which only scores 0.110 for Effi-
ciency. Naturally, these figures only express the partic-
ipants’ perceived potential of the architecture patterns.
When instantiating concrete software architectures
based on these patterns, the comparison may yield dif-
ferent figures. Moreover, when creating a software

system it is necessary to consider a blend of quality
attributes, which will assign different importances to
the comparisons for the different quality attributes.

In Table 8, each architecture pattern contains a ranked
list of quality attributes, and the table should hence be
read column-wise. For example, the Microkernel
architecture is considered best at portability, followed
by efficiency and maintainability. It is perceived as
almost equally good at functionality and reliability,
and only slightly less good at usability.

These two vector sets form an initial framework for
how different software architecture candidates may be
compared and presented in terms of quality attributes.
The tables, or rather tables created with a specific sys-
tem in mind, provide valuable insights to make
informed decisions regarding the selection of a soft-
ware architecture for a system to build.

7.4 Implications of Data Results
As a result of this study, we see the following implica-
tions:
• There is not as much agreement as is generally

held to be true regarding the support for quality
attributes that different software architectures pro-
vide.

• There are several combinations of quality
attributes that are perceived not to be met by any

of the well-known software architecture patterns
used in this study.

• With the exception of Efficiency and Functional-
ity, our data indicates that quality attributes are, in
general, not as mutually exclusive as is normally
believed. This is also in accord with results pre-
sented in e.g. (Lundberg et al. 1999).

7.5 Future Work

First, we would like to encourage all readers to repli-
cate this study, as the statistical power in our findings
is limited. More subjects are needed and it is also
essential to evaluate other software architectures and
also more fine-grained divisions of quality attributes.
However, the study provides some initial results and
points to a potential way forward to informed deci-
sions regarding architecture selection. We ourselves
intend to conduct this study again, this time using
industry people, to this end.

As the results for Q11 and Q12 show, there are points
where people disagree. We intend to investigate
whether the method can be used to pinpoint these dis-
agreements as input to a discussion with the purpose of
creating a joint understanding of the benefits and lia-
bilities of the architecture candidates.

Table 7. Ranking of Software Architectures per Quality Attribute

Microkernel Blackboard Layered Model-View-
Controller

Pipes and
Filters Sum

Efficiency 0.274 0.186 0.110 0.121 0.309 1
Functionality 0.228 0.261 0.179 0.188 0.144 1
Usability 0.121 0.134 0.274 0.319 0.152 1
Reliability 0.207 0.103 0.270 0.239 0.180 1
Maintainability 0.124 0.171 0.283 0.198 0.225 1
Portability 0.194 0.0767 0.366 0.157 0.207 1

Table 8. Ranking of Quality Attributes per Software Architecture

Microkernel Blackboard Layered Model-View-
Controller Pipes and Filters

Efficiency 0.204 0.170 0.0714 0.0564 0.211
Functionality 0.138 0.284 0.109 0.199 0.152
Usability 0.0963 0.126 0.102 0.222 0.0980
Reliability 0.137 0.0711 0.106 0.132 0.132
Maintainability 0.182 0.254 0.278 0.230 0.251
Portability 0.244 0.0953 0.333 0.160 0.156
Sum 1 1 1 1 1

8. REFERENCES
[Anderson et al. 2000] D.R. Anderson, D.J. Sweeney,

T.A. Williams, “An Introduction to Management
Science: Quantitative Approaches to Decision
Making”, South Western College Publishing,
Cincinnati Ohio, 2000.

[Bass et al. 1998] L. Bass, P. Clements, R. Kazman,
“Software Architecture in Practice”, Addison-
Wesley Publishing Co., Reading MA, 1998.

[Bengtsson 2002] PO Bengtsson, “Architecture-Level
Modifiability Analysis”, Ph.D. Thesis, Blekinge
Institute of Technology, Dissertation Series No
2002-2, 2002.

[Bosch 2000] J. Bosch, “Design & Use of Software
Architectures - Adopting and Evolving a Product
Line Approach“, Addison-Wesley, Harlow UK,
2000.

[Buschmann et al. 1996] F. Buschmann, C. Jäkel, R.
Meunier, H. Rohnert, M. Stahl, “Pattern-Oriented
Software Architecture - A System of Patterns“,
John Wiley & Sons, Chichester UK, 1996.

[Clements et al. 2002] P. Clements, R. Kazman, M.
Klein, “Evaluating Software Architectures -
Methods and Case Studies”, Addison-Wesley,
Boston MA, 2002.

[Gamma et al. 1995] E. Gamma, R. Helm, R. Johnson,
J. Vlissides, “Design Patterns: Elements of
Reusable Object-Oriented Software”, Addison-
Wesley Publishing Co., Reading MA, 1995.

[Helmer & Rescher 1959] O. Helmer, N. Rescher, “On
the Epistemology of the Inexact Sciences”, in
Management Science 6(1):25-52, 1959; reprinted
in Leonard Krimerman (ed.), “The Nature and
Scope of Social Science”, Appleton-Century-
Crofts, New York NY, pp. 181-203, 1969.

[Hofmeister et al. 2000] C. Hofmeister, R. Nord, D.
Soni, “Applied Software Architecture”, Addison-
Wesley, Reading MA., 2000.

[ISO 9126] “Software Qualities”, ISO/IEC FDIS
9126-1:2000(E).

[Johansson et al. 2001] E. Johansson, M. Höst, A.
Wesslén, L. Bratthall, “The Importance of Quality
Requirements in Software Platform Development
- A Survey”, in Proceedings of HICSS-34, Maui
Hawaii, January 2001.

[Kachigan 1986] S.K. Kachigan, “Statistical Analysis
– An Interdisciplinary Introduction to Univariate
& Multivariate Methods”, Radius Press, 1986.

[Karlsson et al. 1998] J. Karlsson, C. Wohlin, B.
Regnell, “An Evaluation of Methods for
Prioritising Software Requirements”, Information
and Software Technology, Vol. 39, pp. 939-947,
1998.

[Lindvall et al. 2003] M. Lindvall, R.T. Tvedt, P.
Costa, “An Empirically-Based Process for
Software Architecture Evaluation”, in Empirical
Software Engineering, 8(1):83-108, 2003.

[Linkman & Rombach 1997] S. Linkman, H.D.
Rombach, “Experimentation as a Vehicle for
Software Technology Transfer - A Family of
Software Reading Techniques”, in Information
and Software Technology 39(11):777-780, 1997.

[Lundberg et al. 1999] L. Lundberg, J. Bosch, D.
Häggander, PO Bengtsson, “Quality Attributes in
Software Architecture Design”, in Proceedings of
the IASTED 3rd International Conference on
Software Engineering and Applications, IASTED/
Acta Press, Anaheim CA, pp. 353-362, 1999.

[McCall 1994] J.A. McCall, “Quality Factors”, in
Encyclopedia of Software Engineering, J.L.
Marciniak (Editor), John Wiley & Sons, New York
NY, pp. 958-969, 1994.

[Morisio et al. 2002] M. Morisio, I. Stamelos, A.
Tsoukiàs, “A New Method to Evaluate Software
Artifacts Against Predefined Profiles”, in
Proceedings of the 14th International Conference
on Software Engineering and Knowledge
Engineering (SEKE 2002), ACM Press, New York
NY, pp. 811-818, 2002.

[Parnas 1994] D.L. Parnas, “Software Aging”, in
Proceedings of the 16th International Conference
on Software Engineering, IEEE Computer Society
Press, Los Alamitos CA, pp. 279-287, 1994.

[Perry & Wolf 1992] D.E. Perry, A.L. Wolf,
“Foundations for the Study of Software
Architecture”, in ACM SIGSOFT Software
Engineering Notes 17(4), 1992.

[Saaty 1980] T. Saaty, “The Analytic Hierarchy
Process”, McGraw-Hill, 1980.

[Saaty & Vargas 2001] T.L. Saaty, L.G. Vargas,
“Models, Methods, Concepts & Applications of
the Analytic Hierarchy Process”, Kluwer
Academic Publishers, Dordrecht, the Netherlands,
2001.

[Shaw & Garlan 1996] M. Shaw, D. Garlan,
“Software Architecture - Perspectives on an
Emerging Discipline”, Prentice Hall, Upper
Saddle River NJ, 1996.

[Svahnberg et al. 2002] M. Svahnberg, C. Wohlin, L.
Lundberg, M. Mattsson, “Quality Attribute-
Driven Selection of Software Architecture
Structures”, in Proceedings of the 14th International
Conference on Software Engineering and Knowledge
Engineering (SEKE 2002), ACM Press, New York NY,
pp. 819-826, 2002.

[Wohlin et al. 1996] C. Wohlin, A. Gustavsson, M.
Höst, C. Mattsson, “A Framework for Technology
Introduction in Software Organizations”, in
Proceedings of Software Process Improvement
Conference, pp. 167-176, Brighton, UK, 1996.

[Wohlin et al. 2000] C. Wohlin, P. Runeson, M. Höst,
M.C. Ohlsson, B. Regnell, A. Wesslén,
“Experimentation in Software Engineering”,
Kluwer Academic Publishers, Dordrecht, the
Netherlands, 2000.

Appendix A - Analytic Hierarchy Process
Simply put, the Analytic Hierarchy Process (AHP) is a
process for making pairwise comparisons. By making
all possible pairwise comparisons it is possible to
make a ranking of the entities and to, in addition, cal-
culate a consistency index. AHP consists of four basic
substeps and an added fifth substep to analyse the con-
sistency in the results, described below.

Substep 1: Create an matrix (denoted N), where
n is the variables to be compared, for example, quality
attributes. In the diagonal in the matrix the value “1” is
inserted. The matrix is referred to as the comparison
matrix. Element nij, when i is not equal to j, records
the relative importance of variable i versus variable j.

Substep 2: Perform a pairwise comparison of the vari-
ables with respect to the importance. The scale for
comparing the variables pairwise is illustrated in
Figure 6. Each pairwise comparison means that it is
necessary to determine which of two variables is most
important and how much more important it is. For
example, a marking to the left on the scale means that
variable i is more important than variable j. The inter-
pretation of the values is shown in Table 9.

The pairwise comparison is conducted for all pairs, i.e.
 comparisons. The relative importance

values are put into the matrix created in the first step
and the reciprocal for each pair is determined and also
put into the matrix. This results in a complete
matrix.

Substep 3: Compute the eigenvector of the
matrix. A simple method is proposed by (Saaty 1980;
Saaty & Vargas 2001) to do this; the method is known
as averaging over normalised columns, and the proce-
dure is as follows:
• Calculate the sum of the columns in the matrix,

.

• Each element in a column is divided by the sum of
the column, . This results in a new

matrix, denoted M, with elements mij.

n n×

i j
9 7 5 3 1 3 5 7 9

Figure 6. The scale for the AHP comparison.

n n 1–()× 2⁄

Table 9. Scale for pairwise comparison using AHP (Saaty
1980; Saaty & Vargas 2001).

Relative
intensity Definition Explanation

1 Of equal impor-
tance

The two variables (i
and j) are of equal
importance.

3 Slightly more
important

One variable is
slightly more impor-
tant than the other.

5 Highly more impor-
tant

One variable is highly
more important than
the other.

7 Very highly more
important

One variable is very
highly more impor-
tant than the other.

9 Extremely more
important

One variable is
extremely more
important than the
other.

2, 4, 6, 8 Intermediate values Used when compro-
mising between the
other numbers.

Reciprocal If variable i has one of the above numbers
assigned to it when compared with variable
j, then j has the value 1/number assigned to
it when compared with i. More formally if
nij = x then nji = 1/x.

n n×

n n×

nj nij
i 1=

n

∑=

mij nij nj⁄=

• The sum of each row in the new matrix is calcu-

lated, .

• The sums of the rows are normalised by dividing
by the number of variables (n), . This

results in an estimation of the eigen values of the
matrix, and it is referred to as the priority vector.
The vector is denoted P with elements Pi for i =
1…n.

Substep 4: Assign a relative importance to the varia-
bles. The first variable is assigned the element in the
priority vector. It is said that the first variable accounts
for Pi percent of the importance of the variables. The
second variable is assigned the second element in the
priority vector and so on. Let P1 to Pn be the percent-
age values for the importance of variables 1 to n.

Substep 5: Because AHP conducts more comparisons
than minimally necessary, it is possible to evaluate the
consistency of the ranking. This consistency ratio cap-
tures how consistently the pairwise comparison has
been conducted. The consistency check is particularly
important when a large number of pairwise compari-
sons are necessary, making it easier to make errors and
hence become inconsistent.

The consistency ratio is computed in two steps.

• First, a consistency index (CI) is computed as
, where is the

maximum principal eigen value of the
matrix. The closer is to n the smaller is the
error in the comparison. is calculated by
first multiplying the comparison matrix, i.e. matrix
N, with the priority vector. Let the resulting vector
be denoted R with elements Ri, For the
resulting vector, each element in the vector is
divided by the corresponding element in the prior-
ity vector, . is now computed as

the average of the elements in the resulting vector,

. CI can now be calculated.

• The consistency ratio (CR) is determined by divid-
ing the consistency index (CI) by a random index
(RI). The random index has been generated to take
into account randomness and it is used to norma-
lise the consistency index. Thus,

, where RI is determined from
Table 10, where the first row shows the order of
the matrix (n) and the second row shows the corre-
sponding RI value. The smaller CR, the more con-
sistent is the comparison.

According to (Saaty 1980; Saaty & Vargas 2001), a
consistency ratio of 0.10 or less is considered accepta-
ble. It is, however, pointed out in the literature that in
practice higher values are often obtained. This indi-
cates that 0.10 may be too hard, but it indicates an
approximate size of the expected consistency ratio.

mi mij
j 1=

n

∑=

Pi mi n⁄=

CI λmax n–() n 1–()⁄= λmax
n n×

λmax
λmax

R N P×=

λi Ri Pi⁄= λmax

λmax λi
i 1=

n

∑
 
 
 
 
 

n⁄=

CR CI() RI()⁄=

Table 10. Matrix order and corresponding RI value (Saaty 1980; Saaty & Vargas 2001).

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0.00 0.00 0.58 0.90 1.12 1.24 1.32 1.41 1.45 1.45 1.51 1.48 1.56 1.57 1.59

