
Classification of Software Transfers

Claes Wohlin
Blekinge Institute of Technology

Karlskrona, Sweden
Claes.Wohlin@bth.se

Darja Šmite
Blekinge Institute of Technology

Karlskrona, Sweden
Darja.Smite@bth.se

Abstract — Many companies have development sites around the
globe. This inevitably means that development work may be
transferred between the sites. This paper defines a classification
of software transfer types; it divides transfers into three main
types: full, partial and gradual transfers to describe the context
of a transfer. The differences between transfer types, and hence
the need for a classification, are illustrated with staffing curves
for two different transfer types. The staffing curves are obtained
through a combination of interviews with both high-level
management and a group of experts, and an industrial case
study. From the empirical work, it is concluded that the
distribution of personnel differs for different types of transfer,
which means that it is crucial to be clear about different classes of
software transfers. If not, it is easy to underestimate the effort
needed to transfer software work as well as additional costs
related to the transfer as such.

Keywords: Global software engineering, global software
development, software transfers, distributed teams, offshoring,
offshore insourcing, empirical study

I. INTRODUCTION
The world is evolving and global software development has

become business as usual. Companies strive to make the best
possible use of the global market by, for example, having sites
in different countries. The latter is, among the other reasons,
motivated by differences in costs, proximity to different
markets and tapping into the global pool of talent and expertise
around the globe. This is not something completely new, but it
has accelerated in the last decade.

The perception of a manager at Ericsson, involved in
software transfers, triggered a literature search related to
change in development efficiency when software is transferred
from one site to another. Ericsson provides products within the
telecom domain, and preferably the manager wanted evidence
of efficiency changes after a transfer from this domain. At the
point of the literature review, three studies were identified as
shown in Figure 1. The decrease in development efficiency was
inline with the gut feeling of the manager, but still the numbers
are hard to use due to them coming from different applications
domains. The example illustrates both a potential consequence
of software transfers, but also how important the context is to
make the findings trustworthy and useful both in practice and
for other researchers. Findings are context-dependent.

A related problem is that when transfers are reported in
literature, it is hard to understand the context of the transfer as
such. Thus, there is a need to have a classification of software

transfers so that others who have a similar context can more
easily use the findings such as those in Figure 1. Thus, even if
the application domain would have been telecommunications,
it is in most cases impossible to deduce how the transfer was
actually conducted. More information about the cases in Figure
1 can be found in [1] for the Meta Group and the other two
cases are described in [2].

Figure 1. Illustration of efficiency decrease in software transfers.

Before classifying software transfers, it is important to
define the concept of a transfer project. Here, the following
definition is used:

Definition: Transfer project – A project where work is
moved from one development site to another development site.
Each transfer project is assumed to be planned individually,
and being characterized by a start state and an end state.

The globalization and its consequences may be illustrated
with an example from Ericsson. In Figure 2, it can be seen that
the percentage of employees in Sweden for Ericsson was in
year 2000 around 40% of 105 000 employees and in 2010 the
percentage is below 20% of approximately 92 000 employees.
Data for individual years may be extracted from reports
available in [3]. This shows the transformation of industry,
which is due to many different factors. For example, it is due to
acquisitions, but also a change in terms of what the company
actually produces. Today, it is estimated that 80% of the R&D
at Ericsson is related to software [4], which most certainly is
higher than in 2000 (actual numbers are unavailable). Thus,
this illustrates how one company has both become much more
global and at the same time moved into being a major software
development company. This inevitably leads to that software

T-Corp (US-based; !
SW maintenance)!

Efficiency!

50%!

2 months!

24%!

Sand Hill !
Group!

4 months!

95%!

2 year!

Time!

80%!

1 year!

Meta Group report!

development is transferred between sites in some cases to
target the market, in others to free up resources or develop a
certain competence in a certain location.

Interestingly, relocation of software work is often
associated with a turnover of the employees, since it resembles
replacement of developers in one site with those in another.
However, this does not have to be true; it could very well be
motivated to free up resources for development of new
products. To illustrate the importance of the context and hence
that different types of transfers may be very different, examples
of staffing patterns are used as an illustration. Staffing patterns
from two different types of transfers are presented to further
emphasize the need for more contextual information when it
comes to software transfers. The latter is the key motivation for
proposing a classification of transfers. All transfers are not of
the same type, and researchers and practitioners alike must
understand the differences to be able to evaluate the value of
the evidence provided in specific cases.

Figure 2. Number of employees in Ericsson 2000-2010 [3]

This paper contributes with a classification of different
types of software transfers, and illustrates the importance of a
classification by showing some different staffing scenarios
from different types of transfers. The classification of transfer
types is based on three years of collaborative work with
Ericsson and one other company in Sweden as part of a joint
research project. Thus, the classification should be viewed as a
complement specific for software transfers in relation to the
“normal” contextual information needed for industrial studies
as described in [5]. The need for reporting guidelines in global
software development has been stressed in, for example, [6].
Thus, the classification here provides an added dimension to
cover in the contextual information when it comes to software
transfers.

The remainder of the paper is organized as follows. In
Section II, related work is presented. Section III describes the
empirical background and research methodology. The
classification scheme for software transfers is introduced in
Section IV. Illustrations of staffing curves for different transfer

types are presented in Section V, followed by a discussion in
Section VI. Finally, Section VII concludes the paper with a
summary of the major findings.

II. RELATED WORK
The challenges and peculiarities of developing software

across national, organizational, temporal and cultural
boundaries [7] are well known by now, but still the actual
empirical evidence related to different practices to be
successful in global software engineering is scarce [7, 8]. One
of the important conclusions becoming apparent from
empirical observations suggests that the realization of assumed
benefits enabled by globalization, such as cheaper and faster
development to name a few, cannot and shall not be taken for
granted [9]. The reasons behind unmet expectations are
commonly associated with the increased complexity of
managing cross-border collaboration [10]. Distributed
development has proven to be less efficient than software
projects managed entirely at one site [11]. Thus, there is a
growing interest in software transfers – relocation of existing
work from one site of a company to another site or even a third
party vendor. Transfers of software work are also motivated by
the willingness to improve the leverage of resources, since
companies suffer from tight budgets and shortage in skilled
people available at a competitive cost, as well as to gain
proximity to a growing market.

Unfortunately, these decisions are too often than not looked
at in simple economic terms – it is cheaper, and skilled labour
is easier to find [2]. Nonetheless, empirical studies have
demonstrated that recruitment can be challenging [12] and
high levels of attrition can introduce significant difficulties on
the way of achieving these expectations [9]. In addition, the
process of transferring software work is associated with
significant challenges in relation to knowledge transfer. In
fact, a transfer can be compared with a large loss of team
members, and changes to the team can be critical to
performance [13], knowledge retention and thus the quality
[14]. As a consequence, maintaining the same level of service
after any transfer independent of locations of the sites
becomes challenging. The challenges outlined mean that all
lessons-learned and experiences must be highly valued, but to
get the full benefits of them, the context in relation to the
lessons-learned and experiences must be clear.

Empirical investigations suggest that software transfers
cannot be performed overnight. One of the reasons for this is
the necessity of knowledge about the software product and
product domain expertise for handling software development
successfully. A knowledge transfer from one site to another,
however, takes considerable amount of effort and time.
Previous studies have shown that the learning curve of the
new site takes time due to substantial training required for
those who are unfamiliar with the product [15]. While the new
site is climbing up the learning curve, their efficiency tends to
be lower than that of the original unit. The drop in efficiency
for the organizations transferring the work can decrease down
to 20% as shown in Figure 1, and may not fully recover [2].
The time for recovery varies from one year for less complex

20
00

20

01

20
02

20

03

20
04

20

05

20
06

20

07

20
08

20

09

20
10

120 000

100 000

 80 000

 60 000

 40 000

 20 000

 0

Sweden
Outside Sweden
Total number of employees

tasks such as maintenance [2] to more than five years for
knowledge-intensive work such as development [16, 17].

In our earlier qualitative observations from a case study of
an in-house software product transfer from Sweden to India at
Ericsson we have also observed a drop in productivity in the
short-term [12], which is in accordance with other studies [16,
17] of transfers. Furthermore, slower release cycle and an
increase in software defects have been observed in relation to
software transfers [18]. The findings led to conclude that the
main challenges in software transfers are related to finding the
right people, transferring competence, maintaining on-going
development, and overcoming cultural differences [12]. We
identified several unforeseen risks that came into play during
the transfer and required additional investments. Timely
investments were likely to ease the transfer. At the same time
cost reduction strategies often demand to perform transfers
with minimal investments. Thus, we believe that it is highly
important to explore the ways to approach transfers wisely, in
particular because overcoming the identified challenges may
take longer than it takes to meet the objectives on the real
capability front [19].

Since literature on software transfers as such is scarce [12],
the importance of capturing empirical experiences grows.
Supplementing our previous findings based on qualitative
interviews; we propose a classification of software transfers.
The objective is to present a classification that may help when
addressing different types of transfers both in research and in
practice. Different types of transfers need to be addressed in
different ways, and experiences from one type of transfer may
not easily be used in a different context and hence the
classification is introduced to help identifying similarities
between transfers.

After having introduced the classification of software
transfers, some examples of staffing curves are presented to
illustrate some of the differences between different types of
transfers. Unfortunately, it is impossible to illustrate all types
of transfers, and the empirical data needed for further
examples is not available from the company at the time of the
study. The illustrations also show that there are indeed
differences and hence it works as a validation of the need for
classifications of software transfers. The staffing curves are
used since they easily visualize the effect of a transfer.
Traditionally staffing curves have been studied in the light of
effort distribution and staffing patterns in different phases of
software projects (e.g. [20]). Globalization of software
organizations has motivated further investigation of the impact
of organizational structure, experience and expertise on
software development and product quality [13, 14].

III. RESEARCH METHODOLOGY

A. Research questions
Motivated by our earlier observations from transferring

software products at Ericsson, in this paper we aim at
addressing the following research questions:

RQ1: Is it possible to define a comprehensive classification
with orthogonal software transfer types?

RQ2: How can staffing curves for different transfer types be
used to illustrate the difference between different
transfer types?

B. Empirical background
The empirical work contains two main parts:

1. The classification is based on the experiences from
conducting research with Ericsson in the area of global
software engineering during three years, which have given
access to several different transfer projects and people
having been involved in transfers.

2. The staffing curves used for illustration of the differences
between two different types of software transfers are
primarily based on project data and interviews.

1) Empirical basis: classification

The classification is based on the experiences from working
with Ericsson in the area of global software engineering during
three years. Thus, the classification reported in this paper is a
result of continuous research collaboration on software product
transfers between Ericsson, one of the leading companies in
telecommunications worldwide, and Blekinge Institute of
Technology in Sweden. The company develops a wide range of
products and solutions, including generic software products
offered to an open market and complex compound systems
with customised versions. During the past several years
Ericsson has extended its operation in Asia and transferred a
number of software products between different sites. Software
products have also been received by the Swedish site studied
from other Ericsson sites or acquired companies.
Acknowledging the challenges of software product transfers,
Ericsson initiated a research project that aims at collecting and
documenting experiences for organizational learning.

Published results to date comprise of a case study [21], a
multi-case study [22], both of which offer observations from
software transfers from Sweden to India and describe the
process of transferring software work from one site to another
and challenges associated with the transfers. Further, we have
developed a strategy for conducting software transfers that
offers a list of factors alleviating transition [22], and
quantitatively evaluated the effect of a transfer on software
release frequency and quality [18].

2) Empirical basis: staffing curves

Earlier findings suggest that each transfer undergoes a
defined set of activities that is usually planned when a transfer
is initiated [12, 20] — from onsite work to recruitment and
training of the receiving site, formal handover followed by a
trial operation when the receiving site demonstrates their
capabilities and finally into offsite work. These findings were
used for further investigation of project staffing during and
after a transfer.

The primary source of observations used in the staffing
curves comes from documentation of a software transfer
project and additional interviews with experts, which
supplement the qualitative observations of the same project

reported in [12]. To understand the common project staffing
associated with transfers we have conducted two non-
structured group interviews with five experts at Ericsson
(referred later to as expert group), i.e. people having had
leading roles in software transfer projects. Furthermore, a semi-
structured 1.5-hour long interview with the Ericsson
development unit manager being responsible for the
development unit including the sites in both Sweden and India.

The transfer staffing curves presented have emerged from
qualitative inquiry of experience. Perceived staffing situations
and their effect on the success of a transfer were modeled and
discussed with the experts in the first group interview. The
initial staffing curves without preconceived limitations
(timeframes, phases, or activities) were drawn on a whiteboard
by the researchers who moderated the discussion. Each change
in the personnel headcount was mapped to a particular event or
activity. The expert group specified duration of each activity by
obtaining consensus and providing a rationale behind the
answers.

An interview with the development unit manager was then
performed to obtain the high-level management perspective.
The manager was kindly asked to draw a common and a
desired staffing curve using the previously defined phases and
activities, and specifying their duration.

The modeled curves were combined and discussed during
the second group interview with the experts. While there was a
large consistency with the shape of the curves and thus
personnel dynamics, several differences were identified. The
major differences between the two proposed staffing situations
were related to duration of activities – the development unit
manager’s view favoured a longer transfer time. The
development unit manager clarified that these differences are
motivated by the natural willingness to reduce the transfer costs
by stressing the deadlines. At the same time, the manager
suggested that there is a trade-off between the short duration
and its consequences. These findings are discussed in more
detail in the forthcoming sections.

To improve the validity of the modeled staffing curves, we
performed a comparison with the staffing situation in a project
through a case study. Although the curve is based on
employment reports in the studied transfer project, and it
represents another type of transfer project, the main phases,
reasons for change and change directions were supported. The
differences can be explained by the difference in the transfer
conditions — while the modeled curves represent a transfer
from scratch (full exchange of the employees), the work in the
case study was transferred to a team that had been already
involved in several product activities. This is further elaborated
in Sections IV and V. The differences in transfer conditions
help in understanding the dynamics of employees in different
types of transfers, and hence supporting the need for a
classification of software transfers.

IV. CLASSIFICATION OF SOFTWARE TRANSFERS
Based on the research collaboration with Ericsson, insights

have been gained into different types of transfers, and also how
these different types of transfers need to be planned differently.

The motivation for the classification is based in the different
needs for different types of transfers. The experience from the
collaboration together with a comparative analysis of different
transfer projects and discussions with the expert group helped
us to formulate different types of software transfers. Three
main types of transfers were identified: full transfers, partial
transfers and gradual transfers (see Figure 3).

To fully understand the difference between the three main
types, there is a need to define the transfer object that makes it
necessary to plan handover of the work differently. Here, we
have chosen to use the words system/product and entity to
capture the concept of a transfer object. Thus, entity is defined
as follows.

Definition: Entity – An entity is a part of a system (e.g. a
subsystem, module or component) or a part of a system
development process (e.g. phase or activity) that requires
continuous coordination of work among people working on at
least one other entity.

A collection of entities can make up parts of or a full self-
contained system or development process, where self-
contained refers to that continuous coordination is not needed.
The latter may, for example, be the case when having well-
standardized interfaces between two systems or parts of a
system.

For illustration purposes, we assume having a system
consisting of three entities. Thus, the system as a whole is
assumed to be self-contained in the sense that it has well-
defined interfaces and hence no continuous coordination with
other sites are needed if the system is developed in one site. On
the other hand, if entities are spread across sites then
continuous coordination is needed (which is in accordance with
the definition of an entity).

The transfer types illustrated in Figure 3 are defined as
follows:

1. Full transfer — prescribes full relocation of a
system/product from scratch, i.e. moving from co-located
development in one site to co-located development in
another site. This type of transfer is shown in the upper left
of Figure 3 (type 1). The figure illustrates how the system
consisting of three entities is moved from Site A to Site B.
No development is kept at Site A. Thus, the start state of
the transfer project is all development at Site A and the
end state is all development at Site B.

2. Partial transfer — prescribes relocation on the entity level,
i.e. at least one entity (but not all at once) is transferred
from one site to another site. The partial transfer type is
shown in the upper right of Figure 3. The figure illustrates
a scenario where one of the entities is moved from Site A
to Site B. Thus, in the given example, the start state of the
transfer project is all development at Site A and the end
state is that Entity 1 is developed at Site B and Entities 2
and 3 are still developed at Site A.

Partial transfers may be different. In the example above,
the start state is all development at Site A, and the end
state is reached after moving one entity. Other partial
transfers may include moving more than one entity, or

starting from a different start state than having everything
in one site, or ending up in a different start state, for
example having all development in Site B. The key
characteristic is that the transfer project is planned for
transferring one or more entities, although not all entities
at once. The latter is a full transfer (type 1).

A partial transfer implies that there are no plans initially
for transferring all development, for example from Site A
to Site B.

3. Gradual transfer — means that all entities are planned to
be transferred from one site to another site, but it is done in
steps. In Figure 3, this is illustrated by having the start
state with all development in Site A and the end state
being all development in Site B. However, in a gradual
transfer there are intermediate steps, where the
development is shared across sites.

This type of transfer is often used when there is a need to
build up competence in the receiving site or there is a need
to recruit people at the receiving site (Site B) before
handing over full responsibility for the product. The actual
pace of the transfer may also depend on the intentions at
the sending site (Site A), i.e. whether the objective is to
downsize or start some new development at the sending
site. The gradual transfer is illustrated at the bottom of
Figure 3 (type 3).

A key difference between partial and gradual transfers is
the objective of the transfer. If the objective is to move all
development from Site A to Site B taking several steps, the
plan is to make a gradual transfer. However, if the full
relocation happens gradually but without initial intention, it
means the company executed a series of partial transfers. To
summarize, partial and gradual transfers can be organized in
different ways:

a. Transferring parts of a product or associated activities
from scratch, i.e. moving from co-located into
distributed development;

b. Scaling up in one site by transferring additional parts
or associated activities, i.e. changing the division of
work within distributed development;

c. Transferring the remaining parts of a product or
associated activities to one site, i.e. moving from
distributed to co-located development.

The difference between partial and gradual relates to the start
state and end state of the transfer project. In a gradual transfer
the whole transfer from Site A to Site is planned. In a partial
transfer, only one step is planned and then other changes may
be decided later.

Figure 3. Types of software transfer

Site A Site B

System 1! System 1!

Entity 1

Entity 2

Full transfer!

Entity 3

Entity 1

Entity 2

Entity 3

1

System 1!

Entity 1

Partial transfer!

Entity 1

Entity 2

Entity 3

2

System 1!

Entity 1

Gradual transfer!

Entity 1

Entity 2

Entity 3

3

System 1!

Entity 2 Entity 2

Entity 1

Entity 3

Scaling up!b

System 1!

Entity 3 Entity 3

Entity 1

Entity 2

Remaining transfer!c From scratch!a

Site A Site B

Site A Site B Site A Site B Site A Site B

A special transfer case is backsourcing or returning
previously transferred parts of a product or associated activities
to a site where the development has previously been.
Backsourcing can be done in any of the three types of transfer
types.

The classification of transfer types are defined in response
to RQ1, and the types are based on the experiences gained in a
three-year collaborative project between industry and
academia. The transfer types are orthogonal and capture, to the
best of our knowledge, the situations that may occur when
transferring software development from one site to another site.

V. STAFFING ILLUSTRATIONS
The classification in Section IV is based on the conjecture

that there are indeed differences between the different types of
transfers. Thus, it is assumed that the differences are important
to take into account when comparing “your case” to a
published study if being a practitioner, or when synthesizing
evidence in relation to software transfers if you are a
researcher. To obtain a first indication of the differences, it was
decided to study staffing curves for some of the different types
of software transfers, and hence illustrate that there is a strong
need that it is clearly documented which type of transfer it is
when describing the context of an industrial study.

A. Idealistic view
A perfect handover of work would mean that the work was

done in one site one day and the next day the work is done at
another site. This is, of course, completely unrealistic in most
cases, and, in particular, when it comes to knowledge-intensive
work, such as software development. In Figure 4, a perfect
handover is illustrated by the dashed staffing curves. The
challenge here comes from the nature of software activities due
to which newly employed software engineers or engineers
being unfamiliar with the product are unable to continue the
development of a software product with the same speed and
accuracy from the first day. Thus, there is a transfer phase, in
which the original employees are still involved in the project,
and the employees at the other site are also involved in the
project, resulting in the direct transfer costs of cumulative
resources. Thus, it is important to set realistic goals regarding
the transfer and the corresponding transfer curve. The solid
lines in Figure 4 illustrate an idealistic view when it comes to
transferring software development between sites. The idealistic
view may act as a vision of what we want to achieve. The
transfer can be described by using the following concepts:

• The staffing before and after the handover

• The point where the two staffing curves meet

• How fast one curve goes down and another goes up

• How early the new employees are involved

• How long the old ones are kept.

Handover is here referred to as the time of transfer of the
formal responsibility for the software product being
transferred.

In the beginning of our investigation we asked an expert
group to illustrate perceived target staffing curves, i.e. the
staffing patterns they perceive is the target to aim for in order
to achieve an as fast and cheap transfer as possible. The curves
in Figure 4 illustrate a transfer of type 1 according to the
definitions above, i.e. a full transfer.

The curves show a short transfer time, fast growing build-
up at the receiving site and fast reduction of employees at the
sending site. Note that in this pattern the curves meet before the
handover at the rate of 65%. These curves were recognized as
idealistic. In particular, in the following sections we explore
curves based on actual experiences of the expert group and the
development unit manager.

Figure 4. Cheap and fast transfers

B. Full Transfer
The challenges, related to project staffing during and after

the transfer, were discussed with the expert group and the
development unit manager at Ericsson and several best
practices were identified. Since transfers are in many cases
initiated from scratch (having 100% of employees in the
sending site at the moment of announcement), the practices
were developed for such transfers that require full exchange of
employees (transfer of type 1). The following are the lessons
learned and suggestions for the recommended staffing patterns
and the underlying reasoning behind these suggestions.

Duration of a transfer: Transfers require time and it is
important to plan the cut-off day when all resources at the
receiving site are employed and trained. The total
recommended duration of a transfer is 18-20 months including
the prolongation of few experienced employees, preferably
relocated to the receiving site, for the last six months. The
actual length of the transfer is of course highly dependent on
the size of the product being transferred.

3"month"

Handover"

65%"

10%"

Announcement"

3"month" 3"month"

100%"

Unrealis:c"curves" Idealis:c"curves"
Sending"site"
Receiving"site"

Additional mentors versus prolongation of original
resources: A transfer has a major impact on on-going
development, since employees from the sending site are
involved in both current work and training of the new people
taking over the responsibility. This means that pulling out
resources too soon can have a devastating effect on the product
development. It is thus recommended to either dedicate
additional resources for training and mentoring purposes or
reduce the size of the delivery planned during and directly after
the transfer.

Recruitment: Recruitment (if needed) of employees in the
new location can be challenging and shall be planned in
advance not to endanger handover deadlines. On the one hand,
this may indicate that the announcement needs to be done
earlier, but on the other hand a too early announcement may
create negative consequences in terms of key people moving
away from the software product to be transferred. This is a
delicate balance! It is also important to have the receiving
resources in place, while performing the training. Although this
is not critical in the first months, while the product
documentation and transfer plans are being prepared, active
ramp-up of employees is expected to take place well before the
handover day. It is advisable to promote people if possible
within the organization to have the key resources in the
beginning of the transfer. The remaining 20-30% of the
required employees have a smaller impact and can be recruited
gradually.

Scaling down at the sending site: Downsizing of the
development of the product at the sending site can be fast.
However, it is recommended to be organized after a trial
operation, when the receiving site has demonstrated their
capabilities. Thus, the sending resources are still available if
fire fighting is required. It should be stressed that downsizing
here does not imply laying people off. The personnel are
primarily freed up to work on other products.

Support: Several employees shall be allocated to support
the product development after the handover to ensure a smooth
transfer. Dependent on the criticality of the product, it is
advisable to relocate several key experts with the product to
ensure the continuity of the product expertise. However, this
requires significant investment. Although it was seen as
unrealistic to reduce the length of support without any negative
impact on the product, the number of employees from the
sending site remaining with the product is seen as an important
potential improvement, i.e. the target is to have fewer people
from the sending site in support of the further development of
the software product. One of the possible suggestions
prescribes adopting more efficient training approaches for the
ramp-up of competence at the receiving site.

Based on these lessons learned the curves in Figure 5 were
modelled based on experiences of the industrial participants
involved as recommended staffing patterns including the
potential improvement (illustrated with a dashed line denoted
target improvement). The curves illustrate a transfer of type 1.
To summarize, a full transfer from scratch starts six to nine
months prior to the handover for employing the necessary
people at the new location and managing to provide the
necessary training. The curves meet at the level of 80% of the

initial employment at the time of the handover with the
substantial amount of experienced resources and new resources
to handle the on-going development with the forthcoming trial
operation. At the end of the trial period most of the original
employees are then released. Dependent on the success of the
trial, the organization can decide on the reasonable amount of
experienced resources to be kept in the project for an extended
period of time until the final cut-off.

The full transfer curve based on the experiences of the
development unit manager and the expert group may be viewed
as a baseline curve, since it covers the simplest case to
describe, i.e. full transfer.

Figure 5. Recommended staffing and targeted improvements

C. Partial transfer to co-located
The next illustration is from a case study of a partial

transfer. The situation in the beginning is that two sites are
jointly developing a software product (start state) and the
intention is now that the parts remaining in site A should be
transferred to the other site (site B) (end state). The curve in
Figure 6 shows the staffing in the project. This is not a gradual
transfer since this was not originally planned when moving into
distributed development between the sites.

Due to the problems of finding the right people with the
right competence [12], the personnel needed, ended up being
recruited quite close to the formal handover. In this transfer
project, the main build up in the receiving site was done only
three months before the handover of the responsibility, which
was regarded as rather late. It should be also noted that the total
amount of resources at the end of the transfer decreased by
20% in comparison with that at the beginning. This is mainly
due to major changes in product development, which required
additional resources, were implemented before the transfer.

6"month" 6"month"

10%"

100%"

80%"

50%"

2"month"3"month"

Trial"""""""""""""""""Support" Off9site"
Handover"Announcement"

3"month"

Staffing"at"the"receiving"site"
Staffing"at"the"sending"site"

Target"improvement"

The sending site is located in Sweden and the receiving site
in India. It should be noted that at the time of the
announcement 55% of the employees working on the software
product were located in Sweden and 45% in India. The
situation relates to a transfer of type 2c, i.e. it is a partial
transfer since it was not planned originally to transfer the
whole product and the full product is at the receiving site after
the transfer. In Figure 6, 100% refers to the number of
employees at the time of the announcement of the transfer.
Thus, the sum of percentages during the transfer may be higher
than 100% due to that more people are involved in the work
than at the time of the announcement.

Figure 6. Actual staffing in a partial transfer

The curve suggests that shortly after the transfer was
announced, several employees were relocated to other projects
and the process of freeing up the sending resources and
handing over responsibilities continued gradually for nine
months. After the formal handover the receiving site
demonstrated their capability to handle the work with the
product independently in a trial operation. During this time
most of the resources in the sending site were pulled out of the
project. The remaining 10% of the employees at the sending
site supported the project for another three months to ensure a
smooth transfer and help the receiving site in case of
emergency or unforeseen situations. This can be characterized
as a pattern of gradual decrease in the number of experienced
employees.

D. Summary staffing curves
As can be seen from the staffing curves in Figures 5 and 6,

they are quite different, which really is not a surprise.
However, it illustrates that there is a need to distinguish
between different software transfer types. It is clearly
insufficient to describe a software transfer in a research paper
without providing more details along the lines of the
classification proposed here. It should be remembered that

Figure 5 is based on qualitative data and Figure 6 on
quantitative data, and hence not making them fully comparable.

VI. DISCUSSION
In addition to only illustrating that there is a difference in

the staffing curves; the curves provide some opportunities to
reflect on the differences in staffing in the two different
scenarios: full transfer vs. partial transfer.

A. Transfer costs
The staffing curves described in this paper can also be used

to quantify the direct personnel costs of transferring a product
from one site to another. It is obvious that the costs during the
project grow as the cumulative staffing curve suggests.
However, the differences between the cases illustrated in
Figure 6 in relation to the case in Figure 5 must be kept in
mind. In Figure 6, a transfer to one site from having worked
jointly between the sites is illustrated. While in Figure 5, a full
transfer from one site to another site is illustrated (type 1
transfer). These curves show how staffing patterns can be
illustrated in a software transfer situation, and hence answering
RQ2.

While manufacturing thinking may lead one to believe that
the benefits of relocating the work from a high cost to a low
cost location can be estimated through a simple comparison of
development costs (as all too often measured by the hourly
rate), we emphasize the importance of avoiding
underestimation of the value and effect of knowledge and
experience on the delivered software product, confirming
related studies that have identified the link between experience,
expertise and product quality [13, 14]. To illustrate this we
denote an ideal view of a transfer in Figure 4 and compare it
with the more realistic view based on industrial experience in
Figure 5. We presented the reasons for e.g. not shortening the
duration of a transfer and the necessity for keeping the experts
as a backup. Although these are costly transfer practices, they
aim to mitigate the risks of failure of overall product
development. It is also worth mentioning that the higher the
levels of client-specific and product-specific knowledge
requirements, the higher are the transfer costs [23]. Thus,
before transferring a software product, organizations ought to
estimate the acceptable decrease in productivity for the coming
deliveries and take measures to ensure the service quality by
e.g. prolonging involvement of the experienced developers or
relocating some of them with the product. Organizations may
also choose which transfer type best suit the current situation,
and perhaps start small, scale up as the knowledge and
experience grows, and transfer the remaining parts with the
responsibility, when the quality and efficiency are not in
danger.

B. Effort distribution
The effort distribution becomes different depending on the

type of transfer. When summing the number of employees in
each site depicted in Figure 6, we can see that the maximum
effort is around 130%, i.e. when building up in the receiving
site and freeing up personnel in the sending site. The
maximum is reached before the official handover of
responsibility. This is reasonable since the receiving site is

100%$

3$month$

Handover$

55%$

40%$

10%$

Announcement$

3$month$3$month$3$month$ 3$month$

80%$

Staffingatthe$receiving$site$
Staffingatthe$sending$site$

familiar with the software product. This also means that the
personnel at the sending site can be phased out quite soon after
having the personnel in place at the receiving site. In this case,
there are no major challenges when it comes to product
knowledge, although the receiving site is not familiar with all
parts of the product. However, given that the product
previously was handled across sites the receiving site has
sufficient knowledge as well as good personal contacts with
personnel at the sending site.

In the case of a full transfer as illustrated in Figure 5, the
situation becomes different. There is a major challenge in
ramping up the personnel in the receiving site quickly. It may
be argued that more time is needed to ramp up, but if
announcing it earlier then there is a risk of personnel at the
sending site moving out before there is personnel available at
the receiving site. Thus, it becomes a delicate balance of when
to announce a transfer. If it is too early then personnel may
move to other projects before the personnel is available at the
receiving site, and if it is too late it will be very hard to get the
needed resources in place in the receiving site. The full
transfer creates a higher maximum of personnel. In this case
(Figure 5), the maximum is at 160% at the handover. This is
due to that personnel in the sending site cannot leave until the
personnel at the receiving site has sufficient knowledge of the
product being transferred to them. The potential improvement
is indicated in Figure 5 with the dashed line. The curves in
Figure 5 illustrate the effect in terms of effort required to
perform a transfer of type 1.

The different types of transfers in combination with
ensuring transfer of knowledge about the software product
generate different effort distributions. This must be taken into
account when transferring software products whether being
full transfers from scratch, partial transfers or gradual
transfers. Thus, once again stressing the need to handle
different types of software transfers differently.

C. Future research directions
Our investigation is only one step towards a better

understanding the impact of different types of transfers and of
the consequences of software transfers and how project staffing
affects the post-transfer performance. For future research we
suggest collecting more empirical data regarding the effect of
different types of transfers on the amount of delivered
functionality and its quality during and after the transfer. To
foster further research we put forward the following
conjectures that emerged from our investigation, which are
directly related to the different types of software transfers:

Conjecture #1: Early discontinuity of product expertise
negatively affects the quality of the software delivered by the
receiving site and thus increases the costs of non-quality.

While earlier disengagement of the developers from the
sending site has been recognized as the potential improvement,
it might appear unrealistic. Thus, more research is necessary in
relation to the possibility of better training before the handover
and to minimize the mentoring efforts after the handover.
Furthermore, it is important to provide incentives for
individuals to contribute to a successful transfer.

Conjecture #2: Involvement of key experts in training and
mentoring pays off.

While prolongation of well-paid staff may seem
unreasonable and counterintuitive, we feel that this might save
costs in the long term through more effective training results.
Thus, cost-benefit analysis and comparison of the different
types of transfers may help understanding what contributes to
the success of a transfer best.

Conjecture #3: Transfer of people with the software product
pays off.

If the receiving site has little or no prior experience with the
software product being transferred then it is most likely worth
the extra costs of having some key people being transferred
with the software product. This could, for example, be done
based on short term contracts (months or years depending on
the size and complexity of the software product being
transferred) to ensure an as smooth transfer as possible.

D. Summary
It is clear from the staffing curves that different types of

software transfers must be handled in different ways. This is an
area for future research and the classification presented in
Section IV forms the backbone of understanding the
differences.

VII. CONCLUSIONS
In this paper we defined a number of transfer types (as

response to RQ1) and discussed the effect of staffing on
transferring software work from one location to another. In
particular, we aimed at capturing different staffing patterns (in
relation to the classification of different transfer types) and
understanding their effect on the execution and success of the
transfer. In response to RQ2 we illustrated two different
transfer types based on a qualitative inquiry and a case study,
and as a way of illustrating the need for the classification. The
staffing curves are modeled in Figures 4-6, which provide an
insight into the staffing patterns. In result, we derived
recommendations in relation to the dynamics of employees in
the sending and the receiving sites, which are different for
different transfer types. The empirical observations based on
experiences from executing software transfers between a
Swedish site and an Indian site within Ericsson motivate the
following general conclusions:

• Transfers are different, and hence it is important to be
able to classify different types of transfer. This is
important for both researchers and practitioners to
being able to understand similarities and differences,
and hence to be able to make more effective use of the
findings from different studies of software transfers.

• Transfer of software work takes time. Thus substantial
effort by experienced staff shall be planned for training
and mentoring activities. In addition, keep the
expectations of immediate productivity after the
handover low as the most likely less experienced (at
least regarding the specific software product)
employees climb their learning curve.

• Continuity of product expertise is crucial. Thus, it is
not recommended to pull out the experienced
employees early in a transfer, although the handling of
personnel will depend of the actual type of transfer.
Consider relocating several key people with the
product in order to ensure the effective knowledge
transfer as not everything can be documented.

As stated above, not all transfers are the same. We have
illustrated two different cases in relation to the classification in
the paper. First, a full transfer (type 1 transfer) was described,
which could work as a baseline as it is the hardest case to
master, although easiest to describe. Secondly, we illustrated a
transfer of a software product moving from joint development
across two sites to being developed only in one site (type 2
transfer). This creates certain challenges, but it is less
challenging in comparison to the first case in which a software
product is fully transferred from being developed in one site to
being developed in another site. The first case puts high
requirements on planning knowledge transfer and potentially
also to transfer people together with the product.

Finally, we stress that there is a trade-off between staffing
investments during and after the transfer and ability to maintain
the same level of service in terms of productivity and quality of
the product development. In fact, our empirical observations
suggest that success of a transfer depends on smart decisions
regarding transfer project staffing. This leads us to conclude
that companies unable to foresee the challenges of transferring
knowledge-intensive work or those unprepared to invest into
the costly transfer activities may fail to maintain the desired
level of services and thus fully exploit the expected benefits.
Given these challenges with software transfers, it is crucial to
be able to distinguish different software transfers from each
other. Thus, the classification of software transfers types
provided here form an important basis to understand and
ultimately master software transfers successfully.

ACKNOWLEDGMENT
We would like to thank Ericsson employees for their active

participation and support of this research.

Ericsson Software Research and the Swedish Knowledge
Foundation, under the grants 2009/0249 and 2010/0311, fund
the research.

REFERENCES
[1] S. Overby, ”The Hidden Costs of Offshore Outsourcing”, CIO

Magazine, September 2003.
[2] E. Carmel and P. Tjia, “Offshoring Information Technology:

Sourcing and Outsourcing to a Global Workforce”, Cambridge
University Press, NY, 2005.

[3] Ericsson Annual Reports.
http://www.ericsson.com/thecompany/investors/financial-
reports/annual-reports (visited May 30, 2012).

[4] Swedish Industry Has a Software Soul, Swedsoft, 2010;
http://www.swedsoft.se/Mjukvaran_%C3%A4r_sj%C3%A4len_
i_svensk_industri.pdf (in Swedish) (visited May 30, 2012).

[5] K. Petersen and C. Wohlin, “Context in Industrial Software
Engineering Research”, Proc. 3rd Int. Symp. on Empirical
Software Engineering and Measurement, 2009, pp. 401-404.

[6] D. Smite, C. Wohlin, R. Feldt and T. Gorschek, ”Reporting
Empirical Research in Global Software Engineering: a
Classification Scheme”, Proc. IEEE Int. Conf. on Global
Software Engineering, 2008, pp. 173-181.

[7] D. Šmite, C. Wohlin, R. Feldt, and T. Gorschek, “Empirical
Evidence in Global Software Engineering: A Systematic
Review”, Journal of Empirical Software Engineering, 15(1),
2010, pp. 91-118.

[8] D. Šmite and C. Wohlin, “A Whisper of Evidence in Global
Software Engineering”, IEEE Software, 28(4), pp. 15-18, 2011

[9] E. O. Conchuir, H. Holmström, P. J. Ågerfalk and B. Fitzgerald,
“Exploring the Assumed Benefits of Global Software
Development”, Proc. IEEE Int. Conf. on Global Software
Engineering, 2006, pp. 159-168.

[10] D. W. Karolak, “Global Software Development: Managing
Virtual Teams and Environments”, IEEE Computer Society,
1998.

[11] J. D. Herbsleb and A. Mockus, “An Empirical Study of Speed
and Communication in Globally Distributed Software
Development”, IEEE Transactions on Software Engineering,
29(6), 2003, pp. 481-494.

[12] D. Šmite and C. Wohlin, “Software Product Transfers: Lessons
Learned from a Case Study”, Proc. IEEE Int. Conf. on Global
Software Engineering, 2010, pp. 97-105.

[13] S. L. Pfleeger, “Software Metrics: Progress after 25 Years?”
IEEE Software, 2008, pp. 32-34.

[14] N. Nagappan, B. Murphy and V. R. Basili, “The Influence of
Organizational Structure on Software Quality: An Empirical
Case Study. Organization”, Proc. of the Int. Conf. on Software
Engineering, 2008, pp. 521-530.

[15] A. Mockus and D. M. Weiss, “Globalization by Chunking: A
Quantitative Approach”, IEEE Software 18(2), 2001, pp. 30-37.

[16] R. Kommeren and P. Parviainen, “Philips Experiences in Global
Distributed Software Development”, Empirical Software
Engineering, 12(6), 2007, pp. 647-660.

[17] A. Boden, B. Nett and V. Wulf, “Coordination Practices in
Distributed Software Development of Small Enterprises”, Proc.
IEEE 2nd Int. Conf. on Global Software Engineering, 2007, pp.
235-246.

[18] R. Jabangwe and D. Šmite, “An Exploratory Study of Software
Evolution and Quality: Before, During and After a Transfer”,
Proc. IEEE Int. Conf. on Global Software Engineering, IEEE
Computer Society, 2012, pp. 41-50.

[19] A. Banerjee, and S. A. Williams, “Using Offshore Analytics to
Identify Determinants of Value-added Outsourcing”, Strategic
Outsourcing: An International Journal, 2(1), 2009, pp. 68-79.

[20] F. Dong, M. Li, J. Li, Y. Yang and Q. Wang, “Effect of Staffing
Pattern on Software Project: An Empirical Analysis”, Proc. of
the Third Int. Symp. on Empirical Software Engineering and
Measurement, 2009, pp. 23-33.

[21] D. Šmite and C. Wohlin, “Lessons Learned from Transferring
Software Products to India”. In: Journal of Software: Evolution
and Process, Vol. 24, No. 6, pp. 605-623, 2012.

[22] D. Šmite and C. Wohlin, “Strategies Facilitating Software
Product Transfers”, IEEE Software, 28(5), pp. 60-66, 2011.

[23] J. Dibbern, J. Winkler, and A. Heinzl, “Explaining Variations in
Client Extra Costs between Software Projects Offshored to
India”, MIS Quarterly, 32(2), 2007, pp. 333-366.

