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Success Factors and Project Characteristics 

using Subjective Data
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This paper presents a method for analyzing the impact software project factors have on
project success as defined by project success factors that have been prioritized. It is rel-
atively easy to collect measures of project attributes subjectively (i. e. based on expert
judgement). Often Likert scales are used for that purpose. It is much harder to identify
whether and how a large number of such ranked project factors influence project suc-
cess, and to prioritize their influence on project success. At the same time, it is desira-
ble to use the knowledge of project personnel effectively. Given a prioritization of
project goals, it is shown how some key project characteristics can be related to project
success. The method is applied in a case study consisting of 46 projects. For each
project, 6 success factors and 27 project attributes were measured. Successful projects
show common characteristics. Using this knowledge can lead to better control and soft-
ware project management and to an increased likelihood of project success. 
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Project success, subjective measures, project assessment. 
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War stories from failed software projects are much too common [Glass98]. Failed soft-
ware projects often make the headline news, but it should be remembered that most
projects are not disastrous. This does not mean that there is not room for improvement;
running software projects is difficult and requires continuous vigilance to ensure that
projects are successful. In particular, it is important to manage risk and work actively
on risk prevention and mitigation.

Many organizations collect a myriad of data about projects that is supposed to help
them to assess projects. Not all are objective measurements like number of defects or
effort spent. Other project attributes that have been claimed to impact project success
are based on project personnel’s expert (subjective) judgement. Such data is most eas-
ily and commonly collected as part of a questionnaire. We call such measurements sub-
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jective and the project attributes measured subjective variables. There are two types;
project variables (e. g. stability of management team) and success variables (e. g. time-
liness of release, perceived quality of the software). While some of those attributes
could no doubt be measured objectively, the reality at many organizations is that this is
too much overhead and subjective measures as defined above are easier and faster to
collect. The question then becomes whether and how much use one can make of them.
This is the general topic this paper tries to address. Specifically, we want to identify
which subjective project variables are key drivers for project success as embodied by
success variables. With a large number of project variables, it is not only important to
know which subset of project variables drives certain project success variables, but
also to determine priorities.

A method for analyzing project variables with respect to a single success variable was
introduced in [Wohlin00], but projects normally have several success criteria to fulfill
(e.g. timeliness of delivery and quality of software). Thus, the method is extended here
to allow multiple success criteria. Knowing which project variables primarily drive
which project success variables as well as overall project success allows software risk
prevention and mitigation for future projects as follows: project variables can be meas-
ured during a project. If their level is not high enough, this identifies a specific risk
which can then be managed.

More formally, let ���, ���, … ���,…, ��� be the project variables and ���, ���, … ���
… ��	 be the success variables. Further let ��agg be an aggregate success variable that
ranks overall project success based on values for all (prioritized) success variables.
This can be achieved either through an explicit aggregation function or through lexico-
graphic ordering of the relative importance of success variables. This ranking function
defines (desired) priorities between project goals. For example, is it more important to
deliver on time or that the number of defects is below a certain threshold? Success var-
iables must be prioritized to ensure that they reflect the best combination of project
goals. The objective is to find estimators that are able to predict project success from
project variables. This is illustrated through the formula below.

Both ��� and ��� are rank order variables. The objective is to identify which project var-
iables are good estimators for the aggregate success variable. Specific values for
project variables also afford an opportunity to set goals related to these values to obtain
desired outcomes in terms of a success variable or aggregate success variable. When
the project is completed, the success variables are measured. The project and success
variables for a software project are shown in Figure 1. The project variables describe
key drivers and characteristics of the software project and can be measured (or esti-
mated) prior to starting a project and then tracked as the project progresses.

������������� 	����������	���!������	��


 ��1 … ���, ,〈 〉 �����=

Software
project

.

.

.

���

���





���

��	

�����
Prioritizing and Assessing Software Project Success Factors and Project Characteristics using Subjective Data4 February 2003 2



The paper is outlined as follows. Section 2 gives a brief background of some related
work. An overview of the method, in Section 3, gives a basic understanding of its
objectives and its steps. Section 4 introduces two ways of aggregating several success
variables into one success variable. The steps introduced in [Wohlin00], which are able
to cope with a single success variable are described briefly in Section 6 to highlight
how it may be used for an aggregate success variable. The method is then illustrated in
a case study in Section 9, and finally some conclusions are presented in Section 10.

"���#��$%����

The key idea in this paper is to understand the main reason behind software project
success, and to support the use of this understanding. Thus, the focus is on the project
level. Recently, a book addressing software success on an organizational level has been
published [Hoch00]. The book is based on a major survey of software development
companies. It concludes that there are patterns that are typical for a successful com-
pany and that these patterns differ from those for a less successful company. The aim is
similar to our approach, although we focus on the projects of a single company. Further
our method identifies key project factors that influence the likelihood for success rather
than trying to state general reasons that may or may not apply in a specific case.

The aim of our work is hence also different from, for example, CMM [Paulk95]. CMM
is also based on knowledge from surveying many companies and then structuring the
acquired knowledge into levels that a company may reach. This means that the CMM,
and other similar methods, is fairly prescriptive in the sense that they make recommen-
dations of what ought to be improved. In addition, the main focus is on improving the
organizations. Our approach is driven by project variables (and their measured values)
that are specific for a particular company and the software it develops. Thus our
method is a tool for identifying your own key factors for software project success
rather than using a general set of factors.

From a more technical point of view, the work is based on the use of subjective meas-
urement [Hughes96]. The latter has traditionally primarily been used in effort estima-
tion [Gray99], although it recently was applied to identification of risk [Ropponen00].
In addition, subjective data has been used in assessing the cost-effectiveness of soft-
ware inspections [Briand00]. The method combines the use of project data and expert
opinion. Other uses of expert (subjective) data include cost estimation [Briand98] and
effort estimation [Höst97], [Höst98]. Chulani et al. [Chulani99] performed a Bayesian
Analysis of several versions of the COCOMO II model, part of which is based on sub-
jective measures of parameters that together form a calibration constant. They show
that these models can benefit from considering expert judgement as well as other
project data. The potential benefits of using subjective measurements has hence been
recognized in several areas of software engineering, although to the best of our knowl-
edge it has not been part of a method for analyzing software project success.

&���'	�����!	�!�	�

Figure 2 shows the high level analysis process. Roman numerals on the right side of
the figure identify the major steps. They correspond to the subsection headings
explaining each major step.
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This step validates both project and success variables. Given their subjective nature,
this is important to make the data credible.

&�"�����$�)�� 	�����
�)�� 	�������	��

Then projects are ranked by considering all success variables systematically. Methods
to do so include AHP [Saaty80] and lexicographic ordering (LO). In software engi-
neering, this has previously been applied to software requirements as in [Karlsson97],
where requirements were judged based on value and cost and in [Shepperd01] to esti-
mate project effort when having little objective data. This rank ordering defines a new
aggregate success variable ��agg. It is defined as a rank order (ordinal) metric.

�
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The purpose of this step is to reduce the (often large) number of project variables to
those whose behavior is most in tune with the behavior of the aggregate success varia-
ble. I. e., if one of them increases, the other does as well; if one of them decreases, the
other does, too. One of the most popular methods to identify and group variables with
such behavior is Principal Components Analysis (PCA) [Kachigan86]. It has been
extensively used in software engineering, e. g. [Khoshgoftaar94], Khoshgoftaar96],
[Ohlsson98], [Ohlsson99].

The motivation behind using PCA for identifying the key project variables is based on
two things. First, we would like to reduce a possibly large number of variables. PCA is
very suitable for abstracting joint behavior from variables. Thus, PCA helps in reduc-
ing the number of variables (we need not consider project variables in components
other than the one that contains the aggregate success variable). Second, we are prima-
rily interested in a method that identifies variables that covariate, since the objective is
to identify those key project characteristics that drive project success. The project vari-
ables grouped with the aggregate success variable by PCA (at a high enough loading)
provide a solution to this question. Basically, we use the covariance calculations in
PCA to identify variables that covariate, i.e. project characteristics that covariate with
the success variable.

As an aside, multiple linear regression, with as many variables as we have, is bound to
lead to strange combinations of positive and negative parameters in the regression for-
mula. One possible solution to this is to apply PCA to reduce the explanatory variables
that may enter the model. If this is not done, then the results may be difficult to inter-
pret (and to use for risk mitigation). For example, [Conte85] report on a regression for-
mula that fits a dependent variable (number of defects) with a series of independent
variables (including size, complexity, and lines of comments among other things). The
parameter for size is positive. It is also positive for lines of comments. A misleading
interpretation would have been to conclude that more comments are “bad” since they
lead to more defects. Had PCA been used, both the size measure and the number of
lines of comments measure might have been grouped with number of defects, but with
different loadings representing to which degree they explain variance in the component
and thus their importance for a given component.

In other words, at this stage in the analysis, we are not interested in a prediction model,
rather in identification of key project variables, and this is done using PCA by finding
the project variables that covariate with the success variable. We have chosen not to
use the findings from the PCA in a prediction model, and hence the result of this step is
a set of project variables ����, ����, … ����,…, ��������which show statistically similar
behavior with the aggregated success variable �����. We call these key project varia-
bles.

&�+�����$�)�� 	�������	����$	
�)�� 	���!������	�

As in step 2, this rank determines values of a new (rank order) measure for evaluating
projects based on the set of key project variables ����, ����, … ����,…, ��������which
have been aggregated into an aggregate measure �����.One measure how well the key
Prioritizing and Assessing Software Project Success Factors and Project Characteristics using Subjective Data4 February 2003 5



project variables are able to predict levels of project success would be how much the
ranks defined by ����� and ������agree. 

&�,��������-
�����	������-�����	�-������������� and ������

Considering each rank individually for both rankings may be more detailed than neces-
sary, especially if we are only interested in project success or failure (a much coarser
ranking consisting of only two values). For this situation a classification step is added
that defines which ranks for ����� and ������determine the boundary between success
and failure. Based on this classification, we can now compute an Agreement Index
[Altman91]. It determines how well the two classifications agree and thus can substi-
tute for each other. If the agreement index is high, it means that we can use key project
variables to predict success or failure for a project.

The following sections explain each of these steps in more detail and provide justifica-
tion, limitations, and references for prior uses in software engineering for each tech-
nique used (if applicable). The analysis method is an extension of [Wohlin00]. The five
step procedure suggested in [Wohlin00] can handle only a single success variable, i. e.
the method is capable of identifying key project characteristics for a specific success
variable. The method is, however, not able to cope with prioritizing and aggregating
several success variables. We extended the method is to include this capability. 

+���(�����	�)�� 	����������	���!������	�

We assume that these variables have been measured based on expert judgement, i. e.
are subjective. [Briand00] makes an excellent point about the value of using expert
opinion: it is valuable and should be included if possible, particularly if it is not availa-
ble through other means such as direct measurements, observations, or experimenta-
tion. However, we need to be concerned with the validity of subjective data. It is data,
in our case measured on an ordinal scale. These scales must be well-defined. 

For measuring subjective variables various rating schemes exist, where the most com-
monly used are ordinal scales [Fenton96]. The meaning of the different values on the
scale should be determined and these should provide a good differentiation between
projects. Methods to define scales reliably are described in [Mayrhauser90]. Ideally,
subjective metrics for such variables should be evaluated for inter-rater and re-test reli-
ability [Allen79]. Generally, well-known expert knowledge elicitation techniques are
designed to prevent problems with expert-based subjective data (bias, uncertainty,
incompleteness). When done properly, subjective data collection based on expert
judgement means that data is gathered formally, in a structured manner and that its
validity can be evaluated (e. g. see [Meyer91] and [Allen79].

Besides investigating the validity of the subjective measures for project and success
variables, it is important to determine their relevance for a specific analysis scenario,
i.e. a measured data set. The values obtained for a particular success variable must be
able to differentiate between projects. If that is not the case, then either the projects are
similar with respect to this variable and there is no need to include it in the analysis, or
the scale is badly formulated making projects appear equally good (or bad). To address
Prioritizing and Assessing Software Project Success Factors and Project Characteristics using Subjective Data4 February 2003 6



this issue, one may require either or both of the following conditions to hold for meas-
ures of the success variables:

. Require the median value of the measures to lie close to the population median. For
example, for a five-point scale one may require that the median value is equal to 3.
If this is not the case, the measures have a tendency to be clustered either on the
low- or high-end of the scale.

. Require that for each value of the metric, there is at least one project attaining that
value. For example, for the five-point scale this would require that all values from 1
to 5 are present in the data set.

,������$�)�� 	�����
��!	�����)�� 	�������	��

Usually more than one project success variable is important when judging project suc-
cess. Not all have the same importance in every situation. Thus, it is important to weigh
different success variables against each other and to prioritize them. Often all aspects
seem essential and it is hard to say that there is something that is less important. Soft-
ware requirements have a similar problem, i.e. everything seems important.

One opportunity to prioritize different success variables, and obtain a ranking, is to use
the analytic hierarchy process (AHP) [Saaty80]. It uses pairwise comparison to obtain
an ordered list. In software engineering, this has previously been applied to software
requirements as in [Karlsson97], where requirements were judged based on value and
cost and in [Shepperd01] to estimate project effort when having little objective data.
AHP allows for weighting the success variables by quantifying their relative impor-
tance. This set of weights is then used with the measured values of the success varia-
bles to determine the values of the aggregate success variable.

In situations when weights cannot be determined, lexicographic ordering (LO) can be
used instead. It is based on ranking the relative importance of the success variables.
Both methods are described in more detail in Appendix A1 and A2. Either method
results in a ranking of the projects that takes into account the importance of each suc-
cess variable. The project success ranking can differ depending on the method used. It
is also influenced by the application domain’s specific needs and the resulting impact
on what project outcomes are important. For example, a safety-critical system would
rank safety and reliability very highly while a low risk mass-market system like a game
might emphasize timeliness in hitting the market window.

Both prioritization alternatives, Analytic Hierarchy Process (AHP) and Lexicographic
Ordering (LO), result in an aggregate success variable that ranks all projects based on
overall project success. This ranking defines the new aggregate success variable that
reflects overall project success.

Both AHP and LO rank projects based on the importance of the success variables.
Unlike AHP, LO does not pose problems for rank order variables, since it sorts the
projects based on the relative importance of the different success variables. On the
other hand, it does not provide a ratio level aggregate success variable and it does not
quantify inconsistency problems with respect to relative importance of success varia-
bles. We recommend LO when scales are widely different or when there are concerns
about using rank order scales in the comparisons of AHP. 
Prioritizing and Assessing Software Project Success Factors and Project Characteristics using Subjective Data4 February 2003 7
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[Wohlin00] developed a method to assess project success based on a single success
variable and to group it with key project variables. Like we do here, [Wohlin00]
assumes that both project variables and the success variable are measured subjectively
(based on expert judgement) on ordinal scales. Similarly, the objective is to identify
which project characteristics are most important to achieve success. The method can be
used to assess projects, but also in planning and managing risks of software projects. If
it is possible to estimate the values of different project characteristics, it is possible to
judge whether a project is likely or not to become a success for a given success varia-
ble. If the outcome of this early assessment does not meet expectations, it is possible to
re-plan or take special actions in order to try to address the risk of not becoming suc-
cessful.

We already validated in step 1 that all project and success measures have been formu-
lated so that a higher value on the scale is more desirable. In addition to validity and
relevance of project and success variables, project variables must also be relevant to
the aggregate success variable. Relevant project variables must have a positive correla-
tion with the aggregate success variable. If that is not the case, there are either some
underlying factors that were not captured, or the scale does not represent what we
think. For example, one may expect that higher competence in a project will make it
more likely to be successful, yet if the most competent personnel is assigned to the
most difficult and demanding projects this may prevent a positive correlation between
project variables and the aggregate success variable. This is why project variables that
do not have a positive correlation with the aggregate success variable are removed
from the analysis. The objective is to ensure that the outcome of the analysis makes
intuitive sense and is useful for planning and controlling software projects with the
intention of managing project risk.

Data in too many databases are collected without a purpose (except to collect data).
This often leads to measures that are highly correlated because they measure almost the
same thing. Different techniques exist to extract a useful subset. One such technique is
Principal Component Analysis (PCA) [Kachigan86]. PCA groups correlated variables
or variables with the same behavior into a number of principal components where each
component accounts for the maximum possible amount of the variance for the varia-
bles being analyzed. The number of principal components extracted may vary depend-
ing on the data set and the method chosen for extraction. PCA can help in reducing the
number of variables. It also provides support in identifying variables that vary together.
This is exactly our objective: to identify those key project variables that vary in the
same manner as the aggregate project success variable.

Analyzing project variables with the aggregate success variable using PCA allows us
to determine which project variables behave similarly and to identify which project
variables behave similar to the success variable. The latter is the key concern in this
study. Commonly, variables with a loading of 0.7 or higher are of particular interest
since they explain most of the variation of the principal component. Thus, the compo-
nents are primarily interpreted from the variables with a loading of 0.7 or higher, but
other variables in the principal component may also be considered. The latter primarily
refers to variables having their highest loading in the component. This loading should
Prioritizing and Assessing Software Project Success Factors and Project Characteristics using Subjective Data4 February 2003 8



also be higher than that of the success variable. If the success variable has the highest
loading and no project variable has a loading higher than 0.7, then we have failed to
capture the success variable with the project variables. 

Several different situations may occur. For example, the success variable may have the
highest loading in a factor and the highest loading for a project characteristic may be
above or beneath the threshold of 0.7. Several different combinations of this type may
happen in terms of which variables have the highest loadings, and how they relate to
the threshold value. This is discussed in more detail in [Wohlin00].

The result of this step is a set of key project variables ����������� that exhibit the same
behavior as the aggregate success variable ����� for the data set analyzed and thus can
be considered as candidates for key project characteristic that drive overall project suc-
cess.

0������$�)�� 	������	����$	
�)�� 	���!������	�����������������

This step determines an aggregate measure for the key project variables by summing
(for each project) the values of the key project variables. This measure determines a
rank order of projects and thus the ordinal values of �����, the ranking of projects
based on the key project variables.

Note that other ways of determining the rank order for ����� are possible (one being
lexicographic ordering based on loading values in the PCA or on the value of the
Spearman Correlation coefficient of a key project variable with the aggregate success
variable).

Finally, the Spearman correlation is determined between the rankings based on the
aggregate key project variable �����, and the ranking based on the aggregate success
variable �����.

1���������-���������-�����	����������%����������%%�	%��	�
!������	�����	!����������-��%�		�	��

Each of the aggregate measures has to be mapped into project success or failure. Then
an agreement index [Altman91] is computed that evaluates the degree of agreement
and hence the degree to which key project variables are able to capture project success.

Using both rankings, we classify projects into two classes, i.e. the successful and
unsuccessful respectively (by project variables and by aggregate success variable).
Each of the aggregate measures is mapped into project success or failure. This classifi-
cation may be represented in the form of a diffusion matrix or contingency table. Other
classification schemes may be used as, for example, in [Ohlsson99], where three
classes are used to classify fault-prone components.
Prioritizing and Assessing Software Project Success Factors and Project Characteristics using Subjective Data4 February 2003 9



It is difficult to compare different classifications directly since we may not have the
same number of projects that are successful (or unsuccessful) based on project varia-
bles and based on the success variable. To compare the degree to which the two classi-
fications agree (and could be used one instead of the other) a measure of agreement
between the classifications can be computed. This is called an Agreement Index
[Altman91], or kappa statistic. In our case it evaluates the degree to which key project
variables are able to capture project success. In software engineering, the kappa statis-
tic has been applied to interrater agreement of process assessments [El Emam99]. 

The agreement index requires comparable scales for the two classifications, i.e. based
on project variables or the success variable. This prevents setting widely different
thresholds for each classification, since there would be different numbers of projects
judged successful by one method vs. another. To circumvent this problem, we use each
ranking of projects and then consider the upper x% of projects successful and the lower
(100-x)% unsuccessful projects. For example, x could be 50%, or it could be 75%. Set-
ting x depends on company expectations, and expert judgement.

As agreement index we use the kappa statistic [Altman91]. Briefly, the kappa statistic
for our simple case of two raters (models) and two levels (successful and unsuccessful
projects) can be explained as follows. 

Table 2 shows an example, where the cells state the proportions of the projects with a
given rating according to model 1 and model 2. For example, ��� = 0.20 means that
20% of the projects are considered successful according to the subjective project varia-
bles and successful according to the success variable. The columns and rows are sum-
marized (last column and last row respectively in Table 1), which is indicated with ���,
��������and ���.

2�#3��������--�����������4�-�������	��-���)�� 	����

5���	���!������	

Successful Unsuccessful

Pr
oj

ec
t

va
ri
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le

s Successful ������� ���������
�������

Unsuccessful ���������
������� �������

TABLE 2. A diffusion matrix for successful projects.

Success variable

Successful Unsuccess-
ful

Sum

Pr
oj

ec
t

va
ri

ab
le

s Successful p11 p12 p10

Unsuccess-
ful

p21 p22 p20

Sum p01 p02
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The entries in Table 1 are used to derive an agreement index. Let  ! be the proportion
in which there is agreement. Then,  ! becomes

This agreement includes cases in which the agreement is obtained by chance. To
remove the effect of chance behaviour, the extent of agreement that is expected by
chance is defined as

The agreement index is then defined as

To be able to understand the degree of agreement, the kappa statistic is usually mapped
into a rank order scale describing the strength of agreement. Several such scales exist,
although they are by and large minor variations of each other. Three scales are pre-
sented in [El Emam99]. Here the scale suggested by Altman [Altman91] is used. It is
shown in Table 3.

An agreement index is derived as a value below 1 and the closer it is to 1, the better is
the agreement between classifications. The actual value is then mapped to an interpre-
tation of the agreement. The interpretation suggested by [Altman91] is given in
Table 3.

We now apply this analysis method to a major case study.

6������	����


This method is now applied to an actual case study for two purposes. One is to illus-
trate its use on an example. The second is to evaluate in a large context to which degree
this method works and what kinds of results it is able to produce. Is it really able to
identify project success based on key project variables?

TABLE 3. The Altman kappa scale.

Kappa statistics Strength of agreement

< 0.20 Poor

0.21-0.40 Fair

0.41-0.60 Moderate

0.61-0.80 Good

0.81-1.00 Very good
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The case study is based on data from the NASA-SEL database [NASA-SEL92]. Fur-
ther information about NASA-SEL can be found in [Basili95]. Projects in the database
available consist of a rich set of project descriptors. They include parameters related to
schedules and estimates, resource use (both manpower and computer use), a variety of
product characteristics related to structure, size, growth, and change data. The focus
here is however on using the subjective data to understand what drives project success.
Subjective evaluations rank the projects in terms of problem complexity, schedule con-
straints, nature of requirements, team ability, management performance, discipline,
software quality, etc.

The database contains data from more than 150 projects that span five years. Of these,
we selected 46 for analysis, based on completeness of project data recorded. These 46
projects represented a variety of types of systems, languages, and approaches for soft-
ware development. The subjective variables, in the database, are measured on a five-
point Likert scale with the higher value denoting more of the quality ranked. In total,
27 project variables and 6 success variables are measured for the 46 projects. The six
success variables are: Agreement of software with requirements (AGGRE), Quality of
software (QSOFT), Quality of design (QDES), Quality of documentation (QDOC),
Timeliness of delivery (TIMELI), and Smoothness of acceptance test (ACCTEST).

While some of the subjective variables in theory could have been measured non-sub-
jectively (e. g. the number of changes in test plans) they were not measured like this in
this case. All project and success variables were the result of expert judgement. In
addition, the database did not include information that would have allowed us to infer
priorities for success or project variables. Thus we had to make our own assumptions.
We did so in order to be able to illustrate all parts of the analysis method. We assumed
the following: Timeliness of delivery (TIMELI) is the most important success variable.
Quality of software (QSOFT) is more important than quality of the design (QDES).
Smoothness of acceptance test (ACCTEST) is more important than quality of docu-
mentation (QDOC). Note that this constitutes neither a ranking according to AHS nor
LO, but serves as a starting point for further analysis for either method.

6�"������
���

1. Validation of project and success variables

The first step is to determine whether all success variables distinguish sufficiently
between projects (i. e. are relevant) Two success variables do not fit the criteria for
further inclusion in the analysis. They are AGREE (Agreement of software with
requirements) and QDOC (quality of documentation). Figure 3 shows the frequency
distributions of the two variables.
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No project is ranked “AGGRE=1” and likewise no project is ranked “QDOC=2”.
Further, both variables cluster around the high values. The median is 4 for both var-
iables. It seems that the organization is able to obtain fairly high quality with regard
to these two values in most projects. Hence there is no immediate need to focus on
any specific project characteristics to improve them. In accordance with rules for
step 1, these two success variables are removed from further analysis.

This leaves four success variables to aggregate into one success variable: QSOFT,
QDES, TIMELI, and ACCTEST.

Project variables are validated based on the assumption that more of a property is
better. This is the case for all 27 project variables.

2. Prioritization and aggregation of success variables

The assumptions about relative importance of the remaining four success variable
(as stated in section 6.1.) do not specify sufficiently information necessary for either
AHP or LO. We illustrate how to determine priorities and aggregate success varia-
bles for both methods.

�8����������9�����:

"����� There are four success variables, resulting in a  matrix. All elements in
the diagonal have the value “1”. We define the variables in the matrix as follows: (1)
QSOFT, (2) QDES, (3) TIMELI and (4) ACCTEST 
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"����� Four success variables require six pairwise comparisons. The six pairs are
found in Table 4 together with the value in the comparison using AHP. Table 4 also
defines which of the two variables in the comparison is more important and the val-
ues of the corresponding preference matrix entries. 

The results in Table 4 define the remainder of the matrix which is as follows: 

"����# Next, we compute the eigenvector of $�First, the sums of the columns are
(4.53, 16, 1.68, 9.33). Second, the � matrix is obtained as:

Third, the sums of the rows are (1.052, 0.227, 2.233, 0.488). They are normalized to
obtain the priority vector  �= (0.26, 0.06, 0.56, 0.12).

"����%  �states that QSOFT accounts for 26 percent of the success variables’ impor-
tance, QDES for 6 percent, TIMELI for 56 percent and ACCTEST for 12 percent.

"����& The goal of this step is to compute the consistency index CI. The first step is
to multiply the preference matrix $�with the priority vector  �'()$* +,�( = (1.11,
0.232, 2.36, 0.499). The  vector is now obtained by dividing each element in (
with the corresponding element in the priority vector  . Thus, we obtain  as (4.26,

3.87, 4.21, 4.16).  is the average of the values in vector . =4.12. The

consistency index CI = (  - n)/(n-1) = (4.12-4)/(3) = 0.04.

The consistency ratio is computed by dividing CI by the RI value for n=4 (see Table
in Appendix A1). RI=0.9. This gives a CR value of CR=0.04/0.9 = 0.05. This is a
very good value. The values for the aggregate success variable can now be com-
puted for all 46 projects by weighting the values of the different success variables
with the percentage values obtained from the priority vector. More formally, we
have:

2�#3��+�������	�������-���	�)������	����)��������-�����	���!������	��

���� (���	 '��	���)������

(1) QSOFT vs. QDES (2) 5 QSOFT: -��)&��-��)�.&

(1) QSOFT vs. TIMELI (3) 3 TIMELI: -��)#��-��)�.#

(1) QSOFT vs. ACCTEST (4) 3 QSOFT: -��)#��-��)�.#

(2) QDES vs. TIMELI (3) 7 TIMELI: -��)/��-��)�./

(2) QDES vs. ACCTEST (4) 3 ACCTEST: -��)#��
-��)�.#

(3) TIMELI vs. ACCTEST (4) 5 TIMELI: -��)&��-��)�.&

0.221 0.312 0.198 0.321

0.044 0.062 0.085 0.036

0.662 0.438 0.595 0.538

0.074 0.188 0.119 0.107

$

1 5 1 3⁄ 3

1 5⁄ 1 1 7⁄ 1 3⁄
3 7 1 5

1 3⁄ 3 1 5⁄ 1

=

λ
λ

λ	�- λ λ	�-
λ	�-
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"0��� = 0.26 * 1"234 + 0.06 * 156" + 0.56 * 47�687 + 0.12 * !��46"4.

The values for "0��� are used to rank the 46 projects. The ranking is shown in
Table 5.

3	4���%��)������	���%�;3<=:

Based on the assumptions defined with the data in section 6.1., TIMELI is most
important. It is followed by QSOFT, which in turn is followed by ACCTEST. QDES
is the least important success variable of the four success variables.
TIMELI>QSOFT>ACCTEST>QDES. The projects in the database can now be
sorted. The projects are first sorted after the most important success variable, i.e.
TIMELI, then the projects within a value for TIMELI are sorted based on the second
most important success variable, i.e. QSOFT, and so on. The ranking of the projects
using the lexicographic method is shown in Table 5.

���)��������-��8�����3<:

The similarity in ranking using the two methods are apparent from Table 5. The
Spearman correlation between the rankings using AHP and LO is 0.995. The high
correlation indicates two things. First, there is little difference between the two
methods in defining the aggregate success variable for this specific data set. How-
ever, one should not draw the conclusion that this is the case for all data sets. Given
the similarity of results for both methods, we chose to use the results from AHP dur-
ing the remainder of the analysis. 

3. Principal component analysis

Before determining which project variables show similar behavior to the aggregate
success variable, we need to determine whether the project variables are positively
correlated with it, i.e. are relevant. For both versions of ����� (the one determined by
AHP and for the one determined by LO) two project variables show a negative cor-
relation and are removed from further analysis. In both cases the same two variables
are removed. They are the experience of the team in general and the team’s experi-
ence of the environment in which the project is conducted. While one would agree
that experience is valuable for project success in general, it may not contribute to
project success for this set of projects for a variety of reasons. One could be that in
this environment, experts may have been assigned to the riskier projects and thus
prevent experience from correlating with success. 

A principal component analysis (PCA) is conducted for the aggregate success varia-
ble and the remaining 25 project variables. The analysis provides two main results.
First, it is possible to identify which project variables vary in the same way as the

2�#3��,������ 	������$��%������%��8�����'	����3<��	�)	���!	�
�

Project No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

 AHP 41 10 3 46 23 34 28 15 45 35 4 28 33 23 23 23

LO 38 10 3 46 23 34 28 19 45 35 4 28 33 23 23 23

Project No. 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

AHP 1 44 10 42 38 39 10 43 21 16 8 18 22 40 5 35

LO 1 44 10 42 39 40 10 43 17 16 9 20 22 41 5 35

Project No. 33 34 35 36 37 38 39 40 41 42 43 44 45 46

AHP 28 13 32 27 9 35 16 2 7 31 5 18 18 14

LO 28 13 32 27 8 35 14 2 7 31 5 15 20 18
Prioritizing and Assessing Software Project Success Factors and Project Characteristics using Subjective Data4 February 2003 15



success variable. These are the key project variables or characteristics that are most
closely related to the success of the project. These project variables are to some
extent the variables that drive the success of a specific project. Second, it is also
possible to study how the PCA groups the different variables to gain a better under-
standing of which variables vary together, although this is not the main focus of the
analysis method. The result of the PCA is shown in Table 6.

Three variables in the first factor have a loading above 0.7; these are marked with
dark grey in the table. One of them is the aggregate success variable with a loading
of 0.818. The other two variables are the quality of the project plan (loading 0.860)
and compliance with the plan (loading 0.811). The results indicate that, given the
prioritized success variables as success criteria, it is crucial to plan the project prop-
erly and then to strive to comply with the plan. Other variables, which have their
highest loading in the first factor, are: Programming practices (0.647), Management
performance (0.588), Schedule (0.538) and Team ability (0.500). These variables
are marked with light grey in the table. The variables with high loading in the first
factor, given that the aggregate success variable is in the first factor, provide a hint
of other aspects that may be important for this particular organization to achieve
success. The other factors, group other variables whose behavior is closely related.
These other factors can bed use to try to identify common patterns among project
variables, but this is outside the scope of this paper.

2�#3��/�������-�����	��%%�	%��	�!������	������	�",�)�� 	���!������	��

(������	 �������� �������" �������& �������+ �������, �������/ �������0

Complexity 0.039 0.732 0.405 0.093 0.077 0.027 0.257

Schedule 0.538 0.468 -0.076 0.385 -0.113 -0.006 0.230

Req. stability 0.334 -0.577 -0.137 -0.001 -0.405 -0.003 -0.305

Quality of req. 0.481 0.281 0.541 0.166 -0.392 -0.038 0.117

Doc. req. 0.371 0.012 0.657 -0.193 -0.018 0.161 -0.147

Req. reviews 0.078 0.188 0.859 -0.099 0.305 0.107 -0.123

Team ability 0.500 0.382 0.317 -0.326 0.137 0.223 0.040

Turnover 0.053 -0.153 -0.003 -0.097 -0.080 0.000 -0.863

Man. perf. 0.588 0.247 0.069 -0.341 0.290 0.150 0.085

Man. exp. 0.368 0.137 0.180 -0.068 0.727 -0.063 0.113

Stability man. 0.315 -0.650 -0.024 0.087 0.219 0.066 0.063

Project plan. 0.860 -0.102 0.108 0.028 0.037 0.117 -0.081

Plans followed 0.811 -0.245 0.138 0.175 -0.034 0.188 -0.024

Prog. practices 0.647 0.271 0.188 -0.010 -0.196 0.374 0.334

Req. meth. 0.342 0.759 0.172 0.095 0.153 -0.012 0.149

Design meth. 0.305 -0.028 0.532 0.127 -0.100 0.612 0.027

Testing meth. 0.328 -0.163 0.114 0.060 -0.051 0.821 -0.061

Test plans 0.368 0.296 0.183 -0.081 0.164 0.741 0.081

QA 0.459 0.185 0.608 -0.007 0.136 0.376 -0.079

CM 0.524 0.620 0.253 -0.018 0.040 0.099 0.034

Access 0.096 0.870 -0.076 -0.142 0.118 0.077 0.027

Dev. to terminals 0.379 0.599 0.050 -0.334 -0.052 0.206 0.176

Memory -0.57 0.357 0.540 -0.038 0.079 0.039 0.252
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4. Rank projects based on key project variables

The results from the PCA can now be used to rank the projects based on the two key
project variables identified (project plan and compliance to plan). The rankings
form the basis for the classification into successful and unsuccessful project in the
next step. It is also possible to determine the Spearman rank correlation between the
rankings based on the aggregate success variable and the key project variables. This
is primarily done to get an indication of the level of correspondence between the
two rankings. In this case the correlation is 0.682, which shows that there is a rela-
tionship between the two rankings, although not close to equivalence. The correla-
tion is not the key issue; the actual classification of a project into either being
successful or unsuccessful is what we are really after.

5. Classification of success and failure

Assume ranks have been assigned to the 46 projects as rank 1 to rank 46 where a
rank of 1 indicates the top project and a rank of 46 indicates the bottom project (as
in Table 4). The projects are classified into successful and unsuccessful projects
respectively (upper and lower half). Because of ties in ranks, 24 projects are suc-
cessful, 22 are not. This means that projects that have a rank of 1 to 24 are regarded
as successful and a rank of 26 to 46 denotes an unsuccessful project. This classifica-
tion is performed for both rankings (by key project variables and by aggregate suc-
cess variable). Based on the aggregate success variable, 26 projects are successful,
20 are not. Next we determine how often the two classifications agree or not. This is
summarized in the diffusion matrix of Table 7.

Most projects are correctly classified. In cases where the key project variables indi-
cate a success, 21 of 24 projects also become a success according to the aggregate
success variable. Similarly, 17 projects pinpointed as unsuccessful based on key
project variables also become unsuccessful based on the aggregate success variable.
Only 5 projects become successful when key project variables indicate an unsuc-
cessful project.

To further investigate how well the classification, based on key project variables,
agrees with that based on project success after the fact, we compute an agreement
index. For the classification in Table 7, the agreement index is 0.65. According to
Table 3, this is a “good” agreement, and we conclude that for this set of projects it is

Response time -0.005 0.689 -0.143 0.263 0.352 0.051 -0.252

Support 0.080 0.091 -0.053 0.907 0.079 0.087 0.075

Agg. success 0.818 -0.005 0.035 0.007 0.124 0.183 -0.120

2�#3��0�����--�����������4�-�������	��-���)�� 	���������	����	����
�
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s Successful 21 3

Unsuccessful 5 17
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(������	 �������� �������" �������& �������+ �������, �������/ �������0
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possible to use the key project variables as a basis for identifying successful and not
so successful projects.

This particular case study has shown two main results:

. It is possible to apply the proposed method to identify key project characteristics
that influence project success. As a measure of success, we have shown that it is fea-
sible to derive an aggregate success variable from a number of success criteria.

. In the case study, “project planning” and “ability to follow the plans” are crucial
project characteristics to obtain a successful project, where the success is defined as
the aggregate variable derived.

These results are encouraging. They indicate the importance of identifying key project
variables given priorities for project success (as defined in the aggregate success varia-
ble). If we are able to estimate values of key project variables before starting a project,
it helps in assessing potential for project success. Consequently actions may be taken to
increase the likelihood of project success. Thus, the method may be used as a software
project risk management tool.

While the analysis of this case study data is carried out on finished projects, it also pro-
vides valuable information about what to strive for when launching a new project.
When launching a project, it is possible to estimate the values of the key project varia-
bles, and, if the values are too low to indicate project success based on analysis of past
projects, it is necessary to re-think or be prepared to be less successful than hoped for.

�>��������������

This paper has shown that it is possible to identify key project variables that have a
major impact on and relate to software project success. A new method of aggregating
project success variables has been introduced. It is also shown how the aggregate suc-
cess variable can be analyzed together with project variables to identify the key project
variables that are crucial to achieving project success. The method has successfully
been applied in a case study. 

Given the success of the case study, the results show that subjective measures may be
useful in project success analysis. One of the advantages is that subjective measures are
normally fairly simple to collect. The simplicity of the metrics collection and the
straightforward analysis of the data make the new method a valuable contribution to
the tools available to managers when launching new projects. The method can be used
to assess success in historical projects, but the main benefits are obtained if we are able
to estimate the project variables before starting the project and use this information to
obtain guidance on how to increase the likelihood of project success. The method can
be used in early risk management or risk mitigation since it gives managers an opportu-
nity to control and predict success of a specific project. Further work includes applica-
tion of the method in ongoing projects and evaluation of its predictive capabilities.
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This method is based on the analytic hierarchy process (AHP), which is described in
detail in [Saaty80]. The description here is intentionally kept short, since the method is
described in detail in the references. AHP consists of four basic steps to determine the
relative importance of factors. A fifth step to analyses the consistency of the results.
We use the results of Saaty’s method to compute values for the aggregate success vari-
able.

"�����: Create an  matrix (denoted $), where � is the number of success varia-
bles. In the diagonal in the matrix the value “1” is inserted. The matrix is referred to as
the comparison matrix. Element ���, when ��is not equal to��� records the relative impor-
tance of success variable ��versus success variable �.

"���� �: Perform a pairwise comparison of the success variables with respect to the
importance of the success variables. An example of a scale for comparing the success
variables pairwise is illustrated in Figure 4. The size of the scale varies depending on
the granularity needed to differentiate importance of factors. Each pairwise comparison
means that it is necessary to determine which success variables of a given pair is more
important and how much more important it is. For example, a marking -�to the left on
the scale means that variable � is more important than variable �. How far to the left
determines how much more important variable � is than variable �. This ranking -�also
determines the values in the matrix $: ����)�-������)��.-.

�������+��5���	�-����8��

"����#: Compute the eigenvector of the  matrix. A simple method is proposed by
Saaty [Saaty80] to do this; the method is known as averaging over normalized col-
umns, and the procedure is as follows:

. Calculate the sum of the columns in the matrix, .

. Each element in a column is divided by the sum of the column, . This

results in a new matrix, denoted �, with elements 	ij.

. The sum of each row in the new matrix is calculated, .

. The sums of the rows are normalized by dividing by the number of success variables
(�), . This results in an estimation of the eigen values of the matrix, and

it is referred to as the priority vector. The vector is denoted   with elements  i for �
= �…�.

� �×

� �
9 7 5 3 1 3 5 7 9

� �×

�� ���
� 1=

�

∑=

	�� ��� ��⁄=

	� 	��

� 1=

�

∑=

 � 	� �⁄=
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"����%: Assign a relative importance to the success variables. The first success variable
is assigned the element in the priority vector. It is said that the first success variable
accounts for  i percent of the importance of the success variables. The second success
variable is assigned the second element in the priority vector and so on. Let  � to� � be
the percentage values for the importance of success variables � to �.

"����& Because AHP conducts more comparisons than minimally necessary, it is possi-
ble to evaluate the consistency of the ranking. This consistency ratio captures how con-
sistently the pairwise comparison has been conducted. The consistency check is
particularly important when a large number of pairwise comparisons are necessary,
making it easier to make errors and hence become inconsistent. 

The consistency ratio is computed in two steps.

. First, a consistency index (CI) is computed as , where

 is the maximum principal eigen value of the  matrix. The closer 

is to � the smaller is the error in the comparison.  is calculated by first multi-
plying the comparison matrix, i.e. matrix $, with the priority vector. Let the result-
ing vector be denoted ( with elements (i,  For the resulting vector, each
element in the vector is divided by the corresponding element in the priority vector,

.  is now computed as the average of the elements in the resulting

vector, . CI can now be calculated.

. The consistency ratio (�() is determined by dividing the consistency index (�7) by
a random index ((7). The random index has been generated to take into account ran-
domness and it is used to normalize the consistency index. Thus,

, where (7 is determined from Table 8, where the first row shows
the order of the matrix (�) and the second row shows the corresponding (7 value.
The smaller �(, the more consistent is the comparison.

According to [Saaty80], a consistency ratio of 0.10 or less is considered acceptable.
However, [Karlsson97] points out that in practice higher values are often obtained.
This indicates that 0.10 may be too hard, but it indicates an approximate size of the
expected consistency ratio.

"����9 If the consistency ratio indicates that the results are trustworthy (consistent), it
is now possible to compute an aggregate success variable (�����) for each project. 

2�#3��1��'����4���	���������	�)����%����!���	�?5���
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� " & + , / 0 1 6 �> �� �" �& �+ �,

0.00 0.00 0.58 0.90 1.12 1.24 1.32 1.41 1.45 1.45 1.51 1.48 1.56 1.57 1.59
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� 1=
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Prioritizing and Assessing Software Project Success Factors and Project Characteristics using Subjective Data4 February 2003 23



In the formula, ��i denotes the value of success variable � for a specific project and  i is
the relative importance given by the priority vector.

From a measurement theory perspective, this operation is problematic since the success
variables are measured on an ordinal scale. For example, the distances between differ-
ent values on an ordinal scale are not necessarily the same and a given value on one
scale may be better or worse than the same value on another scale. A discussion on
scales and use of different statistical methods in software engineering is provided in
[Briand96].

Given that we map the ratio-level scale values for ����� obtained by AHP into a rank-
ing, this should only pose a problem when scales are widely different for the individual
success variables or when there are concerns about using rank order scales with AHP.

�))	��4��":�3	4���%��)����<�	���%

Lexicographic ordering (LO) is simpler than Method AHP, but it does not allow for
quantifying the relative importance of the success variables with weights; it only ranks
the relative importance of the success variables. 

"�����: Determine the relative importance of the success variables as a rank order. The
output from this step is a ranked list of the success variables.

"�����: Sort the projects, for which data is available, in descending order based on the
most important success variable. This results in a list with the projects with the highest
values of the most important success variables at the top. Within each value of the first
success variable (for example all projects with a value of 5 for the first success varia-
ble), sort the projects in descending order based on the second most important success
variable. This sorting is continued until all success variables have been processed. The
outcome from this step is a sorted list of projects where the sorting is based on the
importance of the success variables.
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