
 

 

 

 

 

 

 

 

 

 

 

 

H. Petersson and C. Wohlin, "Evaluating Defect Content Estimation Rules in 
Software Inspections", Proceedings EASE: Empirical Assessment and Evaluation in 

Software Engineering, Keele, UK, 2000. 



5 January 2000 1

Evaluating Defect Content Estimation Rules in Software Inspections

Håkan Petersson and Claes Wohlin
Dept. of Communication Systems, Lund University

Box 118, SE - 221 00 Lund, Sweden
Fax: +46-46-145823, E-mail: (hakan.petersson, claes.wohlin)@telecom.lth.se

Abstract

This paper is concerned with evaluating two different improvements of an existing
defect content estimation model. The model improved is a curve-fitting model. Two
new estimation rules are evaluated and compared with the original model. Further, the
new estimation rules and the original model are evaluated against one of the most suc-
cessful defect content estimation models, which is a capture-recapture model. It is con-
cluded that one of the new estimation rules for the curve-fitting model could be a good
complement to the capture-recapture model. Moreover, it is concluded that the results
support previously published results and hence show strong evidence for that the stud-
ied model are mature enough to be transferred to industrial use to support continuous
quality assessment and control.

1. Introduction

Continuous quality assessment and control is important throughout the software life
cycle. Methods to estimate the remaining number of faults after an inspection provide
interesting opportunities of gaining control of the faults in the software up-front,
instead of having unpleasant surprises in testing. The opportunities include providing
an input for decision making so that managers may decide whether to continue, re-
inspect or re-work the inspected artifact. This would, hopefully, lead to fault control
from the requirements specification to release.

The basic idea behind defect content estimation from software inspections is to use the
overlap and non-overlap between individual inspectors to make an estimate. The meth-
ods come historically from estimation of animal population [Otis78]. Most methods
used fall into the category of capture-recapture, which basically means, in software
engineering terms, that a fault is caught by one inspector and if another inspector has
found the same fault, it is said to be recaptured. Several different types of estimators
can be used to actually perform the estimation. The estimators are based on different
assumptions. Another type of models is curve-fitting models, which based on plotting
the data in a certain way allow for estimation of the defect content. Curve-fitting mod-
els are further discussed in Section 2.1.

The objective in this paper is to evaluate two modifications of the estimation rule for a
curve-fitting model denoted DPM (Defect Profile Method), which was first introduced
in [Wohlin98]. The estimation from the model is based on a rule. Two different ways of
modifying this rule are evaluated through an empirical study using 30 data sets from
inspections. The new estimation rules together with the original DPM are compared
with one of the most successful capture-recapture models in software engineering
[Briand98, Miller99, Petersson99b], namely the Jackknife estimator.
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It is shown that improvements are possible although it is difficult to generalise the
results. It is concluded that the Jackknife estimator can be recommended for industrial
use, although using an experience-based approach as a complement could be wise.
Finally, it is concluded that the study to a large extent supports previous results in the
field and that this is important because it forms a good basis for transferring the models
to industrial use as a means for quality assessment and control throughout the software
life cycle.

2. Improving the Detection Profile Method

2.1. The Detection Profile Method

The Detection Profile Method, DPM, is introduced in [Wohlin98]. Compared to the
traditional capture-recapture methods DPM takes a different approach of estimating the
number of remaining faults after inspection. DPM utilises curve fitting to produce its
estimate. The estimation procedure is explained in detail in [Wohlin98], though in short
it can be summarised as the following; the values of how many reviewers found each
fault are sorted decreasingly and an exponential function, , is fitted to
them. The estimation is taken as the value where the curve intercept y = 0.5.1 This is
referred to as an estimation rule. An example of the use of DPM is shown in Figure 1.

The DPM has been examined in a couple of different studies. In [Wohlin98], where
DPM was introduced, it was found to perform best of the three estimators studied.
Other studies [Briand98, Petersson99b] have also applied the DPM successfully
although it has been noticed that it has a tendency to underestimate.

2.2. Improvements of DPM

Since some studies show that DPM has a tendency to underestimate, one step towards
improvement is to decrease the number of underestimations. One way of improving
this tendency is to make some sort of bias correction. That is, to try to increase all esti-

1. If this value is lower than the number of data points, the number of data points is used instead.

Figure 1. Example of DPM estimation.
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mates given by the DPM in order to increase the balance between underestimations and
overestimations. A study of bias corrections and their application for capture-recapture
methods can be found in [Petersson99b]. When considering DPM, there is one parame-
ter that may be modified in order to increase the estimates. As described in Section 2.1
the estimate given by DPM is taken when the fitted curve intercepts the value of y =
0.5. If this estimation parameter 0.5 is lowered, it results in forcing the interception to
the right, i.e. giving higher estimates.

As can be seen in [Petersson99a], adding more inspectors leads to less bias. This leads
to the conclusion that the estimation parameter should have different values depending
on the number of participating inspectors.

Even if lowering the interception level will raise the bias and manage to produce a
more balanced mix between underestimations and overestimations there are still prob-
lems. Since the change of the estimation parameter affects all the estimations the
already high outlier estimations would become even higher. Moreover, the curve being
a decreasing exponential curve, an equally sized step on the y-axis gives a larger
impact on the x-axis the lower we get on the y-axis. This means we should expect
larger deviations for the estimates if lowering the estimation parameter of 0.5. The
question is whether the gain in bias is worth the increase in deviation. This creates a
new estimation rule, where the parameter is dependent on experience from a fit data set
and the number of inspectors. This modified version of DPM is denoted DPMmod.

Another situation occurs when most faults are found by most of the inspectors and few
faults and found by single inspectors. This occurs when most faults are fairly easy to
find. For example, this will lead to, with four inspectors, that many of the faults will be
found by either three or four inspectors and few by only one or two. However, this sit-
uation leads to a fitted curve that does not cross the 0.5 level until very late. This con-
tradicts the basic assumption behind the capture-recapture model, i.e. that a large
overlap among the inspectors leads to few faults left to be found and vice versa.

One approach in order to increase the bias but that also will avoid the above described
situation, is to use the derivative of the fitted curve as an estimation rule. Instead of
picking the estimate where the fitted curve intercepts a certain value we take the esti-
mate whenever the derivative reaches a predetermined value. This approach gives us
the possibility to increase the estimates in general as well as avoiding making too large
estimates when the faults all are easy to find. In order to produce a high estimate the fit-
ted curve must level away early to reach far to the right before intercepting the stop
level. However if reacting on the derivative the estimation level would have been
reached before the curve became too flat. In this case, the estimation rule becomes
dependent on the form of the fitted exponential function and the data used to determine
the derivative parameter. This modification of DPM is denoted DPMder. The resem-
blance between the DPMmod estimator and the DPMder estimator implies that the latter
also is dependent on the number of inspectors.

2.3. Experimental set-up

Four different estimators are used in this study. First the two modified versions of the
DPM, DPMmod and DPMder then the original DPM in order to determine if there have
been any improvements. To compare the performance of the modifications to other
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estimators, i.e. capture-recapture estimators, the Jackknife estimator, denoted MhJK1

are used. MhJK is chosen because it has been shown as being the best estimator in a
number of studies, for example, [Briand97, Miller99, Petersson99b].

30 data sets from inspections have been used, see Table 1. Of these 20, denoted fit, are
used to find suitable parameters for DPMmod and DPMder and 10 are used for evalua-
tion, denoted test. The data sets are the same as used in [Petersson99b]. A new ran-
domisation of which data sets to use as fit and as test is made. For each data set all
possible combinations of the participating inspectors are created. These inspections are
denoted virtual inspections.

As mentioned in Section 2.2, the parameters are dependent on the number of inspec-
tors. To investigate this, but also to determine the estimators’ behaviour when different
number of reviewers participate, we study virtual inspections with three, four and five
inspectors respectively. In some of the generated virtual inspections some cases appear
where no overlap exists between the inspectors. With no overlap the three DPM vari-
ants fail to estimate. These cases are relatively few and are excluded from the study
altogether to enable a fair comparison against the MhJK.

A threat to this study is the fact that the data sets are not totally independent of each
other. In some experiments, the same documents have been inspected. Though in each
case it has been different people performing the inspection. There are also cases where
the same people have participated in more than one of the experiments. These depend-
encies could lead to lower deviations in the estimation results. The creation of the vir-
tual reviews also adds to the dependence. By utilising all the combinations of the
reviewers the same reviewer will be part of many virtual reviews. However, since the
study is made by comparing different estimators all dealing with the same data sets, all
of the estimators should have the same benefits and it should still be possible to com-
pare their relative behaviour. If using the methods in an industrial setting the situation
of one person participating in many inspections should be common.

1. To calculate MhJK the algorithms from the program CAPTURE [Rexstad91], version of 16th 
May 1995, have been used.

Table 1: Data sets.

No. Name No. of 
reviewers Used for Ref. No. Name No. of 

reviewers Used for Ref.

1 AdhAtmJun 8 Fit [Freimut97] 16 PbrNANov 6 Test [Freimut97]
2 AdhAtmNov 6 Fit [Freimut97] 17 PbrNBJun 7 Fit [Freimut97]
3 AdhPgJun 6 Fit [Freimut97] 18 PbrNBNov 6 Test [Freimut97]
4 AdhPgNov 6 Test [Freimut97] 19 PbrPgJun 8 Test [Freimut97]
5 ChklATM 6 Fit Unpublisheda

a. Used in [Regnell99] though the data set is not published.

20 PbrPgNov 6 Fit [Freimut97]
6 EngDMod 7 (22) Test [Wohlin95] 21 PbrStatA 8 Fit [Freimut97]
7 NasaAJun 7 Fit [Freimut97] 22 PbrStatB 7 Test [Freimut97]
8 NasaANov 6 Fit [Freimut97] 23 PbrTextA 8 Test [Freimut97]
9 NasaBJun 6 Test [Freimut97] 24 PbrTextB 7 Fit [Freimut97]
10 NasaBNov 6 Fit [Freimut97] 25 PbrZinsA 8 Fit [Freimut97]
11 PBRAtmMod 7 (15) Fit [Regnell99] 26 PbrZinsB 7 Test [Freimut97]
12 PBRPgMod 7 (15) Fit [Regnell99] 27 Cdata3A 5 Fit [Runeson98]
13 PbrAtmJun 6 Fit [Freimut97] 28 Cdata4A 5 Fit [Runeson98]
14 PbrAtmNov 6 Fit [Freimut97] 29 Cdata5A 5 Fit [Runeson98]
15 PbrNAJun 6 Test [Freimut97] 30 Cdata6A 5 Fit [Runeson98]
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2.4. Results

First, the parameters for the two modified methods DPMmod and DPMder are deter-
mined. To do this, all virtual inspections for the fit data sets are created. Then the
decreasing exponential curve is fitted for each virtual inspection. In each case, the y-
value and the derivative of the curve at the place where x is equal to the true number of
defects are recorded. This is made separately for three, four and five reviewers. The
parameters are then picked as the mean of these collected values. The resulting param-
eters are shown in Table 2.

With the parameters determined, all virtual inspections are created and estimations are
done for the ten test data sets.

To compare and combine the results, the relative error of each estimate is calculated.
The relative error (RE) is defined as:

A boxplot of the resulting relative errors for the case of 4 inspectors is shown in Figure
2. The bottom and top border of the boxes in the boxplots show the 25 and 75% quar-
tiles and the line inside shows the 50% quartile. The whiskers are extended 1.5 times
the inter-quartile range from the 50% quartile level. The data points outside the
whisker range are marked with a ‘+’ as outliers. The mean values of the relative error
can be seen in Table 3.

Table 2: Parameters for DPMmod and DPMder

DPMmod DPMder
3 0.274 -0.0260
4 0.294 -0.0314
5 0.335 -0.0381

Figure 2. Results for 4 reviewers
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Note that the 50% quartile level of the boxplot represents the median and not the mean
value. The boxplots for three and five inspectors respectively show similar results.

2.5. Analysis

An examination of the boxplots leads to three initial conclusions.

1. The DPMder has improved the deviation and slightly improved the bias of the origi-
nal DPM.

2. The estimator MhJK has the least deviation and would probably be considered as
the best estimator though with a negative bias since we obtain about 75% underesti-
mations.

3. DPMmod does not behave well, however according to the expectation the bias is
increased and deviation has increased compared to the original DPM.

These results are valid when considering all of the test data sets at the same time since
the boxplot shows the union of all results. To investigate further, the mean and standard
deviation in the four-inspector case are calculated for each data set and presented in
Table 4.

Table 3: Mean value of Relative Error

Mean
MhJK
DPM

DPMder
DPMmod
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When studying Table 4, conclusions are harder to draw. MhJK can still be seen as the
best estimator as its bias (mean) is ranked best in eight of the ten cases even if its devi-
ation is ranked last five times. When studying each data set, the DPMmod must still be
considered as behaving worst of the four estimators. Six times its mean is ranked last
and five times its deviation. Only one time the DPMmod’s mean or standard deviation is
ranked as high as second, and it is never ranked as the best.

It is more difficult to determine which of DPM and DPMder that performs best. When
comparing the rank of the means of these two, it comes to a draw (5-5). For the stand-
ard deviation however the count is 8-2 in DPMder’s favour. The deviation of DPMder is
ranked either first or second for all ten data sets. This even outranks MhJK’s perform-
ance.

The results of the ranks for three and five reviewers are similar though with a few
minor changes.

As DPMmod behaves worst of the modifications only DPMder is considered in the next
section.

3. Calibration of the Estimation Rule

At first, the modification of the DPM was intended as a general improvement with
fixed values on the estimation parameter, although with different values depending on

Table 4: Mean and Standard Deviations of Relative Error

Mean Std Dev. Mean Std Dev
1 6

DPM -0.491 0.081 DPM 0.684 0.530
DPMmod -0.407 0.104 DPMmod 1.143 0.662
DPMder -0.323 0.076 DPMder 0.813 0.304
MhJK -0.195 0.294 MhJK 0.006 0.086

2 7
DPM -0.097 0.092 DPM -0.068 0.141
DPMmod 0.132 0.118 DPMmod 0.193 0.187
DPMder -0.117 0.040 DPMder 0.018 0.073
MhJK -0.053 0.149 MhJK -0.003 0.213

3 8
DPM 0.627 0.477 DPM -0.376 0.145
DPMmod 1.027 0.606 DPMmod -0.221 0.213
DPMder 0.827 0.317 DPMder -0.104 0.151
MhJK -0.071 0.069 MhJK -0.048 0.265

4 9
DPM -0.159 0.137 DPM -0.483 0.152
DPMmod 0.087 0.186 DPMmod -0.306 0.204
DPMder -0.074 0.057 DPMder -0.141 0.165
MhJK -0.060 0.207 MhJK -0.491 0.180

5 10
DPM 0.644 0.285 DPM 0.004 0.181
DPMmod 1.071 0.372 DPMmod 0.266 0.231
DPMder 0.871 0.175 DPMder 0.341 0.156
MhJK 0.089 0.048 MhJK -0.195 0.060
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the number of inspectors. However, instead of seeing the parameter as fixed it can be
seen as an opportunity for a continuous calibration. The parameter could be calibrated
using historical data so that within a company or department the parameter would
adapt to the history and it would evolve as new inspections are performed. In this case,
the procedure of calculating the parameter based on such a broad range of data sets as
the 20 used in this study, is improper.

Two scatter plots of the values for DPMder where the fitted curve intercepts y = “true
number of fault” are shown in Figure 3. The left plot shows the plot for the fit data sets
and the right plot for the test data sets. As described in Section 2.4, the parameter for
DPMder was found to be -0.0314, which is the mean of the values in the left plot in Fig-
ure 3. Based on the right plot, it is easy to identify the data sets where the DPMder fails
the most.

If all data sets had been taken from the same company or the same department the sim-
ilarities between the inspections and there by the data sets would have been greater.
The inspection technique may have been more similar as well as the types of docu-
ments. The range of people that could participate as inspectors would also be limited.
Such a convergent situation would present a better basis for a calibration relying on
historical data.

In order to investigate whether similarities between data sets may help improve, the
data sets have been classified with respect to three aspects:

• Environment (Students, Faculty, NASA, Professionals other than NASA)
• Document type (Req., Code etc.).
• Inspection technique (Ad hoc, Checklist or Perspective-Based Reading (PBR) 

[Basili96])

Table 5 shows the thirty data sets with the mean and standard deviation of estimation
parameter of DPMder together with the classification. The data sets have been sorted in
increasing order according to the mean value. The term artificial has been used when a
document has been either developed or adapted specifically for a controlled experi-

Figure 3. Scatter plots for the values when the fitted curve intercepts y = “true number of faults”.
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ment. In other words, the document does not come directly from a real software
project.

When studying Table 5 no obvious pattern of the characteristics can be identified. For
example, for the four data sets with the largest bias it is not possible to find a common
denominator for these four which differentiate them form all other data sets. All four
are taken from a study made at NASA but other data sets from the same study are
present without having such large bias, e.g. number 3 and 18-20. The four latter are,
however not based on real requirements specifications. On the other hand, it is hard to
see any pattern if just looking at real specifications. In conclusion it must be noted that
such a simple classification as this fails to capture the underlying differences that may
explain the behaviour.

In order to evaluate if the calibration of DPMder would benefit from a homogenous set-
ting there is a need for such data sets. Among the thirty data sets there are only four in
which the same technique, type of document and group of people have been used.
These data sets are the C-data sets collected from [Runeson98]. In this study Runeson
et al. performed inspections of five c-code programs with eight different inspectors.
The inspectors were randomly assigned into groups to inspect each code document1.
The code documents were taken from assignments in Watts Humphrey’s PSP course
[Humphrey95]. To ensure authenticity the code was saved after coding before any
defects were removed. Defects were then later found in inspections, compile and test-

Table 5: Classification of Data Sets
No. Name Mean Std Dev. Fit/Test Env. Doc. Type Insp. Tech.

1 NasaANov -0,0050 0,0051 F NASA Req Adh
2 AdhPgNov -0,0091 0,0049 T NASA Fake Req Adh
3 AdhAtmJun -0,0161 0,0066 F NASA Fake Req Adh
4 PBRPgMod2 -0,0163 0,0052 F Stud. Fake Req PBR
5 PbrPgNov -0,0180 0,0052 F NASA Fake Req PBR
6 AdhAtmNov -0,0201 0,0053 F NASA Fake Req Adh
7 PbrNBNov -0,0221 0,0065 F NASA Req PBR
8 PbrNANov -0,0227 0,0080 F NASA Req PBR
9 PbrTextA -0,0230 0,0116 T Prof. Code PBR

10 PBRAtmMod2 -0,0231 0,0045 F Stud. Fake Req PBR
11 Cdata3A -0,0238 0,0074 F Prof./Stud. Code Chkl
12 PbrStatB -0,0243 0,0127 T Prof. Code PBR
13 EngDMod2 -0,0246 0,0027 T Prof./Stud. Textual Adh
14 NasaBNov -0,0249 0,0104 F NASA Req Adh
15 Cdata6A -0,0257 0,0026 F Prof/Stud Code Chkl
16 PbrTextB -0,0257 0,0158 F Prof. Code PBR
17 PbrAtmNov -0,0272 0,0037 T NASA Fake Req PBR
18 PbrAtmJun -0,0294 0,0057 F NASA Fake Req PBR
19 AdhPgJun -0,0302 0,0055 F NASA Fake Req Adh
20 PbrPgJun -0,0334 0,0049 T NASA Fake Req PBR
21 PbrStatA -0,0342 0,0094 F Prof. Code PBR
22 ChklATM -0,0398 0,0038 F Stud./Faculty Fake Req Chkl
23 PbrZinsA -0,0436 0,0077 F Prof. Code PBR
24 Cdata5A -0,0581 0,0057 F Prof./Stud. Code Chkl
25 Cdata4A -0,0602 0,0089 F Prof./Stud. Code Chkl
26 PbrZinsB -0,0674 0,0133 T Prof. Code PBR
27 NasaAJun -0,0816 0,0143 F NASA Req Adh
28 PbrNBJun -0,0832 0,0141 T NASA Req PBR
29 NasaBJun -0,0966 0,0115 T NASA Req Adh
30 PbrNAJun -0,0987 0,0114 T NASA Req PBR
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ing and these faults are viewed as the “correct” answer in the experiment. For further
details concerning the experiment please refer to [Runeson98].

As in the evaluation with the thirty data sets, the four C-data sets were divided into fit
and test. The first two, 3A and 4A, were used as fit to calculate the estimation parame-
ter. This parameter, found to be -0.0420, was then used when calculating the estimates
for the virtual inspections of data set 5A and 6A. A scatter plot of the relative errors of
the estimations can be seen in Figure 4. Table 6 shows the mean and standard devia-
tion.

The plot and the values from Table 6 show that DPMder is better than MhJK but at the
same time DPM performs best. The mean of DPM is ranked best and the deviation is
only half of MhJK’s or DPMder’s. DPMder’s mean is almost as good as DPM and only
one single outlier spoils its deviation.

This short evaluation has few data points so it is hard draw any general conclusions
from it. Though the evaluation may imply that the calibration of the estimation param-
eter in DPMder is feasible compared to MhJK. Further studies in stable environments
are however needed to evaluate the usefulness of a company specific parameter in the
DPMder.

1. Only 4 of the inspection data sets were used here. The last one had too few reviewers com-
pared to the others.

Figure 4. A scatter plot of the relative errors.
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4. Summary and Conclusions

The focus of this paper was to investigate and evaluate two modifications of the DPM.
The first modification was unsuccessful since the positive change in mean value was
too small compared to the negative change in deviation. The other modification, when
the derivative was used as the estimation parameter, did not show these negative
results, instead the deviation was improved. However, the improvement of the bias
level was not apparent.

Instead of seeing the modification as a permanent change, the parameter could be seen
as calibrated from historical data. The C-Data sets available in this study gave no clear
indication but in order to fully investigate this more studies are needed. An advantage
with this calibration is that the procedure with a continuous calibration from historical
data should fit an industrial setting very well.

Even if the historical calibration could not be fully investigated the outcome of this
study is that MhJK must be considered as the best estimator. The main advantage is
fairly good estimates without being dependent on the history. MhJK does, however,
make a lot of underestimations and could gain on being calibrated too. A calibration/
bias correction of MhJK was performed as a part of the study in [Petersson99b]. It was
shown that MhJK’s estimates could be raised without increasing the deviation too
much, but the advantage of MhJK of not being dependent on historical data is then lost.

This advantage is important since it takes some effort to collect the necessary data in
order to calibrate an estimator. All faults have to be carefully recorded and classified of
where they where injected. It is then possible to do a backward calculation from the
number of total faults in the product to determine the number of faults present at the
time of the inspection. The accuracy of this calculation will not be good until the prod-
uct spent a long time in the maintenance phase allowing for all faults to be found.

The calibration may however be performed in other ways. A controlled experiment at
the company could be executed. The participating people, the document types and the
inspection technique would be the same as used normally, but the documents would
have a number of seeded faults. The results from these trial runs could then be used to
calculate the estimation parameters to be used while waiting for better ways of calibrat-
ing to become available.

In order to improve an estimator that underestimates, it is desirable to increase the esti-
mate without increasing the deviation. Otherwise, the already high overestimates will
increase and become a problem of their own. This leads to a question of what is worst,
an underestimation or an overestimation? This is not so easy to decide and it has to be
treated on a case by case basis. If the estimate is used as a stopping rule and/or quality
stamp for inspections then an underestimation leads us to think that the quality is better
than it is, but it takes less time since we decide to not re-inspect. However this decision
might affect the future and something else would probably take time in the future. An
overestimation, on the other hand, leads to unnecessary work directly if making a re-
inspection. So it is at matter of what to prioritise. Should we prioritise time-to-market
or quality? This balance depends on so many parameters and may change over time.

Since a couple of studies has been performed, which results in that MhJK performs
best, the research of capture-recapture in software engineering should change its focus.
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The focus so far has been to evaluate and improve specific estimators. But since MhJK
seems to be picked as the best in many of the studies, it would be interesting to focus
on how the defect content estimation models should be used and also how accurate
estimators the industry needs in order to find capture-recapture useful? Example of this
change in focus can be seen in, for example, [El Emam99, Stringfellow99]

As a recommendation for industrial practice, we would like to, based on our findings,
recommend using the MhJK estimator in combination with a simple experience based
approach. The latter could either mean bias correction as discussed in [Petersson99b]
or by using the DPMder estimator after having evaluated it carefully for a specific envi-
ronment.
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