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Abstract

One of the goals of collecting project data during software development and evolution is to assess

how well the project did and what should be done to improve in the future. With the wide range of

data often collected and the many complicated relationships between them, this is not always easy. This

paper suggests to use production models (Data Envelope Analysis) to analyze objective variables and

their impact on e�ciency. To understand the e�ect of subjective variables, it is suggested to apply

principal component analysis (PCA). Further, we propose to combine the results from the production

models and the analysis of the subjective variables. We show capabilities of production models and

illustrate how production models can be combined with other approaches to allow for assessing and

hence understanding software project data. The approach is illustrated on a data set consisting of 46

software projects from the NASA-SEL database (NASA-SEL, 1992). The data analyzed is of the type

that is commonly found in project databases.

1 Introduction

Increasingly, software productivity is a major concern in software development. Most new development
methods, like object-oriented development (and structured development before it) are advocated because
they promise higher levels of productivity. The same holds for tools and languages. Yet, many more factors
inuence productivity and it is usually not obvious how they interact. A key step is to analyze existing
project data to assess and understand sources of ine�ciencies in the projects that have been executed as well
as factors which inuence whether a project is viewed as successful or not. Furthermore, the analysis would
help in quantifying relationships among the data, which can form the basis for identifying suitable actions
to increase productivity. This requires the following:

� identi�cation of relevant software production factors (process and product) that have a major inuence
on the characteristics of the software produced, on the e�ciency of production and on the success of
software projects.

� identi�cation of relevant variables. For the software process, these relate to software quality measures
and e�ciency of its production. In this context, we consider software quality to include key desirable
attributes of the software such as reliability, usability, maintainability, etc. E�ciency of production
relates to the consumption of resources in software production.
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� modelling of the transformation of resources into production outputs. A classic approach is to use
production models (Bessent et al., 1980; Charnes et al., 1978; Norman and Stoker, 1991). We propose
to combine this approach with other statistical methods to assess and understand e�ciency and success
in software production.

While production models (or Data Envelope Analysis) have been used in Operations Research for quite a
while, their use in the computing �eld has been limited (Banker et al., 1991; Roeseler and von Mayrhauser,
1992). One study used production models to improve the e�ciency of software maintenance (Banker et al.,
1991). One reason for the limited use is that their success in the software development and maintenance
domain requires appropriate parameterization (i. e. suitable metrics). In (Roeseler, 1991; Roeseler and von
Mayrhauser, 1992) we did this parameterization for the computer system tuning domain. We developed a
hierarchical set of factors and families of measures that, with the production model, make it possible to
improve computer system services for users. Like computer systems, we can also consider software develop-
ment and maintenance as a production process and model it accordingly. Inputs to the production model
are various indicators of resources (e�ort, tools, capital, expertise, etc.). Outputs reect the characteristics
of software produced (size, quality, etc.). The production model then identi�es which development activities
were e�cient and which factors are related to ine�ciencies. This targets speci�c production activities for
improvement.

The production model not only identi�es all factors contributing to ine�ciencies, it quanti�es the degree
of ine�ciency. It also determines how much a factor level has to change to no longer cause ine�ciency. At
�rst glance, this would indicate almost a silver bullet for quantitative assessment, as it not only identi�es
ine�ciencies, but also points to production factors that must improve. Root cause analysis can then further
identify reasons for undesirable production factor values.

To make production models useful for quantitative assessment and improvement requires a hierarchy of
metrics for further analysis of production model results.

The production modelling approach is complemented with a statistical analysis of subjective variables
that are often collected in software projects (Wohlin and Ahlgren, 1995; Wohlin et al., 1995). The objective
is to allow for a complementary analysis and hence provide a means for performing triangulation. The main
emphasis is on the production models since they have been rarely applied in software engineering previously
(Banker et al., 1991; von Mayrhauser and Roeseler, 1993; von Mayrhauser and Roeseler, 1993). The statisti-
cal methods used to analyze the subjective variables are an important complement to the production model
results. The models introduced are illustrated in a case study where 46 software projects are evaluated using
di�erent types of methods to analyze objective and subjective data respectively.

The approach is outlined in Figure 1. The �gure illustrates a common situation: project data include
both objective and subjective metrics. The objective data is analyzed using production models to identify
e�cient and ine�cient projects. Section 2 describes how production models work and how they analyze
data. The methods to analyze the subjective data are introduced in Section 3. This includes both principal
component analysis and ways of comparing agreement between di�erent models. In particular, it is possible
directly from the subjective data to assess which subjective factors are most important for project success.
Section 4 presents an approach to perform a combined analysis. Section 5 illustrates and evaluates current
viability of production models for process assessment on a case study of 46 projects. Moreover, the case
study illustrates how production models may be combined with an analysis of subjective data to provide an
improved understanding of software projects and their outcomes. The main objective of the case study is to
illustrate how to use a combined approach that evaluates both productivity and success of projects based
on objective and subjective variables. The results from the case study are promising and encouraging, but
not spectacular, due to the type of data in the project data base. As with other methods, the type and
quality of the data inuences the results a model or analysis method is able to provide. The main lesson
learned is that it is bene�cial to apply di�erent analysis techniques to di�erent types of data and to combine
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Figure 1: Outline of the Evaluation Approach

the results. This provides a way of performing triangulation for project data. Finally, some conclusions are
presented in Section 6.

2 Production Models

Any software process de�nes the production of software or at least of deliverables that are part of the software
production process (e. g. the testing process produces various test results). Technical and economic analysis
perspectives are integrated by a causal model that describes software production in terms of production
systems. Figure 2 depicts a production system model that describes how (possibly multiple) input factors
(resources in the general sense) are transformed into (possibly multiple) output factors (deliverables, quality
aspects, etc.) using a software development process. Feedback in the production system model is provided
through managerial decision making (e. g., deciding on process, project plan and resources).

The motivating idea behind the production system model is the notion that the software development
process transforms software feature requests into software products. The time to do this varies. So do the
resources used.
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Figure 2: A Simple Causal Model of the Software Process.

Software productivity optimization requires identi�cation of the most favorable set of operating condi-
tions. Most favorable (optimal) production conditions are characterized by the attainment of maximal levels
of outputs, given a set of production input quantities.

2.1 Production Functions

Instead of being \random," we assume that a functional relationship between software production process
inputs and outputs exists. In the production system model, the production function f relates the inputs to
the outputs and describes the resource transformation process. A general production function that transforms
N inputs QI = (Q1

I ; Q
2
I ; : : : ; Q

N
I ) 2 RN

+ into M outputs QO = (Q1
O; Q

2
O; : : : ; Q

M
O ) 2 RM

+ is given by

f(QI) = QO (1)

where:

� Qm
O is the amount of the m-th output, m = 1; : : : ;M

� Qn
I is the amount of the n-th input, n = 1; : : : ; N

� f : RN
+ 7! RM

+ production function giving maximal output for given input.

We assume that the N inputs andM outputs are strictly positive and are measured on a ratio scale (hence
QO 2 RM

+ and QI 2 RN
+ ). A production process is now modeled by a production function f : RN

+ 7! RM
+ ,

where Equation 1 gives the maximal output vector QO obtainable from an input vector QI .
Because of the complex interactions of software production process components, the analytic speci�cation

of the production function according to Equation 1 is rarely feasible. In the absence of quantitative means
to determine the interactions and causalities of production components in the production process directly,
we take an empirical approach based on historical production observations.

To illustrate the basic concept, assume for the moment a situation with one input and one output variable.
Figure 3 depicts observations on a production process characterized by one input (Q1

I) and one output (Q1
O)

factor (e. g. the traditional productivity metric based on e�ort (the input variable) and lines of code (the
output variable)). For each input amount Q1

I , the corresponding output amount Q
1
O is shown. Given input

interval and observation period, the points A, B, C, D, and E, represent the maximum outputs obtained
and therefore represent the (piecewise linear) approximation to the production function f of the underlying
(actual) production process. Because maximum output levels are not attained, output amounts Q1

Oi
<

f(Q1
Ii
) in Figure 3 indicate ine�ciencies in the production process for the ith period.

Consider a ray OO0 through the origin and tangent to the production function f . This is the e�ciency
frontier. Points B and C now represent preferred operating conditions from a resource utilization point of
view, since these points maximize the ratio output over input (see Figure 4). In particular, the input amount
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Figure 4: Production Process Resource Allocation.

Q1
ID

employed at point D should result in output amounts Q1
O
D0

associated with the hypothetical production

point D0, where D0 lies on OO0. (Conversely, output amounts Q1
OD

at D should only require input amounts

Q1
0

ID
, where Q1

0

ID
is obtained by reading straight down at the intersection of a horizontal line through D with

OO0). This example models a �xed return to scale, i. e. f is a straight line. See section 2.3 for how to treat
a variable return to scale.

A measure of e�ciency of the ith production period is now provided by the ratio of observed output
amounts to desired output amounts (the desired output amounts are along the frontier); i. e.,

0 �
f(Q1

Ii
)

Q10

Oi
jQ1

Ii

� 1 (2)

where f(QIi) and Q
1
0

Oi
jQ1

Ii
denote the observed and the desired output quantities, respectively, given Q1

Ii

amounts of input employed.
Given the observations above, economic principles in the production system model consider the quantity

(value) of the deliverables (outputs) generated given the resources (inputs) employed. Software production
e�ciency is then, naturally, de�ned by an organization's ability to produce outputs given inputs consumed.
An organization is at its most productive when resources are optimally utilized (i. e., maximum outputs
are obtained, given resources consumed.). Knowledge of a process's relative (in)e�ciency, amount of excess
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input, and desired output goals can then be used to:

� evaluate the e�ciency of a software process. That is, are su�cient amounts of output produced?
Output is characterized by factors considered desirable for the software. Such factors include size,
performance, quality etc.

� decide on tactics to improve e�ciency. Solutions of the production model point out which input factors
must be improved to achieve desired output levels. So, for example, the model may suggest that design
review e�ort (sta� hours) may need to be increased by a certain amount to reduce ine�ciency for the
output factor software reliability (presumably too low a level).

2.2 Optimal E�ciency

A ratio de�nition of e�ciency according to Equation 2 can be expressed in terms of a fractional programming
model. Consider, again, a one input/one output situation, where Q1

O represents the output lines of code

delivered (LOC) and O1
I represents the input developer e�ort (E). The ratio LOC / E provides an obvious

e�ciency metric.1

Let Ek and LOCk be the observations on input and output values of the kth observation period, respec-
tively, where k = 1; 2; :::; n. Further, let Eopt and LOCopt be the observation-pair that maximizes the ratio
LOCk
Ek

. By our de�nition, the corresponding period is the most e�cient production period in the reference
set of n periods.

Suppose, for the moment, that the output LOC is constant, i.e., LOCk = const. An e�ciency metric
is now given by Effk = LOCk = LOCopt. In the case of k = opt, the result will be one, and maximum
e�ciency is achieved. In all cases where LOCk < LOCopt, the result will be less than one; that is, maximum
e�ciency is not achieved.

A productivity indicator based on one input and one output is extremely limited and problematic. There
are many other input factors that inuence software production in a signi�cant way. Output also constitutes
more than lines of code. First, software development produces a variety of non-code deliverables. Second,
size alone does not adequately describe a software product. Therefore, let us now expand the simple one
input, one output situation to the multi-input, multi-output case.

The above ratio de�nition of e�ciency is a special case of the economic de�nition of productivity
P = Output = Input and has been extended to multiple input and multiple output situations for pre-
diction and understanding of production processes (Charnes et al., 1978). Suppose the e�ciency of a set of
production periods, j = 1; 2; :::; n, is to be evaluated. For all periods, a common set of inputs Xj that
contribute to the production of outputs Yj is de�ned, where

Xj =

8>>>>>><
>>>>>>:

x1;j
x2;j
:

xi;j
:

xm;j

9>>>>>>=
>>>>>>;
; Yj =

8>>>>>><
>>>>>>:

y1;j
y2;j
:

yr;j
:

ys;j

9>>>>>>=
>>>>>>;
: (3)

Assume that observations on Xj and Yj are obtained. xi;j > 0 represents the observed value of the ith
input for period j, and yr;j > 0 represents the observed value of the rth output. 2

1We are well aware of the problematic nature of this metric. Indeed, its inherent problems motivated our use of multi-input,

multi-output production models.
2Notice the formal requirement that the observations on Xj and Yj have non-zero elements, that is, they are de�ned to

be strictly greater than zero. To comply with this requirement, it has been suggested to add a small value (e. g., 0.01) to

observations which have legitimate zero values. The introduction of these (small) constants will not appreciably alter the

solutions obtained (Bessent et al., 1980).
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The nonlinear programming de�nition of Equation 4 generalizes the output/input ratio measure of ef-
�ciency by calculating the ratio of a weighted sum of outputs to a weighted sum of inputs. The fractional
programming model according to Equation 4 is a mathematical representation of the e�ciency metric Effk
for situations where dimensional units of inputs and outputs are di�erent.

maximize hk =

Ps

r=1 uryr;kPm

i=1 vixi;k

subject to:

1 �

Ps

r=1 uryr;jPm

i=1 vixi;j
; j = 1; 2; :::; n; (4)

0 < ur; r = 1; 2; :::; s;
0 < vi; i = 1; 2; :::; m:

In Equation 4, k = 1; 2; :::; n, respectively, indexes the di�erent production periods in the reference
set, and hk is the normalized e�ciency index for the kth period. If hk < 1, then the kth period is ine�cient
compared to the reference set of periods. In particular, if hk = :75, then period k is only 75% as e�cient
as the most e�cient period (or periods) in the reference set. If hk < 1, some inputs are not fully utilized
during the kth period or are employed in the wrong proportions, and some other periods are getting more
output per unit of input for these resources. u and v represent marginal rates of conversion that vary for
each period evaluated. The u and v are constrained to be strictly positive and represent an overall increase
in e�ciency of a period, if one less unit of an input is utilized or one more unit of an output produced. These
conversion rates allow for situations where dimensional units of inputs and outputs are di�erent (i. e., most
practical cases).

Application of the duality relations of linear programming to Equation 4 and change of variables yields
a linear programming model according to Equation 5 (Charnes et al., 1978; Norman and Stoker, 1991).
This model provides the basis for establishing a period's e�ciency rating, and the desired input and output
quantities that render an ine�cient period as e�cient as the most e�cient period(s) in the reference set.

maximize zk � �

 
sX

r=1

S+r +
mX
i=1

S�i

!

subject to:

0 = yr;kzk �

nX
j=1

yr;j�j + S+r ; r = 1; 2; :::; s; (5)

xi;k =
Pn

j=1 xi;j�j + S�i ; i = 1; 2; :::; m;

0 � �j ; S
+
r ; S

�

i 8 j; r; i:

S+r in Equation 5 represents nonnegative slack (i. e., additional output) associated with the outputs, and
S�i represents nonnegative slack (i. e., excess resources) associated with the inputs. S+r is the additional
amount of the rth output that is be expected, and S�i is the amount by which the ith input has to be
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reduced, if the kth production period were to become e�cient. At an optimum we have h�k = 1=z�k. Sources
of ine�ciency are indicated by z�k > 1, and/or S+r > 0 or S�i > 0. 3

The �j represent an optimal basis for ine�cient production periods, and a hypothetical e�cient period
can be constructed from the weighted average of two (or more) of the observed e�cient periods. E�cient

periods are represented by
Pn

j=1 �j
~Pj , where ~Pj is a vector consisting of the outputs and inputs for the jth

period. � in Equation 5 is a small quantity (e. g., 10�5) that is always smaller than any positive value that
may be assumed by �j . This quantity provides algebraic closure of the constraint set in linear programming,
and it guarantees that optimal solutions are at �nite, non-zero, extremal points (Charnes and Cooper, 1985).

No production period can be rated e�cient unless both z�k = 1 and the slack variables S+r � and S
�

i � are
all zero. If the original observations on Xk and Yk are applied to

x0i;k = xi;k � S��i ; i = 1; 2; :::; m; and

y0r;k = yr;kz
�

k + S+�r ; r = 1; 2; :::; s;
(6)

new values x0i;k ; y
0

r;k are obtained that render period k e�cient. That is, if X 0

k and Y 0

k were observed
(instead of Xk and Yk), then period k would be as e�cient as the most e�cient period (or periods) in the
reference set. Notice that output augmentation and input reduction in Equation 6 may be required at the
same time. 4

The di�erences

�xi;k = xi;k � x0i;k ; i = 1; 2; :::; m;

�yr;k = y0r;k � yr;k ; r = 1; 2; :::; s;
(7)

represent the estimated amounts of input and output ine�ciencies, respectively, in the Xk, Yk for the
kth period (Charnes and Cooper, 1985). 5

2.3 Extensions and Practical Considerations

The illustration of the problem formulation and solution mechanism so far covers the basic form of production
models and Data Envelope Analysis (DEA) (Bessent et al., 1980; Charnes et al., 1978; Charnes and Cooper,
1985; Norman and Stoker, 1991). Several extensions and suggestions for dealing with practical issues exist.

Interval and rank data are frequently used in assessing various aspects of projects (Wohlin and Ahlgren,
1995; Wohlin et al., 1995). A data envelope analysis case study in (Norman and Stoker, 1991) uses \pitch"
of a shop (two values, 1 or 2) in an analysis of the e�ciency of 45 shops of a British national retailer. Current
practice in DEA is to include such variables \with care." This means that sometimes they are used as if
they represented ratio level data, other times they are dealt with in a separate analysis. 6

Another issue arises with variable returns to scale. The basic form of the model assumes a �xed return
to scale, as evidenced by the straight line OO0 in Figure 4. An example where a model with diminishing
returns to scale would be appropriate is the software testing phase. As testing progresses, the yield usually
diminishes. DEA considers this situation by introducing a modi�ed weighted sum ratio with an additional
constant in the numerator of the objective function of Equation 5 (Norman and Stoker, 1991; Charnes et
al., 1978). For estimating most productive scale size see (Banker, 1984).

Finally, the selection of which variables to include is an important issue as it a�ects the results of the
analysis. In software development, key factors are size of code and e�ort of production. Besides these, we see

3Throughout, optimal values of variables are denoted with an asterisk.
4In general, augmentation is the desired direction for outputs, and reduction (or diminution) is the desired direction for

inputs.
5The �xi;k are also called input slack.
6Mathematical extensions that could be included in the model (e. g. (Wagner, 1969; Hillier and Lieberman, 1967)) relate

to integer linear programming and mixed integer programming.
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a wide range of other variables that either relate to other types of items produced or to special production
conditions that a�ect the production process. If we start with the basic variables �rst, then add other
variables over the course of the analysis, we must understand the e�ects of adding more variables to the
model. Nunamaker (Nunamaker, 1985) establishes the following e�ects on e�ciency of existing data points
(in this case the individual software projects to be analyzed) when variables are added to a model:

1. E�cient projects stay e�cient.

2. Ine�cient projects with respect to a model with fewer variables may become e�cient when variables
are added. This is true whether the new variables are correlated or not. It also holds when variables are
disaggregated (as for example when breaking down overall e�ort into development versus maintenance
e�ort).

To put it another way: additional variables consider more reasons why a project should be e�cient, i.
e. models with additional variables are more \forgiving." This makes a judicious selection of variables very
important.

Variable selection is usually done via a panel of experts, prior statistical work, the analyst's knowledge
of the decision environment, or a combination of the three approaches.

3 Principal Component Analysis and Agreement Index

Software production models work well for objective variables. However, many software project databases
include subjective evaluations of projects. This can be handled in two ways:

� pretend the subjective rankings are objective and include them in the production model analysis
(Norman and Stoker, 1991),

� ignore subjective variables.

Neither approach is desirable so we propose a third. It is important to gain as much understanding
as possible from the subjective variables. In this particular case, principal component analysis is used to
further enhance the understanding and support the assessment of what constitutes an e�cient and successful
project. We do not describe PCA at the same depth as the software production models since descriptions
are more generally available in books on statistics covering multivariate statistics. PCA has also been more
widely applied in analyzing software engineering data than software production models. Some examples of
PCA applied in software engineering can be found in (Khoshgoftaar and Lanning, 1994; Khoshgoftaar et al.,
1996; Ohlsson and Wohlin, 1998).

The data in too many databases are collected without a purpose (except to collect data). Therefore
many measures are highly correlated because they measure almost the same thing. Various techniques exist
to extract a useful subset. One is Principal Component Analysis (PCA) (Gorsuch, 1983; Kachigan, 1986;
Ramsay and Silverman, 1997). PCA groups correlated variables or variables with the same behaviour into
a number of factors where each factor accounts for the maximum possible amount of the variance for the
variables being analyzed. The number of factors extracted may vary depending on the data set and the
method chosen for extraction. PCA can help in reducing the number of variables, and it can also provide
support in identifying variables that vary together. It can, for example, be applied to analyze similarities
between software development projects (Khoshgoftaar and Lanning, 1994). It has also been used when
building models for prediction of fault-prone software components, see for example (Khoshgoftaar et al.,
1996).

There exist some problems using PCA. The analysis requires formally three or more interval variables
because it is de�ned as a linear model. Non-parametric PCA methods have been developed, although they
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are not as commonly used. The results of applying linear versus non-parametric PCA often turn out to be
the same and we can measure whether the quality of the PCA results by the signi�cance level of the results
(Briand et al., 1996). When applying PCA to non-interval variables, it is necessary to be a little cautious.
This may, for example, include not accepting the results from the analysis without making sure that the
results correspond to expectations.

Two objectives may be identi�ed when applying PCA to the subjective variables in the analysis of
project data. The �rst objective is to reduce the number of variables that need to be considered, and the
second objective is to identify project factors (project characterization) that are closely related to the project
outcomes (e. g. software quality, timeliness). Here, we distinguish project factors from the input factors in
the production model. The project factors are a subjective characterization of the project, while the input
factors in the production model are project resources in a general sense.

Project outcomes also are often collected as rank order subjective variables. The project output factors
in the production model refer to objective output, while the project outcome factors in the PCA are related
to subjective judgement of project results. In this case, PCA can identify which subjective project factors
relate to outcome factors.

Given a threshold of what constitutes a positive outcome (e. g. of the timeliness of delivery, the quality
of the delivered software, etc.), it is possible to identify successful projects. At this point it also becomes
possible to evaluate which projects were both successful (as evidenced by the analysis of subjective variables)
and highly productive (as de�ned by the e�ciency index of the production model). The comparison between
these two di�erent models can be evaluated using, for example, an agreement index, often referred to as
kappa statistic (Altman, 1991). In software engineering, the kappa statistic has been applied to interrater
agreement of process assessments (El Emam, 1998).

Briey, the kappa statistic can be explained as follows for the simple case with two raters (or models)
and two levels (successful or unsuccessful project). Table 1 illustrates this type of problem in the form of
a table, where the cells illustrate the proportions of the projects with a given rating according to model
1 and model 2. For example, p11 = 0.20 would mean that 20% of the projects are considered successful
according to the subjective variables and successful (e�cient) according to the production model. Similarly,
p22 indicates the proportion of projects that both models consider unsuccessful. The columns and rows are
summarized, which is indicated with p+1 and so forth.

Table 1: Illustration of the kappa statistics.

Successful Unsuccessful Sum

Successful p11 p12 p1+
Unsuccessful p21 p22 p2+

Sum p+1 p+2

Based on Table 1, it is possible to derive an agreement index. Let PA be the proportion in which there
is agreement. Then, PA becomes

PA =

2X
i=1

pii (8)

This agreement includes that the agreement could have been obtained by chance. To take this into
account, the extent of agreement that is expected by chance is de�ned as
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PE =

2X
i=1

pi+ � p+i (9)

The agreement index is then de�ned as

� =
PA � PE

1� PE
(10)

To be able to understand the degree of agreement, it is necessary to interpret the kappa statistic on a
scale describing the degree of agreement. Several such scales exist, although they are mostly minor variations
of each other. Three scales are presented in (El Emam, 1998). Here the benchmark suggested by Altman
(Altman, 1991) is used. The benchmark is shown in Table 2.

Table 2: The Altman kappa benchmark.

Kappa statistic <0.20 0.21-0.40 0.41-0.60 0.61-0.80 0.81-1.00
Strength of agreement Poor Fair Moderate Good Very good

The agreement index requires comparable scales to determine successful projects in both models. This
prevents setting thresholds for each model, since it is not possible to map one scale into another directly.
To circumvent this problem, we use each model to rank the projects by success and identify the x most
successful projects and then use the kappa statistic to compare.

The use of PCA and the agreement index for the subjective variables is illustrated in the case study in
Section 5.

4 Combined Analysis

The production models provide information about which projects were judged to be e�cient. This may be
combined with an analysis of the subjective measures of project success. It is possible to relate the assessment
of the production models to the analysis of the subjective variables. This allows for a combined analysis
where the two analysis approaches work together and provide a better understanding and assessment than
could have been achieved by only one of the approaches. In particular, two di�erent scenarios are possible:

� The production models and the analysis of the subjective variables may pinpoint the same projects. In
this case, the models support each other and either one of them could have been used for analysis.

� The production models and the analysis of the subjective factors may pinpoint di�erent projects or at
least not exactly the same projects. The models complement each other. This scenario means that the
models address di�erent aspects, and hence they should be used together.

The projects to focus on for the analysis are those that both approaches identi�y, i. e. projects which
are both e�cient and successful. In this scenario, these are the projects to learn from and try to emulate. It
is possible to study whether the projects that were judged e�cient by the production models also are judged
successful based on the analysis of the subjective variables or vice versa. Thus, it is possible to identify which
of the above scenarios applies to a particular data set. This may be done using a table such as presented
in Table 1 and the agreement index presented above. It is particularly bene�cial to be able to analyze
both project e�ciency and project success. This implies that it is possible to focus on projects which were
both e�cient and successful. The assessment of these aspects provides an excellent basis for understanding
software success and e�ciency, which then in the next step can form the input to improvement activities.
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5 Case Study

5.1 Validate Model

Obviously, one case study cannot validate a general method. However, it can serve as an illustration and
evaluation to which degree existing project data are likely to be useful when one tries to assess software
projects' e�ciency and success. Speci�cally, the following questions must be answered:

� does the production model identify e�cient and ine�cient periods of production?

� are e�cient projects also normally successful projects?

� is the use of production models together with analysis of subjective variables a potentially useful
approach?

Subsequently a case study is used to illustrate what the proposed approach can do and what it requires
for successful use.

5.2 Project Data

The case study is based on data from the NASA-SEL database (NASA-SEL, 1992). Further information
about NASA-SEL can be found in (Basili et al., 1995). Project data in the database provide a rich set of
project variables to choose from. They include parameters related to schedules and estimates, resource use
(both manpower and computer use), a variety of product characteristics related to structure, size, growth, and
change data. Subjective evaluations rank the projects in terms of problem complexity, schedule constraints,
nature of requirements, team ability, management performance, discipline, software quality, etc.

In total, the database contains data from more than 150 projects. The projects span a �ve year period.
Of these, we selected 46 for analysis, based on completeness of project data recorded. These 46 projects
represented a variety of types of systems, languages, and approaches for software development. In all, there
were 25 attitude systems, 8 attitude ground support systems, 10 simulators, 2 systems related to shuttle
payloads, and one orbit system.

Table 3 summarizes the 46 projects used in the analysis. The �rst column provides a project identi�er.
We had complete objective data on the following factors that a�ect productivity.

Inputs.

� TMH: Total technical and management hours expended on the project.

� SH: Total service hours expended on the project. Service hours measure the documentation e�orts of
the Technical Publication department (editing, reproduction, etc.).

� CPU: Total CPU hours used on all machines.
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The �rst two relate to labor resources expended, the last is a measure of computing resources. While one
could interpret CPU hours used as a pure use of a capital resource, the measure is said to have been used in
reliability calculations, thus can be interpreted as relating to reliability growth e�orts.

Outputs.

� CHGS: Number of changes made to system components.

� PDOC: Number of pages of documentation produced for system.

� SLOC: Total SLOC (Source lines of code) for all components in system. This �gure consists of
(see below) new code (NewSLOC), modi�ed code (ModSLOC), and reused code without modi�ca-
tion (ReSLOC).

� NewSLOC: Total SLOC for all components in system classi�ed as new.

� ModSLOC: Total SLOC for all components classi�ed as modi�ed.

� ReSLOC: Total SLOC for all components reused from other system without modi�cation.

Note that SLOC = NewSLOC+ModSLOC+ReSLOC (sum of all SLOC, whether new, modi�ed, or
reused). Table 3 shows the values of the primary inputs and outputs of the production model for all projects
selected for analysis.

Besides these project data, we also decided to consider the subjective evaluation data of Table 4. Each
item is ranked on a �ve point scale with the higher value denoting the more desirable outcome. The subjective
variables can be grouped as indicated in Table 4. The categories are Problem, Team, Management, Execution,
Infrastructure and Outcome.

5.3 Production Model Analysis of Objective Variables

We ran the production model with �ve possible parameterizations. Table 5 shows these �ve possible pa-
rameterizations of the production model (I-V). Table 6 summarizes results of running the models, listing all
projects that were considered e�cient or marginally ine�cient by at least one of the �ve models. Table 6
shows projects that are e�cient with a \+" in the table. Marginally ine�cient projects are denoted by a
\o" in the table. E�cient projects have an e�ciency index of 1 while marginally ine�cient projects have an
e�ciency index between .9 and 1.

All models clearly identi�ed e�cient and ine�cient projects. Table 7 shows detailed e�ciency indices
for all projects and all models. It should be noted that the analysis should be conducted with care. It is
especially important not to get into a situation where a lot of code or other documentation is produced to
arti�cially inate e�ciency. Thus, it is suggested that this type of assessment is primarily used to understand
software production rather than as assessment of personnel. If reasonable assumptions can be made about
an underlying quality assurance process that prevents arti�cially inating production �gures, this approach
is credible.

Models I and II use the same inputs (technical/management e�ort and CPU hours), but di�er in how
they consider SLOC produced. Model I lumps all SLOC together into one output variable, while model II
di�erentiates between new, modi�ed and reused code. This allows the model to make implicit allowance for
some types of SLOC to expend more e�ort than others. Not surprisingly, model II shows a larger number
of e�cient projects than model I. In particular, the last several projects (they reused code in a signi�cant
manner) are included in the e�cient projects.

Neither model I nor model II consider service hours expended on a project. This implicitly assumes
that service hours are proportional to management/technical e�ort. Should that not be an appropriate
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Table 3: Project data included in production models.

Project TMH SH CPU CHGS PDOC NewSLOC ReSLOC ModSLOC

P1 12588 1109 382.3 1255 1613 45345 893 4673

P2 15760 4316 465 3228 2473 84729 7098 20041

P3 5791.5 1079 169.6 858 1120 20075 48618 6727

P4 14507.5 1231 402 2107 1793 49316 21825 4252

P5 14370.5 2744.4 497.2 2710 2458 76883 2834 5652

P6 15122.1 1926.5 309.5 2761 2695 61950 13266 14297

P7 1094.6 3.4 135.9 255 66 5540 99 0

P8 2520.7 527.6 79.3 275 300 5354 2449 1323

P9 19474.9 2846.2 987.3 2077 2107 45004 12616 9705

P10 17996.7 3266.9 810 1575 2360 44644 13016 8606

P11 4466 1194.2 63.2 255 763 14873 385 0

P12 2166.1 543.6 79.2 219 255 9627 18 527

P13 4633.2 695 180.5 541 760 10822 4118 2331

P14 20151.9 3819 790.6 3459 3017 98388 4416 7502

P15 3615.3 531 215.2 530 366 11878 1564 1323

P16 2942.7 338.1 58.6 660 527 12227 1065 1571

P17 1555.9 234.9 48.3 314 511 9568 3822 892

P18 4429.3 507.9 98.9 795 873 18680 6304 7838

P19 1004.9 201 14 103 136 2451 1099 1947

P20 1322.1 241.7 19.6 158 169 4160 365 0

P21 1140.5 128.4 35.9 300 284 7350 328 2049

P22 747.2 111.8 9.3 135 61 2052 0 0

P23 1293.1 162.7 22.9 289 163 4921 283 0

P24 42104.8 6808.1 1977.8 4193 5227 100470 29750 20642

P25 49476 5620 1337.1 2596 3870 137739 15635 5767

P26 15333.6 2207.3 138.13 261 1974 33196 6441 12067

P27 32083.4 4407.6 36.26 544 500 40201 134 1494

P28 12005 1524.5 248.8 412 1400 26986 2556 7363

P29 17057 1875 56.1 1776 1609 70951 10483 0

P30 54755.1 4718.5 177.2 1706 2500 194169 14109 28115

P31 49930.5 4312.9 155.46 1494 10690 141084 7934 29664

P32 123417 17157 729 5668 13122 292552 51366 17988

P33 28055.8 2124.9 911.46 983 2060 109807 7049 54246

P34 37806.4 2875.8 119.77 1325 4800 106834 5869 16156

P35 13657.5 1289.7 331.32 252 1406 59783 11450 20862

P36 12804 893.7 153.12 357 918 22175 5330 9538

P37 89513.8 7854.1 263.96 1404 4600 260382 11868 30876

P38 17975.5 1987.4 196.56 955 2100 63861 4399 38186

P39 11526 1034.5 410.87 297 1395 38327 11544 18277

P40 13214.6 1365.8 24.72 427 950 55289 11060 6063

P41 21657.7 2538.5 111.1 323 1200 41552 179016 50441

P42 18796.9 2126.4 701.51 341 2235 20859 39495 123663

P43 4726.5 855.1 250.23 47 650 2161 58591 5944

P44 11694.7 308 465.71 142 1035 12974 26275 28858

P45 4597.6 684.72 21.5 38 1500 10590 141006 2913

P46 2516 755.58 92.97 15 650 0 52026 9421
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Table 4: Subjective evaluation factors.

Category Factor Explanation
Problem COMP Problem Complexity

SCHE Schedule constraints (loose=1, tight=5)
RSTAB Stability of requirements (unstable =1, stable =5)
RQUA Quality of requirements
RDOC Documentation requirements
RREW Rigor of requirements reviews

Team TABI Development team ability
TAPP Development team application experience
TENV Development team environment experience
TSTAB Stability of development team (unstable =1, stable =5)

Management MPER Management performance
MAPP Management application experience
MSTAB Stability of management team
PROPL Project planning discipline
PPCOMPL Degree to which plans were followed (compliance with plan)

Execution PROGP Use of modern programming practices
FORC Discipline in formal communication
REMET Discipline in requirements methodology
DEMET Discipline in design methodology
TEMET Discipline in testing methodology
TEPLAN Use of test plans
QA Discipline in quality assurance

Infrastructure CM Discipline in con�guration management
DEVSYS Access to development system
DEVTERM Ratio of developers to terminals (low =5, high =1)
MEM Memory constraints
RESTIM System response time (poor =1, very good =5)
SHWSS Stability of hardware and support software
EFFTOOL E�ectiveness of tools used

Outcome AGGRE Agreement of software with requirements
QSOFT Quality of software
QDES Quality of design
QDOC Quality of documentation
TIMELI Timeliness of delivery
ACCTEST Smoothness of acceptance testing

assumption, it is better to include this input factor in the model. Including service e�ort as an input
variable should also consider number of pages of documentation produced as an output variable (the service
e�ort measures the e�orts of the technical publication department). Considering these two variables gives
rise to models III and IV. They distinguish themselves in that model III lumps all SLOC produced into one
variable, while model IV considers them separately. As with models I and II, model III is less \forgiving"
than model IV, as it does not make allowances for the di�erent types of SLOC and their possibly varying
resource cost. Model IV, having the most parameters, results in the largest number of e�cient projects.
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Table 5: Possible models.

M-I M-II M-III M-IV M-V
Inputs:
THM * * * * *
SH * * *
CPU * * * *
Outputs:
CHGS * * * * *
PDOC * * * *
NewSLOC * * *
ModSLOC * * *
ReSLOC * * *
SLOC * *
legend: * means included in model

Table 6: E�cient and marginally ine�cient projects by model type.

Project M-I M-II M-III M-IV M-V
P6 o o
P7 + + +
P16 o + + +
P17 + + + +
P18 o +
P19 + +
P21 + + + + +
P22 + + + +
P23 + + + +
P29 + + + +
P30 +
P31 + + + +
P33 o
P34 o
P35 o
P38 + +
P40 + +
P41 + +
P42 + + +
P44 + + +
P45 + + + + +
P46 + +

legend: + e�cient
o marginally ine�cient
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Table 7: E�ciency indices for models I-V.

Project M-I M-II M-III M-IV M-V

P1 .40 .57 .61 .68 .61

P2 .81 .86 .81 .86 .84

P3 .80 .82 .80 .82 .82

P4 .59 .61 .73 .77 .62

P5 .72 .83 .72 .83 .83

P6 .83 .91 .87 .91 .72

P7 .89 .87 1.00 1.00 1.00

P8 .42 .45 .44 .45 .45

P9 .41 .43 .42 .43 .43

P10 .36 .43 .42 .43 .43

P11 .33 .73 .57 .73 .54

P12 .43 .69 .44 .69 .69

P13 .44 .54 .54 .54 .54

P14 .65 .76 .65 .76 .76

P15 .56 .57 .56 .57 .57

P16 .99 1.00 1.00 1.00 .86

P17 .84 1.00 1.00 1.00 1.00

P18 .82 .99 .87 1.00 .82

P19 .59 1.00 .66 1.00 .61

P20 .62 .71 .69 .71 .49

P21 1.00 1.00 1.00 1.00 1.00

P22 1.00 1.00 1.00 1.00 .69

P23 1.00 1.00 1.00 1.00 .85

P24 .39 .43 .43 .43 .43

P25 .24 .46 .30 .46 .44

P26 .18 .63 .41 .63 .45

P27 .32 .62 .54 .62 .19

P28 .20 .45 .41 .45 .42

P29 1.00 1.00 1.00 1.00 .66

P30 .41 .85 .50 1.00 .58

P31 .38 1.00 1.00 1.00 1.00

P32 .40 .62 .55 .62 .38

P33 .28 .72 .41 .96 .83

P34 .41 .82 .83 .99 .66

P35 .25 .81 .45 .90 .79

P36 .20 .45 .43 .61 .42

P37 .26 .68 .35 .80 .48

P38 .41 1.00 .51 1.00 .71

P39 .25 .62 .55 .71 .68

P40 .62 1.00 .86 1.00 .68

P41 .42 1.00 .49 1.00 .59

P42 .34 1.00 .46 1.00 1.00

P43 .44 .52 .44 .54 .54

P44 .20 .50 1.00 1.00 1.00

P45 1.00 1.00 1.00 1.00 1.00

P46 .73 1.00 .79 1.00 1.00
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A last consideration of the model relates to the use of CPU time as a production input. CPU, total
CPU hours used on all machines, can be broken down into 13 types of machines. However, the majority
of projects use at most two or three di�erent types of machines. Logically, the best way to represent this
resource usage as an input is to break it down into the 13 individual types. This creates sparse data across
13 inputs (and an ill-conditioned optimization problem). The results of model runs using the sparse data
show unrealistic increases in e�ciency for all projects. This is because the model now has 12 more input
variables to the production model than before and thus is that much more forgiving. Strictly speaking, the
model does not allow zero values for speci�c variables, rather it evaluates the combined impact of a series
of variables. Additionally, the model does not correlate well with otherwise identical runs using CPU as a
single input. Thus, breaking down CPU usage by type of computer is not recommended.

In a situation like this, the modeler has two choices, (1) to use the aggregate variable CPU, or (2) to
reject it outright. We show the result of rejecting CPU as a production variable in our model V. It does not
model CPU resource usage, but distinguishes between di�erent types of SLOC and amount of documentation
as a production output. It is far less forgiving than model IV. It is in the nature of the technique that the
greater the number of variables, the higher the proportion of units that achieve a relative e�ciency of 1.
Informally speaking, ine�ciencies in production can be \explained away" by considering the e�ect of a set
of environmental variables. Depending on the analyst's interest and what he or she considers the major
productity drivers and outputs, one would choose one of these �ve models in step one of the data analysis.

Considering the results in table 6, two projects stand out, namely P21 and P45. They are robustly
e�cient, no matter which of the models are applied. What makes these projects so great from an e�ciency
perspective? To answer this question, we have to turn to the database for more information. P21 did not
have any explanation in the message �eld of its database entry, but the P21 entry reports a high degree
of verbatim code reuse (86%). Interestingly enough, P46, which had a similar code reuse ratio, is only
considered e�cient by models IV (the most forgiving one), and model V (which does not consider CPU
resources). The models which consider P46 not e�cient either do not consider service e�ort (M-I, M-II), or
do not break down SLOC so that SLOC due to reuse could be considered (M-I, M-III). Checking the message
entry for P46 in the database provides a clue: it turns out that service time had to be prorated between P45
and P46 with two thirds of that e�ort going to P46. This could explain the di�erence in e�ciency rating.
Indeed, checking the production model results indicate that for P46 the model considers the service e�ort
380 hours higher than it should have been. Thus, the di�erences in e�ciency between P45 and P46 might
be a matter of apportionment of service hours rather than di�erences in e�ciency of code reuse.

Looking at the \weakest of the best" (P30, P33, P34 and P35) provides insight into possible improvements.
They only become e�cient (P30) or marginally ine�cient (P33-P35) in model IV, which considers the most
parameters. Comparing model results in models II and IV (di�erence: model II does not consider service
e�ort), an interesting situation emerges: Model II and IV consider applied e�orts appropriate (no need
to reduce them). Model II, however, expects signi�cantly more output in the following areas: number of
pages of documentation (PDOC, increase by 74%) and code reuse (ReSLOC, increase by 200%). In order to
evaluate whether these are the areas in which to become more e�cient, one should indeed use model IV, since
it directly models service hours, a production variable that measures the e�ort of the technical publication
department. When these factors are explicitly considered, model IV identi�es the project as e�cient. Thus
improvement in this area is only necessary if one wants to improve beyond the current frontier of e�ciency.
A similar argument can be made for the remaining marginally ine�cient projects.

Consider now the \worst" projects for each model. They are for model I: P26, for models II and IV: P9,
for model III: P25, and for model V: P28. Unlike the \best" projects, no clear picture emerges, except that
they don't do well in any of the models. The suggestions for improvement range from output augmentation
alone to a combination of output augmentation and input reduction.

Table 8 shows the detailed production model results for model IV. The �rst column shows the project
index. The second column identi�es the e�ciency index for the project using model IV. The next three
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Table 8: Detailed production model results for model IV.

Project E�Ind TMH SH CPU CHGS PDOC NewSLOC ReSLOC ModSLOC

P1 .68 2167.72 0 0 2723.25 2484.09 66339.74 2881.23 17667.93

P2 .86 0 2546.64 0 3898.19 3763.61 98963.47 8290.46 26913.27

P3 .82 0 358.32 37.92 1042.47 1588.47 29508.5 59070.87 8210.53

P4 .77 3143.41 0 0 2753.85 2758.00 68761.68 28525.27 18149.60

P5 .83 0 1126.54 44.85 3781.21 3579.5 92644.01 4134.06 25820.17

P6 .91 0 210.37 0 3037.1 2964.5 79914.58 23165.34 15726.70

P7 1.00 0 0 0 255 66 5540 99 0

P8 .45 0 226.14 3.60 609.12 664.5 15603.95 5424.53 3964.67

P9 .43 0 600.22 394.53 4891.34 4961.98 122229.1 12616 33283.13

P10 .43 0 524.58 241.63 3647.7 5465.76 103918.8 58496.16 19931.50

P11 .73 0 601.01 0 421.57 1039.21 20257.03 37247.46 2432.39

P12 .69 0 299.74 11.02 569.77 539.38 13959.15 622.96 3891.55

P13 .54 0 40.57 35.92 1008.42 1416.64 28682.49 9147.91 4344.98

P14 .76 0 1549.67 156.28 5300.11 5019.53 129872.2 5829.12 36186.28

P15 .57 0 121.92 102.92 936.51 904.63 23063.72 2763.59 6429.16

P16 1.00 0 0 0 660 527 12227 1065 1571

P17 1.00 0 0 0 314 511 9568 3822 892

P18 1.00 0 0 0 795 873 18680 6304 7838

P19 1.00 0 0 0 103 136 2451 1099 1947

P20 .71 0 87.90 0 221.36 236.77 5828.16 4823.22 803.61

P21 1.00 0 0 0 300 284 7350 328 2049

P22 1.00 0 0 0 135 61 2052 0 0

P23 1.00 0 0 0 289 163 4921 283 0

P24 .43 0 1275.07 672.71 9727.76 12126.64 263625 69020 50386.99

P25 .46 0 94.86 0 11274.05 11129.44 300959.7 34162.47 78961.53

P26 .63 0 295.98 0 799.72 3132.74 52682.05 187920.90 19150.33

P27 .62 16643.52 2777.66 0 872.58 1226.82 64482.4 11765.52 4697.58

P28 .45 0 48.10 0 1970.54 3085.6 59477.14 115356 16228.05

P29 1.00 0 0 0 1776 1609 70951 10483 0

P30 1.00 0 0 0 1706 2500 194169 14109 28115

P31 1.00 0 0 0 1494 10690 141084 7934 29664

P32 .62 0 2005.21 0 9210.5 21323.25 475397 1082844 37279.69

P33 .96 1775.43 0 0 4338.4 4912.92 114528.7 27597.91 56578.58

P34 .99 7422.83 0 0 1332.95 4828.8 107475 13103.68 17565.03

P35 .90 2207.55 0 0 2528.27 2595.02 66179.78 12675.15 23094.23

P36 .61 4641.74 0 0 1061.04 1513.78 36566.57 8789.17 15728.16

P37 .80 13889.79 0 0 3398.12 6169.1 325737.90 61018.42 40229.68

P38 1.00 0 0 0 955 2100 63861 4399 38186

P39 .71 0 0 0 2075.54 2280.84 53887.76 16230.86 25697.46

P40 1.00 0 0 0 427 950 55289 11060 6063

P41 1.00 0 0 0 323 1200 41552 179016 50441

P42 1.00 0 0 0 341 2235 20859 39495 123663

P43 .54 0 0 162.5 86.86 1306.03 8019.3 108276.20 10984.51

P44 1.00 0 0 0 142 1035 12974 26275 28858

P45 1.00 0 0 0 38 1500 10590 141006 2913

P46 1.00 0 0 0 15 650 0 52026 9421
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columns show excess inputs for the three input variables TMH, SH, and CPU. The rightmost �ve columns
show desired outputs for each output variable (CHGS, PDOC, NewSLOC, ReSLOC, and ModSLOC). The
e�cient projects of course, show neither input reduction, nor output augmentation. The marginally ine�cient
projects (with an e�ciency index of between .9 and 1.0) suggest a reduction (and thus increased e�ciency)
in technical and management hours of e�ort rather than other inputs. Conversely, at the low end of the
spectrum, the suggested input reduction to achieve optimum e�ciency concerns service hours and CPU
hours rather than technical and management hours.

Considering desired outputs, the projects at the low end of the e�ciency scale suggest output augmen-
tation for the output variables between a factor of 2 (for PDOC) and 45 (for ReSLOC). For marginally
ine�cient projects, this drops to a range of less than 1% to a factor of almost 4 (for code reuse). Output
augmentation is fairly evenly distributed, suggesting a need for improvements across the board, rather than
for a speci�c production variable. The next step is to identify other potential factors. For this, we now have
to turn to the subjective evaluation variables.

5.4 Analysis of Subjective Variables

The objective of the analysis of the subjective variables is to investigate which projects were regarded
successful. Moreover, the aim is to identify which project factors during development are most closely
related to the success of a project. The �rst step in the analysis is to perform a PCA for all subjective
variables (i. e. project and outcome variables) to obtain principal components that include both. The main
reason is that the focus of the analysis should be on how the project factors correlate with the outcome of
the projects.

The analysis used is a standard principal components analysis with an Orthotran/Varimax transformation
to extract orthogonal factors with the highest possible correlations (Gorsuch, 1983; Kachigan, 1986; Ramsay
and Silverman, 1997). Factors having an eigenvalue above one are extracted. Table 9 shows the results from
the analysis including only the highest loadings. A higher loading means a larger inuence on the principal
component.

The PCA generated ten factors. It is preferable if the principal components can be interpreted in the
context of what the factors stand for. Some of the factors in Table 9 can be interpreted in this way, while
others seem primarily a statistical artifact. An example of a factor with an easy interpretation is factor
4, which clearly relates to the experience of the development team. The most interesting factor given the
objective of the analysis is the �rst factor, which includes all outcome variables and three of the project
variables. In summary, the �rst factor includes:
Project variables:

� Stability of requirements (RSTAB)

� Project planning discipline (PROPL)

� Degree to which plans were followed (PPCOMPL)

Outcome variables:

� Agreement of software with requirements (AGGRE)

� Quality of software (QSOFT)

� Quality of design (QDES)

� Quality of documentation (QDOC)

� Timeliness of delivery (TIMELI)
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Table 9: PCA for all subjective evaluation factors.

Factor 1 2 3 4 5 6 7 8 9 10
COMP .637
SCHE .500
RSTAB .448
RQUA .686
RDOC .686
RREW .914
TABI .497
TAPP .863
TENV .722
TSTAB .917
MPER .468
MAPP .647
MSTAB .614
PROPL .818

PPCOMPL .815
PROGP .478
FORC .893
REMET .898
DEMET .562
TEMET .729
TEPLAN .730

QA .655
CM .707

DEVSYS .867
DEVTERM .697

MEM .505
RESTIM .648
SHWSS .912

EFFTOOL .921
AGGRE .584
QSOFT .828
QDES .811
QDOC .597
TIMELI .749

ACCTEST .739

� Smoothness of acceptance testing (ACCTEST)

What this tells us is that only three of the project factors vary the same way as the outcome variables.
Stability of requirements, project planning, project execution and all of the subjective ratings of project
outcome: agreement with requirements, quality indicators, meeting deadlines and smooth acceptance testing
are in the same principal component. To put it another way: low rankings in these three project variables
will guarantee low ranking in the outcome variables (an unsuccessful project). The obvious advice is to
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watch these project variables closely to ensure project success. Given the nature of these variables, it is
reasonable to assume at least some causality between these project factors and the project outcomes.

The kappa statistic evaluates how good this assumption is: we rank project success based on project
variables (model 1) and outcome variables (model 2). Only factors with a loading above 0.7 are used in the
ranking to avoid including variables with low a�nity to the factor. Then we evaluate the agreement using the
kappa statistics. Key in this analysis is to de�ne how many projects are considered successful. We chose 17,
because the data indicated a clear ranking di�erence at this point. The agreement index is now calculated
for the two di�erent rankings. The proportions of projects are shown in Table 10. The rows identify
whether a project was considered successful or unsuccessful based on ranking of project characteristics while
the columns classify projects as successful or not based on success variables. This type of matrix shows
agreement between both sets of indicators in the diagonal, disagreement in the other �elds. It is also called
a di�usion matrix.

Table 10: Projects predicted as successful projects versus those that actually were judged as being successful.

Successful Unsuccessful Sum

Successful 11/46 6/46 17/46
Unsuccessful 6/46 23/46 29/46

Sum 17/46 29/46

This results in � = 0.44 with a correlation (Spearman) between the project rankings of 0.59. In other
words, the agreement is moderate and hence there is a moderate chance that projects with stable require-
ments, good project planning and where the project plan is followed will become successful projects. Thus,
the subjective variables provide insight into which parameters are most important to provide a good basis
for a successful project. It is particularly interesting for the development organization to note that stable
requirements are important (Wohlin and Ahlgren, 1995). This is an important fact that should be commu-
nicated clearly to the customer, whether internal or external. The importance of the project plan stresses
the need for good project management. Given these relationships, it appears possible to judge the expected
success of a project based on the three project variables.

5.5 Combined Analysis: Objective and Subjective Variables

The next step compares the analysis results of the subjective and objective variables. As before, the projects
are ranked based on both approaches (degree of success and e�ciency index). The objective is twofold.
Firstly, it may help to decide which of the �ve production models should be used in this particular organi-
zation. Secondly, it helps in identifying which of the e�cient projects were also regarded as successful. The
latter helps to determine which projects represent "best practice." The e�cient and successful projects are
obviously the projects that we would like to learn from, emulate or use as a baseline when trying to improve.

In this particular case, there were 19 highly e�cient projects (for model V, which indicated the largest
number of e�cient projects of the �ve production models). 18 of the projects had an e�ciency index of
1, the 19th had an e�ciency index of .99. We compared these 19 most e�cient projects to the 19 most
successful ones. The agreement index for all �ve models is poor and the correlation is fairly low. The highest
correlation is between the e�ciency indices of model II and the subjective outcome factors. The correlation
is 0.31, which is still rather low.

Given that the correlation was highest for model II, we used it to illustrate how the result of the production
model may be combined with the analysis of the subjective data. The di�usion matrix is shown in Table 11.
It shows the number of projects according to their success and e�ciency classi�cation.
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Table 11: Successful projects versus e�cient projects according to model II.

E�cient Ine�cient

Successful 9 10
Unsuccessful 10 17

Nine projects are both e�cient and successful. These projects represent best practice and are the ones to
emulate. E�ciency is an important company internal attribute. Success is an important external attribute.
Thus, the combination of e�ciency and success is crucial. The nine projects are: P2, P17, P19, P23, P31,
P40, P41, P45 and P46. Seven of these are regarded as e�cient for model II in Table 6, i. e. they have
an e�ciency index of 1.0. Note that P21, which is viewed as e�cient by all �ve production models, is not
regarded as a successful project. The rank of P21 is 20 (together with �ve other projects), i. e. just below
the projects that were considered successful. The �ve highest ranked projects with respect to success are:
P17, P11, P8, P31 and P46. Based on this analysis, one possible approach would be to

� Analyze in more detail the nine projects that were both e�cient and successful.

� Focus in particular on projects P17, P31 and P46. What makes these both e�cient and successful?

� Do an analysis of P21 to �nd out why it is regarded as e�cient, but not really a success.

In general, we need to look into detailed project data after this type of analysis. Some important questions,
emphasizing the complementary nature of the production models and the analysis of the subjective variables,
include:

� Q1: What do the successful and e�cient projects have in common? (Look at size, subjective outcome
factors and so on).

� Q2: What can be improved in the successful projects? (Look at projects that are successful, but
ine�cient. These represent situations where improvement is possible.)

� Q3: Do unsuccessful projects which are e�cient have low quality? (This could be one reason why they
were e�cient.)

� Q4: Could ine�cient/unsuccessful projects be targeted for major improvements?

The combined analysis shows that there is much to learn from combining di�erent analysis approaches.
Di�erent views are important when assessing and understanding software projects. Increased understanding
makes it possible to focus improvement work.

6 Conclusion

Software productivity and project success are complex to analyze. Both depend on a large number of
related factors. Reliable quantitative methods paired with engineering judgement appear most promising.
This paper described a multi-method approach that utilizes quantitative methods to evaluate e�ciency and
success.

We used a case study to illustrate and evaluate the combined approach. The results are encouraging,
although clearly challenges exist. These must be overcome for this combined analysis to be practically useful:
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1. The production models worked well. They clearly identi�ed e�cient versus ine�cient projects in the
same database.

2. Although the project database is considered quite good and one of the most extensive in existence, we
believe that the production models could have been more helpful if better quantitative data had been
collected. Indeed, the data available was largely disappointing. Speci�cally, better output measures of
quality of all project deliverables, of user satisfaction and the like would have been much more useful
in evaluating projects. Such measures exist, but had not been collected in the database. Instead,
subjective measures were collected. Of course, subjective measures pose their own problems. In general,
subjective project data so far has shown limited value in prediction and evaluation, but the results
shown here demonstrate that this need not be so. These subjective measures can provide valuable
information when treated properly. Some researchers have questioned the validity of subjective data
(Valett and Condon, 1993), and it is true that such problems may exist, e. g. due to low inter-rater
reliability (few metrics programs evaluate this). We do not know how valid our data set was, except
that a statistical test clearly rejected that the data is random. Because of these issues, we emphasized
use of the analysis techniques over the interpretation of the speci�c results.

3. It is unlikely that all relevant project input and output factors can be described in quantitative terms.
This makes it necessary to combine production model analysis with a method that is capable of
analyzing subjective factors of the type used in the project database. We suggested and applied a
method to do this.

4. In the course of the analysis, we identi�ed several projects for further analysis.

Due to the limited knowledge about the projects analyzed, interpretation of some of the results was
not possible. This is not a de�ciency of the models, rather it highlights the indispensable need for analyst
knowledge to complement the quantitative analysis. No model or collection of data should be expected to
interpret itself. Only expert knowledge can do that.
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