

M. Svahnberg and C. Wohlin, "A Comparative Study of Quantitative and Qualitative
Views of Software Architectures", Proceedings EASE: Empirical Assessment and

Evaluation in Software Engineering, Keele, UK, 2003.

A Comparative Study of Quantitative and Qualitative
Views of Software Architectures

Mikael Svahnberg and Claes Wohlin
Department of Software Engineering and Computer Science

Blekinge Institute of Technology, PO Box 520, S-372 25 Ronneby SWEDEN
[Mikael.Svahnberg | Claes.Wohlin]@bth.se, http://www.ipd.bth.se/serl
Abstract. In order to obtain a software architecture with the right quality attributes, it is vital to fully
understand the benefits and liabilities of all involved architecture candidates. To this end, all possi-
ble sources should be used. In this paper we compare a quantitative description of software architec-
tures and the support given for different quality attributes with a qualitative description. In some
areas they strengthen each other, but in others they do not. In conclusion, this study shows a need to
increase the understanding of the quality strengths and weaknesses of different software architec-
tures.

1 Introduction
When developing software, it is important to have an appropriate architecture for the system, or sub-systems com-
prising the full system. There are many factors influencing the choice of, or evolution into, an appropriate software
architecture. For example the process of creating a software architecture is not only governed by functional require-
ments but to a large extent by quality attributes as indicated by e.g. [Bass et al. 1998][Bosch 2000][Hofmeister et
al. 2000].

One way to design a software system and to ensure certain quality attributes is to start with an architecture style
[Buschmann et al. 1996][Shaw & Garlan, 1996]. These architectural styles typically have certain documented qual-
ities, both positive and negative.

However, it is still a non-trivial task to discern between the architectures as described in literature today (e.g.
[Buschmann et al. 1996]). Although there are benefits and liabilities listed, there is no order between them or any
measure of how good or bad the architectures are for each of the quality attributes. This, in turn, makes it difficult
to compare the benefits and liabilities of different architectures.

Moreover, the documented benefits and liabilities of the software architectures may not be relevant or have the
same priority for the domain of the software system in question, i.e. the context may differ from where the applica-
tion is intended to run. This means that the architectures need to be augmented with the experience of the software
developers, and hence decisions about which software architecture style to use or strive for are often taken based on
the intuition of senior software developers.

To avoid basing such crucial decisions on only the intuition and subjective judgements of senior software devel-
opers, it is important to be able to quantify the knowledge of developers and to compare software architecture can-
didates for a system to build based on quantified data as well as the qualitative literature view. This should act as a
complement to intuitive judgements involved when selecting between architecture candidates. Moreover, a method
for quantifying knowledge creates a learning effect, where new software developers can learn from the structured
knowledge of the senior software developers.

Our hypothesis is that there are different views of the benefits and liabilities of different software architecture
candidates. Based on their respective background and experiences, subjects will come to different conclusions of
the benefits and liabilities of software architectures, and these conclusions may not concur with e.g. the predomi-
nant literature view.

To study this we present, in this paper, a comparison of two different descriptions of software architecture
styles, one based on quantitative data based on subjective judgements and relative comparisons and one based on a
qualitative description as typically found in literature. This comparison is performed to provide a new perspective
on the qualitative descriptions usually found in literature using another data source with a unique background and
set of experiences. The results from this comparison may be such that they increase the confidence when using
either, or both, of the descriptions, or they may indicate where there is a need to increase the understanding of the
quality strengths and weaknesses of different software architectures.

The remainder of this paper is organized as follows. In Section 2 we describe the background of this study and
the techniques we use. In Section 3 we compare a qualitative view of software architectures and their quality
attributes with a quantitative view. The comparison is analysed in Section 4 and the paper is concluded in Section 5.
1

2 Background
In [Svahnberg & Wohlin 2002a] we describe an experiment where eight experts in software engineering com-
pleted a questionnaire based on a method called Analytic Hierarchy Process [Saaty 1980][Saaty & Vargas 2001]
(described below) in order to construct a quantitative framework of the benefits and liabilities of different archi-
tecture candidates with respect to a set of quality attributes.

This framework consists of two tables which we refer to as a framework for architecture structures (FAS) and
a framework for quality attributes (FQA). The FAS rates the potential support each architecture candidate can
give for the different quality attributes, and the FQA ranks which architecture candidate is best at each quality
attribute. Table 1 and Table 2 present these two tables from the experimental study. The tables are constructed
from pairwise comparisons of each architecture candidate for all quality attributes (Table 1) and for each quality
attribute for all architecture candidates considered (Table 2). The pairwise comparison is done using the Analytic
Hierarchy Process (AHP). The colouring (grey) of the cells indicate how the comparison has been done. The val-
ues assigned are the relative importance and they sum to one in columns in Table 1 and in rows in Table 2. The
Analytic Hierarchy Process is described briefly below.

It is worth noting with Table 1 and Table 2 that they are normalised so that the columns in Table 1 and the
rows in Table 2 sum up to one. Hence, the values are relative comparisons, which means that what can be
extracted from the frameworks is a ratio of how much better one architecture is than another for a particular qual-
ity attribute. What cannot be extracted is an absolute number of how good an architecture is. For example, porta-
bility scores 0.309 for Microkernel in Table 1. This means that it is the quality attribute that Microkernel supports
best of all the studied attributes, e.g. almost thrice as well as usability, functionality and reliability (scoring 0.106,
0.119 and 0.122, respectively). On the other hand, in Table 2 Microkernel only gets a value of 0.112 for portabil-
ity, which means that three other architectures (i.e. Layered, Pipes and Filters and Model-View-Controller) are
better at portability than Mircokernel. In fact, the score for Microkernel is only better than that of Blackboard.
Moreover, we see that Layered (with a score of 0.426) is perceived as almost four times as good at supporting
portability than Microkernel.

Analytic Hierarchy Process. The Analytic Hierarchy Process (AHP) has previously been described, evaluated
and successfully used in similar settings and in other areas of software engineering (e.g. [Karlsson & Ryan
1997][Karlsson et al. 1998][Shepperd et al. 1999]). Briefly, AHP consists of a set of steps, where all combinations
of elements are evaluated pair-wise, and according to a certain scale, as illustrated in Figure 1. The question to
answer for each pair-wise comparison is which of the two elements, i or j is more important, and how much more
important it is. This is rated by interpreting the values as presented in Table 3. The questionnaire for an AHP ses-

Microkernel Blackboard Layered Model-View-
Controller

Pipes and
Filters

Efficiency 0.161 0.145 0.0565 0.0557 0.218
Functionality 0.119 0.321 0.237 0.115 0.151
Usability 0.106 0.127 0.255 0.104 0.0818
Reliability 0.122 0.0732 0.0930 0.105 0.144
Maintainability 0.183 0.273 0.221 0.300 0.271
Portability 0.309 0.0597 0.138 0.320 0.135

Table 1: Framework for Architecture Structures (FAS)

Microkernel Blackboard Layered Model-View-
Controller

Pipes and
Filters

Efficiency 0.264 0.175 0.0868 0.113 0.360
Functionality 0.205 0.252 0.199 0.206 0.139
Usability 0.0914 0.113 0.250 0.408 0.137
Reliability 0.126 0.142 0.318 0.190 0.224
Maintainability 0.191 0.0921 0.285 0.239 0.193
Portability 0.112 0.0689 0.426 0.139 0.255

Table 2: Framework for Quality Attributes (FQA)
2

sion is thus fairly simple, as the extract from an AHP questionnaire in Figure 2. In this figure, the five quality
attributes QA1 to QA5 are compared for architecture candidate AS3. The figure also illustrates how to complete
the questionnaire by circling the desired alternative.

These comparisons are then transferred into a matrix, where n is the number of elements, together with
the reciprocal values. After this is done, the eigenvector of the matrix is computed. Saaty [Saaty 1980][Saaty &
Vargas 2001] proposes a method called averaging over normalized columns to do this. This results in an estima-
tion of the eigenvalues of the matrix, and is called the priority vector. The priority vector is the primary output of
applying AHP.

Next, the fact that AHP uses more comparisons than necessary (i.e. comparisons) is used to
evaluate the consistency of the rating. A consistency ratio (CR) is calculated, which indicates the amount of con-
tradictions and inconsistencies between the pair-wise comparisons. A consistency ratio of 0.10 or less is, according
to [Saaty 1980][Saaty & Vargas 2001], considered acceptable even if it is pointed out that higher values are often
obtained. Hence 0.10 may be too hard, but it nevertheless indicates an approximate size of the consistency ratios to
expect.

A more extensive description of AHP can be found in e.g. [Saaty 1980][Saaty & Vargas 2001][Karlsson et al.
1998] and [Svahnberg & Wohlin 2002a].

We found AHP to be useful for our needs, as it is an accepted method from management science that enables a
quantification of subjective judgements that can be hard to capture otherwise. Moreover, since it provides a con-
sistency ratio we are able to determine how much trust we can put in each individual’s answers.

It should kept in mind that AHP only collects and summarises subjective judgements. As such, the results are
vulnerable to the usual problems of subjectivity, in that the participants form their own interpretations of the fac-
tors and the evaluation scale. Our approach to address this is to use several subjects and then use the mean value of
these when conducting the comparison with literature.

Moreover, as we state in our hypothesis, part of the intention of this paper is to investigate if there are differ-
ences between perceived benefits and liabilities of different software architectures. The frameworks described
above represent one view based on the participants’ personal backgrounds and experiences of the software archi-

i j
9 7 5 3 1 3 5 7 9

Figure 1. The scale for the AHP comparison.

Relative
intensity Definition Explanation

1 Of equal importance The two variables (i and j) are of equal importance.
3 Slightly more important One variable is slightly more important than the other.
5 Highly more important One variable is highly more important than the other.
7 Very highly more important One variable is very highly more important than the other.
9 Extremely more important One variable is extremely more important than the other.
2, 4, 6, 8 Intermediate values Used when compromising between the other numbers.
Reciprocal If variable i has one of the above numbers assigned to it when compared with variable j,

then j has the value 1/number assigned to it when compared with i. More formally if nij = x
then nji = 1/x.

Table 3: Scale for pairwise comparison using AHP [Saaty 1980][Saaty & Vargas 2001].

Please decide which of the quality attributes AS3 is best at, and how much better it is:
QA4 9-+-7-+-5-+-3-+-(1)-+-3-+-5-+-7-+-9 QA5
QA2 9-+-7-+-5-+-3-+-(1)-+-3-+-5-+-7-+-9 QA1
QA4 9-+-7-+-5-+-3-+-(1)-+-3-+-5-+-7-+-9 QA3
QA5 9-+-7-+-5-+-3-+-(1)-+-3-+-5-+-7-+-9 QA2
QA3 9-+-7-+-5-+-3-+-(1)-+-3-+-5-+-7-+-9 QA1
QA3 9-+-7-+-5-+-3-+-(1)-+-3-+-5-+-7-+-9 QA5Figure 2. An Example of an AHP Questionnaire

n n×

n n 1–()× 2⁄
3

tectures. Hence, the subjectivity of AHP (i.e. that the experience and background of the subjects play a part in the
result) is in fact beneficial for our purposes.

3 Comparing Literature and a Quantitative Study
There is a number of factors to consider when comparing different approaches to describing software architec-
tures.

First and foremost is the fact that different formats for describing the architectures can be used (as is the case
in the comparison in this paper), and to make a comparison one has to make interpretations and translations
between these descriptions.

Another factor to consider is that the focus of the descriptions are different. Whereas the literature typically
provide alerts and issues to consider when using a particular software architecture (see e.g. [Buschmann et al.
1996] and [Bosch 2000]), a quantitative description provides a means for comparing how well different quality
attributes are met, i.e. how important the benefits and liabilities described by the literature really are.

Moreover, the quantitative framework in this study is constructed in a way that allows for comparing different
architecture candidates based on different sets of desired quality attributes. These architecture candidates and
quality attributes may be different every time the process is executed. This comparison is usually harder to find in
the literature, which typically only enables a qualitative comparison of the quality attributes within a certain soft-
ware architecture, and not between architecture candidates.

The comparison in this section is conducted by comparing the FAS and FQA presented in Table 1 and Table 2,
which are a combination of the opinions of eight domain experts from academia, with what pertinent literature
identifies as strengths and weaknesses.

The quantitative view is hence represented by the FAS and FQA, and the qualitative view is represented by the
literature. The literature view focus on [Buschmann et al. 1996] and [Bosch 2000]. We use [Buschmann et al.
1996] since the architectures in the quantitative study are those presented in this book, and [Bosch 2000] because
of a, in our opinion, relatively good section on the strengths and weaknesses of different software architectures.
Moreover, both of these books are relatively well known and have made an impact on the software architecture
community.

The purpose of this study is to investigate whether there are differences between different views of software
architectures. To show this it is not necessary to conduct an exhaustive comparison between all views known to
date of different software architectures. Instead, we focus on the two aforementioned sources in contrast to the
study we have performed ourselves.

The FAS and FQA are created using subjective judgements. Together with the fact that the architectures used
in the quantitative study are the same as those in [Buschmann et al. 1996] this introduces a risk that the subjects
participating in the study may have gained their knowledge of the architectures from the very same literature. This
would mean that the two data sources are not, in fact, independent. In Table 4 we present the experiences of
the participants in the quantitative study, to allay this threat. As can be seen in this table, all participants
have experiences that extend beyond those of just reading the literature in this study. This, of course,
does not rule out that they have been influenced by what can be found in [Buschmann et al. 1996] and
[Bosch 2000] - it just ensures that their experiences include more than those two sources and that they
have practical experience with the architectures as well as theoretical knowledge.

It should be noted that neither [Buschmann et al. 1996] nor [Bosch 2000] use the same categorization of qual-
ity attributes as in our study (i.e. [ISO 9126]), wherefore a certain amount of translation has been made. Moreo-
ver, [Bosch 2000] does not present all of the architectures used in our study.

As the framework, quantitative in nature, is meant to complement the qualitative information found in
[Buschmann et al. 1996] and [Bosch 2000], we are forced to use subjective interpretations of the literature in
order to make a comparison. Therefore, it should be noted that the comparison below, and indeed any comparison
between quantitative frameworks and qualitative literature (at least the literature used in this study), is done using
a subjective interpretation of the information extracted from literature.

There are cases where the literature does not mention a particular quality attribute, neither as a benefit nor as a
liability for a certain architecture. In these cases, we have interpreted this to mean that the literature sees nothing
extraordinary with the architecture with respect to the not mentioned quality attribute, i.e. it is neither a benefit
nor a liability. The quantitative framework should hence in these situations list the quality attribute in a similar
fashion, i.e. neither with very high nor with very low values. Another issue is when the literature mentions both
benefits and liabilities of an architecture with respect to a particular quality attribute. This may either indicate that
the quality attribute is specified on too high a level of abstraction and needs to be broken down into sub-factors
instead, or that it depends on the context where the architecture is used whether it will be good or bad at the qual-
ity attribute.
4

Below, we go through the different architectures in our study and discuss for each quality attribute in our study
whether the literature lists this quality attribute as a benefit or a liability. We also provide a brief summary for each
architecture with pointers to the areas where more discussion is needed.

3.1 Microkernel
Efficiency. The quantitative study suggests that microkernel is fairly good at efficiency, especially compared to
other architectures (in the FQA), whereas Buschmann suggests that, because of the indirect method calls, perform-
ance is a liability but that this can be overcome if designed properly.

Usability. Discussions with participants reveal that the interpretation of this quality attribute has been ease of
applying and using the architecture in question. Microkernel scores low on usability in the quantitative study, and
this is in conformance with Buschmann which lists complexity of design and implementation as a liability.

Reliability. Listed as a benefit by Buschmann, whereas the quantitative framework suggest that there is nothing
extraordinary about microkernel with respect to reliability.

Maintainability. Mentioned among the benefits of microkernel by Buschmann. The quantitative study suggests
that it is fairly good at maintainability, but not when compared to the other architectures.

Portability. Listed as a benefit by Buschmann, which conforms partly to the quantitative study which scores
microkernel high on portability, albeit not when comparing with other architectures.

Name Title Experience

Bob PhD
Student

Have done research on software development together with industry partners.
Have participated in several large development projects.

Larry Professor Some industry practise.
Have done research on conflicts between quality attributes in software systems together
with industry partners.
Have done research on several large industry applications, involving their software archi-
tecture.

Edward PhD Have done research related to specific quality attributes.
Have experience supervising development projects.
Have been teaching object-oriented design methods and quality attributes in object-ori-
ented design.

Kenneth PhD Have done research on software architectures together with industry partners.
Have done research on software product-line architectures together with industry part-
ners.
Have done research on object-oriented frameworks together with industry partners.

Ivan PhD Several years of industry practise.
Part-time industry employed.
Have done research on conflicts between quality attributes in software systems together
with industry partners.

Nathan PhD
Student

PhD studies specialised in software architectures and architecture evaluation, conducted
together with industry partners.
Have participated in several large development projects.
Have conducted numerous software architecture evaluations together with industry part-
ners.

George Professor Several years of industry practise.
Have done research on software evaluations and software architecture evaluation
together with industry partners.

Eric PhD Several years of industry practise.
Have done research on software architecture evaluation.
Have done research on software architectures together with industry partners.
Have participated in several large development projects.
Have conducted numerous software architecture evaluations together with industry part-
ners.

Table 4. Experiences of Subjects in Quantitative Study
5

Summary. Summarizing microkernel, we have one point where the quantitative framework and literature
strongly agree, i.e. usability, and two more just in agreement, i.e. portability and maintainability. However, we
also have two points where the quantitative framework and literature disagree, i.e. reliability and efficiency.

It is important to seek an answer to why the opinion of reliability and efficiency differs between the quantita-
tive and qualitative view. For efficiency, the participants in the quantitative study may have made the interpreta-
tion that the impact of indirect method calls is not as severe as Buschmann implies. For reliability, there can be
several explanations to why the quantitative framework differs compared to literature. For example, the benefit
may not be very large compared to the other traits of microkernel.

In summary, the comparison shows that there is a need to increase the understanding of the microkernel with
respect to some quality attributes.

3.2 Blackboard
Efficiency. Listed as a liability by both Buschmann and Bosch, which conforms with the quantitative study.
Usability. Not mentioned by literature, and the FAS places usability rather in the middle, i.e. not extremely high
nor extremely low. The FQA, however, places blackboard fairly low on usability, but the number is still pretty
high, i.e. blackboard is not extremely bad compared to the other architectures. Hence, one can interpret this to
imply that the quantitative and qualitative views are in reasonable agreement.
Reliability. Fault tolerance and robustness are listed as benefits by Buschmann, whereas the quantitative study
suggests that the reliability of blackboard is not very impressive. Both of these views are confirmed by Bosch.
Maintainability. Listed as a benefit by Buschmann and Bosch, and the quantitative study suggests that it is the
second most fulfilled quality of blackboard. However, when compared to the maintainability of other architec-
tures, it scores fairly low.
Portability. Not mentioned by literature, whereas the quantitative study suggests that blackboard is very bad at
portability. That literature does not mention portability can be interpreted as that the authors view blackboard as
being pretty average on portability.
Summary. There is one point where the quantitative framework and literature strongly agree, i.e. efficiency, and
two points in agreement, i.e. maintainability and usability. There is one point where the framework and literature
disagree, i.e. reliability. There is also one point where there is a strong disagreement, namely portability.

For portability, the interpretation is of course skewed as it is not mentioned at all by literature, but it is impor-
tant to find out why it is not mentioned, and whether it matches the quantitative view of portability. For reliability,
we see that there are two views, although both of these views are confirmed by one of the qualitative sources. One
possible explanation is that the participants of the quantitative study and Buschmann have focused on one of the
two views, neglecting the other view.

It is clear from the study that there are some quality attributes that are not fully understood for the blackboard.

3.3 Layered
Efficiency. Listed as a liability by Buschmann, Bosch and the quantitative study.
Usability. Most of the benefits listed by Buschmann are related to the ease of using the layered style, but there are
also two points listed as liabilities pertaining to the usability of layered. The quantitative study suggests that lay-
ered is good at usability, also when compared to the other architectures.
Reliability. Bosch presents a negative view of the reliability of layered, but also a positive view of the added pos-
sibilities for data checking at many layers. The quantitative study suggests that layered is not very good at reliabil-
ity, but that it nevertheless is better at it than all other architectures in our study.
Maintainability. Both Buschmann and Bosch are fairly positive about the maintainability of layered, which con-
forms with the quantitative study.
Portability. Listed as a benefit by Buschmann, which the quantitative study also suggests, especially when com-
paring with the other architectures (in the FQA).
Summary. Layered seems to be a very well understood software architecture. The quantitative framework agrees
with the literature in all cases. There is one point in agreement, i.e. reliability, and four points strongly in agree-
ment, i.e. efficiency, usability, maintainability and portability.

3.4 Model-View-Controller
Efficiency. Two of the liabilities mentioned by Buschmann are concerned with efficiency, which conforms to the
data from the quantitative study, which ranks model-view-controller low in both the FQA and the FAS.
Usability. Buschmann lists mostly benefits regarding usability, which conforms to the quantitative study where
model-view-controller is ranked highest on usability compared to other architectures. However, Buschmann also
6

lists some negative aspects regarding usability. This is, we believe, indicated in the quantitative study by the fairly
low score on usability in the FAS.
Reliability. Not mentioned by literature, and the quantitative study implies that it is neither the strong nor the
weak spot for model-view-controller. Hence, the quantitative study and literature seems to be in accord.
Maintainability. For maintainability, Buschmann lists a number of issues as benefits, but also a number of issues
as liabilities. It is our opinion that the liabilities outweigh the benefits, which goes against the quantitative study,
where maintainability is ranked highly in both tables. However, as Buschmann also lists positive aspects, this dis-
agreement does not seem very large.
Portability. As with maintainability, Buschmann lists both benefits and liabilities with respect to portability.
Again, we feel that the liabilities are more severe than the potential benefits, which again goes against the quanti-
tative study. As with maintainability, the severity is lessened by the fact that Buschmann also lists positive aspects.
Summary. For model-view-controller, there are three points where the quantitative framework and the qualitative
literature strongly agree, i.e. efficiency, usability and reliability, and two points where they disagree, i.e. maintain-
ability and portability.

The participants in the quantitative study may have made different interpretations of the implications of the
benefits and liabilities of maintainability and portability than we have done, which may explain these two disa-
greements. In summary, there are some quality attributes that need to be better understood for the Model-View-
Controller

3.5 Pipes and Filters
Efficiency. Efficiency is listed as a benefit by Buschmann, even if a number of concerns are listed as liabilities as
well. More or less the same benefits and liabilities are also presented by Bosch. The quantitative study presents
pipes and filters as good at efficiency, both compared to other quality attributes (FAS) and compared to other
architectures (FQA).
Usability. Not mentioned in literature. The FAS lists usability as the weakest point of pipes and filters, whereas the
FQA lists pipes and filters to be between bad to medium on usability.
Reliability. Listed as a liability by both Buschmann and Bosch, whereas the quantitative study reports pipes and
filters as being fairly good at reliability compared to the other architectures. However, compared with other quality
attributes, reliability is not this architecture’s strong side.
Maintainability. Maintainability issues are listed as benefits by Buschmann, and Bosch agrees. However, Bosch
argues that there are liabilities with maintainability as well. The quantitative study indicates that maintainability is
the best supported quality attribute, but that the architecture is only moderately good at maintainability compared
to the other architectures.
Portability. Not mentioned in literature. The FAS lists portability as a fairly weak point, although not as bad as
usability. In the FQA, however, pipes and filters scores very high and is, in fact, the second best architecture in our
study with respect to portability.
Summary. For pipes and filters, there is one point where the quantitative framework and literature agree, i.e.
maintainability, and another point strongly in agreement, i.e. efficiency. There are two points where the quantita-
tive framework and literature disagree, i.e. usability and reliability, and one point strongly in disagreement, i.e.
portability.

The comparison for usability and portability may be an interpretation construct, as these are not mentioned by
literature. If this is the case, however, it is interesting to note that the literature fails to mention what the partici-
pants in the quantitative study considered to be two of the more important characteristics of pipes and filters.

For reliability, it is possible that the difference between the quantitative and qualitative view comes from that
the qualitative view does not compare the architectures with each other, but only look within one architecture and
compare the quality attributes. If this is so, the quantitative and qualitative view agrees with each other. Pipes and
Filters is a well-known software architecture. However, there is still need for investigating its support for some
quality attributes.

4 Analysis and Interpretation
There are basically two outcomes of the comparison between literature and the quantitative study. Either there is a
reasonable match between literature and the framework, or there is a mismatch.

If there is a match, this means that we can trust the quantitative framework more and may use it to compare
between the architecture candidates. This enables us to find out e.g. which architecture candidate is most suitable
for a particular mix of quality requirements. It also means that the views in literature have been confirmed, thus
increasing the confidence in this view.
7

If the framework and literature do not match, we need to determine whether the perceptions of the creators of
the quantitative framework are wrong or if it is the view presented in the literature that is not applicable for the
domains envisioned by the participants in the quantitative study. In either case, the understanding of the architec-
ture candidates increases.

In the literature comparison in this paper, we get the results presented in Table 5. In this table we present for
each architecture for which quality attributes there is a strong agreement, an agreement, a disagreement or a
strong disagreement between literature and the framework used.

We see that while there are many points where the framework concur with literature, there are also several
places where the framework contradicts the literature (Albeit sometimes indirectly, as the quality attributes are in
many cases not mentioned by the literature. We list these within parentheses in the table.). In these cases it is
important to seek an answer to why there is a contradiction. If answers are not found important aspects may be
overlooked, which may cause problems as the architectures and the descriptions of them (both the qualitative and
quantitative) are used during development of a software system.

The literature is used as an additional source to complement the views expressed quantitatively in the frame-
work and to identify where there is disagreement between literature and the framework or where the framework
and literature do not overlap completely, i.e. where there are aspects covered by the one and not by the other.
Examining these areas further enables us to seek a deeper understanding of the architectures and quality attributes
involved in the literature and the quantitative framework. To seek explanations for the disagreements between the
two views, and to extend the comparison to other views as well, would indeed be an interesting future study, albeit
a rather massive undertaking.

Connecting back to our hypothesis, we see that the difference between the view represented by literature and
the view based on the personal experiences and backgrounds of a set of researchers is large enough to motivate
this study. It is not the case that a singe source present an absolute, objective and unambiguous view. Background
and previous experiences do play a part when assessing the usefulness of different software architecture candi-
dates.

5 Summary and Conclusions
Software quality is never added as an afterthought. Instead, it is the early design work that ultimately determines
what potential a software system will have for fulfilling its quality requirements. Hence, the choice of which soft-
ware architecture to use is too important to allow for important aspects to be forgotten, or to use architecture
styles that are not suitable for the application domain.

In order to determine between a set of architecture candidates it is not enough to use qualitative descriptions of
the benefits and liabilities of each candidate. It is also necessary to get some quantitative feel for the different can-
didates and then relate this to the qualitative descriptions. This ensures that the decision of which architecture can-
didate to base a software system on is taken based on the best available information.

In this paper we present a comparison between a quantitative view and a qualitative view of software architec-
tures and quality attributes. This comparison allows us to identify where different views (i.e. the quantitative and
qualitative views in this paper) have different opinions of the benefits and liabilities of software architectures. If
this is not done there is an imminent risk that important aspects are overlooked or ignored and hence that software
projects using these descriptions will fail in their goals.

The quantitative framework used in this study have a number of benefits over a qualitative description:

Microkernel Blackboard Layered Model-View-
Controller

Pipes and
Filters

Points Strongly in
Agreement

Usability Efficiency Efficiency
Usability
Maintainability
Portability

Efficiency
Usability
(Reliability)

Efficiency

Points in Agreement Portability
Maintainability

Maintainability
(Usability)

Reliability Maintainability

Points in Disagreement Reliability
Efficiency

Reliability Maintainability
Portability

Reliability
(Usability)

Points Strongly in
Disagreement

(Portability) (Portability)

Table 5: Conformance between the example framework and literature
8

• It allows for a comparison of different architecture candidates.
• It enables the architectures to be assessed with respect to the support given for different quality attributes.
• A new framework can easily be created to use in a particular domain, where other software architectures and

quality attributes are relevant.
The comparative study shows that there is still some way to go before a well-established understanding of different
software architectures and their respective support or lack of support for different quality attributes exist. Further
work is needed with respect to quality attributes and how they are supported by different software architectures, as
the study in this paper indicates a lack of understanding in this respect. One path forward is to study comparisons
between different sources of architecture descriptions and different studies (such as the quantitative study used in
this paper) and seek explanations for where these different sources have different views of the benefits and liabili-
ties of different software architectures.

References
[Anderson et al. 2000] D.R. Anderson, D.J. Sweeney, T.A. Williams, “An Introduction to Management Science:
Quantitative Approaches to Decision Making”, South Western College Publishing, Cincinnati Ohio, 2000.
[Bass et al. 1998] L. Bass, P. Clements, R. Kazman, “Software Architecture in Practice”, Addison-Wesley Pub-
lishing Co., Reading MA, 1998.
[Buschmann et al. 1996] F. Buschmann, C. Jäkel, R. Meunier, H. Rohnert, M. Stahl, “Pattern-Oriented Software
Architecture - A System of Patterns“, John Wiley & Sons, Chichester UK, 1996.
[Bosch 2000] J. Bosch, “Design & Use of Software Architectures - Adopting and Evolving a Product Line
Approach“, Addison-Wesley, Harlow UK, 2000.
[Hofmeister et al. 2000] C. Hofmeister, R. Nord, D. Soni, “Applied Software Architecture”, Addison-Wesley,
Reading MA., 2000.
[ISO 9126] Software Qualities”, ISO/IEC FDIS 9126-1:2000(E).
[Karlsson & Ryan 1997] J. Karlsson and K. Ryan, “A Cost-Value Approach for Prioritizing Requirements”, in
IEEE Software 14 (5):67–74, 1997.
[Karlsson et al. 1998] J. Karlsson, C. Wohlin and B. Regnell, “An Evaluation of Methods for Prioritizing Software
Requirements”, in Information and Software Technology, 39(14-15):938-947, 1998.
[Saaty 1980] T. Saaty, “The Analytic Hierarchy Process”, McGraw-Hill, 1980.
[Saaty & Vargas 2001] T.L. Saaty, L.G. Vargas, “Models, Methods, Concepts & Applications of the Analytic Hier-
archy Process”, Kluwer Academic Publishers, Dordrecht, the Netherlands, 2001.
[Shaw & Garlan, 1996] M. Shaw, D. Garlan, “Software Architecture - Perspectives on an Emerging Discipline”,
Prentice Hall, Upper Saddle River NJ, 1996.
[Shepperd et al. 1999] M. Shepperd, S. Barker, M. Aylett, “The Analytic Hierarchy Process and almost Dataless
Prediction”, in Project Control for Software Quality - Proceedings of ESCOM-SCOPE 99, R.J. Kusters, A. Cow-
deroy, F.J. Heemstra, E.P.W.M. van Weenendaal (eds), Shaker Publishing BV, Maastricht the Netherlands, 1999.
[Svahnberg & Wohlin 2002a] M. Svahnberg, C. Wohlin, “An Investigation of a Method for Evaluating Software
Architectures with Respect to Quality Attributes”, Submitted, 2002.
[Svahnberg & Wohlin 2002b] M. Svahnberg, C. Wohlin, “Consensus Building when Comparing Software Archi-
tectures”, in Proceedings of the 4th International Conference on Product Focused Software Process Improvement
(PROFES 2002), Lecture Notes in Computer Science (LNCS 2559), Springer Verlag, Berlin Germany, 2002.
[Svahnberg et al. 2002] M. Svahnberg, C. Wohlin, L. Lundberg, M. Mattsson, “A Method for Understanding
Quality Attributes in Software Architecture Structures”, in Proceedings of the 14th International conference on
Software Engineering and Knowledge Engineering (SEKE 2002), ACM Press, New York NY, pp. 819-826.
9

