

M. C. Ohlsson, A. von Mayrhauser, B. McGuire and C. Wohlin, "Code Decay Analysis
of Legacy Software through Successive Releases", Proceedings IEEE Aerospace

Conference, 1999, Snowmass, Colorado, USA, 1999.

Published in the Proceedings of the IEEE Aerospace Conference, March 1999, Snowmass, Colorado,

Code Decay Analysis of Legacy Software through Successive Releases30 April 1999 1

Code Decay Analysis of Legacy Software
through Successive Releases

Magnus C. Ohlsson, Anneliese von Mayrhauser,
Brian McGuire and Claes Wohlin

Abstract

Prediction of problematic software components is an important activity today for many
organisations as they manage their legacy systems and the maintenance problems they
cause. This means that there is a need for methods and models to identify troublesome
components. We apply a model for classification of software components as green, yel-
low and red according to the number of times they required corrective maintenance
over successive releases. Further, we apply a principal component and box plot analy-
sis to investigate the causes for the code decay and try to characterise the releases. The
case study includes eight releases and 130 software components. The outcome indi-
cates a large number of healthy components as well as a small set of troublesome com-
ponents requiring extensive repair repeatedly. The analysis characterises the releases
and indicates that it is the relationship between components that causes many of the
problems.

1. Introduction

As a system evolves over a series of releases, it is important to know which software
components are stable versus those which show repeated need for corrective mainte-
nance, and thus possible decay. Code has decayed when it becomes worse and worse in
each successive release, and potentially unmaintainable some time in the future.

As new functionality and features are added over time, complexity may increase and
impact the maintainability of the system and its software components. Defects may
also be injected as a result of bug fixes. It is hence important to track the evolution of a
system and its modules. We propose a method to identify software components, which
are getting more and more difficult to maintain. This makes it possible to take action
prior to having a component decay too much.

Identifying troublesome components versus healthy ones over successive releases has
several uses. First, the information can be used to direct efforts when a new system
release is developed. This could mean applying a more thorough development process
or assigning the most experienced developers to the troublesome components. Second,
this information can be used to tailor testing to parts of the system that are fragile, but
also to assess the overall quality of the software. Third, the information can be used
when determining which components need to be reengineered in the long run. Compo-
nents which are difficult to maintain are certainly candidates for reengineering efforts
and therefore identification of fault-prone components makes it possible to target

Published in the Proceedings of the IEEE Aerospace Conference, March 1999, Snowmass, Colorado,

Code Decay Analysis of Legacy Software through Successive Releases30 April 1999 2

improvement efforts to identifiable, small portions of a system and thus makes mainte-
nance less expensive and more efficient.

The method uses fault and failure data, as well as product measures to identify trouble-
some and healthy components. The basic idea is to use maintenance history of the com-
ponents for assessment. We view fault-proneness as an indication that something has
been difficult to change or is going to be difficult to change.

Measures of maintenance activity also relate to fault-proneness: the number of revi-
sions between two releases and the number of components affected for each repair or
update activity. If a component needs many fixes between releases, there has been code
churn. The software was hard to debug and “get right” and if many components were
involved in a fix, the problem had a large impact.

The hypothesis is that these types of measures are indicators of potential maintenance
problems. Thus, although we are interested in fault-proneness, it is with the long-term
view that components which are fault-prone will be difficult to maintain in the future.

Based on historical data, we classify components as green, yellow or red, depending on
the amount of decay. Thresholds between green, yellow, and red components are devel-
oped based on an organisation’s specific situation. We do not believe that it is possible
to formulate general rules of what constitutes a green, yellow and red component
respectively. The actual limits between the green, yellow and red classes must be deter-
mined based on the specific situation, including, for example, requirements and system
type.

The intention of using historical data is to find trends and react early to warnings.
Trends provide an opportunity to predict and plan focused maintenance activities. For
this study, we propose models for identification of trends for components, i.e. whether
they are on their way to becoming critical components from a maintenance perspective.
The objective is to identify the components before they cause major problems.

In Section 2 we describe the models we are using and we discuss causes for code
decay. Section 3 describes the environment and the collected data and how this data
relates to code decay. The analysis of the collected data is presented in Section 4.
Finally Section 5 presents the conclusions.

2. Models for Identification of Code Decay

2.1 Introduction

The objective of our research is to identify measures and to build models which iden-
tify particularly problematic legacy components before they cause major problems.
The intention is to identify relationships between measures and component behaviour
in terms of maintenance difficulty. Based on these relationships, we propose to build
models to identify problematic components before they actually become problematic.
The models consider and adapt to new releases. We use the following model develop-
ment process [1]:

• Build - based on certain measures build a prediction model.

Published in the Proceedings of the IEEE Aerospace Conference, March 1999, Snowmass, Colorado,

Code Decay Analysis of Legacy Software through Successive Releases30 April 1999 3

• Validate - test if the model provides significant results.

• Use - apply the model to its intended domain.

Through measurement and data collection over releases, the models for identification
of problematic legacy components provide an Experience Base, derived from the
Experience Factory concept [2]. Based on historical data, we predict problematic leg-
acy components. Knowing which parts of a system might need improvement makes
planning and managing for the next release easier and more predictable.

Models trying to track [3] or to detect and predict fault-prone components have been
presented [4][5] with the objective of identifying the most fault-prone components
within a specific project. The models have been created based on the outcome from one
project, validated for a second project [6] and finally used in a third project and refined
based on the outcome [1][7]. Another approach has been to take the outcome from one
project and divide the data set into two parts and build the model based on one half and
validate it for the other half [8] or to build the model in one iteration (build, validate
and use) and test it in the subsequent iteration [9]. These models for predicting and
classifying fault-prone components provide important input to identify component
decay [10][11].

2.2 Component Types

To enable identification of problematic legacy components, we use a model for classi-
fication of software components based on fault-proneness, which we view as a problem
of maintaining software components. The components are classified according to a col-
our code, like a traffic light, depending on the amount of decay. The components
should be classified as green, yellow or red.

Visualisation plays an important part in the interpretation of analysis results or com-
plex relationships [12][13][14]. Even though our classification is a very simple method
for visualising problematic spots, it helps understanding and many people can relate to
these colour codes intuitively.

The amount of decay is judged based on the outcome of previous releases. The out-
come criteria may be the number of faults, time to perform certain types of mainte-
nance activities or the complexity of the component. Any of these attributes could
make software increasingly difficult to understand and handle. The colouring scheme
should be interpreted as follows [15]:

• Green components (normal evolution) - Green represents normal evolution and
some amount of fluctuation is normal. These components are easily updated, i.e.
new functionality may be added and faults corrected without too much effort.

• Yellow components (code decay) - As a component exceeds a lower limit, it is clas-
sified as yellow, and particular attention has to be paid to this component to avoid
future problems. Components in the yellow region are candidates for specific
directed actions. These may include launching a more thorough development proc-
ess or the component is identified as a candidate for reengineering.

• Red components (“mission impossible”) - A red component is difficult and costly to
maintain. It is often the driving factor for maintenance schedules and cost. The red
components have a tendency to appear on the critical path of a software project.

Published in the Proceedings of the IEEE Aerospace Conference, March 1999, Snowmass, Colorado,

Code Decay Analysis of Legacy Software through Successive Releases30 April 1999 4

Ultimately, they will need reengineering. Yellow components, if allowed to decay
further, may pass the upper limit and end up as red.

Setting thresholds between, green, yellow, and red components needs careful consider-
ation. The lower and upper limit should be determined based on historical data and
updated when the quality of the components improves. Actual threshold values depend
on, for example, company, application domain, system and customer requirements.
Also, when many components indicate a high level of decay, this may indicate prob-
lems with the release as a whole, e.g. lack of resources, unsatisfactory process etc. [16].

2.3 Relationships

Maintenance problems may be related to strong coupling between components or to
problems stemming from software architecture and its decay over time [17][18]. If the
system was not designed properly initially, this will lead to problems later, especially
when adding new functionality. The design also has to be updated, especially when
new features are added. Not doing so can cause serious system decay.

If software components communicate with many other components, they are critical to
the system in the following sense: a decaying component of this type is likely to have a
large impact on the remainder of the software. A change in such a component likely
affects other parts of the software, requiring multiple changes elsewhere. When the
component decays, it is likely that each fix requires multiple corrections to “get it
right” (because it may become increasingly difficult to assess the impact of each
change made on the rest of the system). Thus, as a symptom of decay related to struc-
tural problems, we might see more code changes for components that interact with
many other components.

Also, components that have a central position, for example, a shared data structure
might show more corrective activities according to its coupling to other components as
it decays. Even within components there might exist relationships and encapsulations
that are misused in one way or another.

2.3.1 Size

Even though a component is large, it is not necessarily complex. The problem is that it
might be difficult to have a good grasp of what it contains. A good understanding of the
system is achieved by adding useful comments and by documenting relationships
between components. For example, when only a few people understand the system and
move to another organisation or department, many problems arise, because nobody has
an understanding of the system as whole [19].

2.3.2 Measures

For a useful classification model, we need appropriate measures to trace the compo-
nents. The measures should, if possible, cover product, process and resource measures.
It is important that the measures are related to components and to the system as a
whole. The focus is on quantitative measures. Possible aspects and measures are (see
also [20][21][22][23]):

Published in the Proceedings of the IEEE Aerospace Conference, March 1999, Snowmass, Colorado,

Code Decay Analysis of Legacy Software through Successive Releases30 April 1999 5

• Size measures – lines of code or other suitable measures of size like function points.

• Structural measures – relative and cyclomatic complexity, amount of modified code
or interface characteristics. The amount of modified code may be viewed as a struc-
tural measure, because if changes are large the structure of the software will change.

• Relational measures – describing the interfaces between components, e.g. number
of components that share the same data structure.

• Process measures – number of occurrences of different events in different phases, or
time to perform certain changes. The latter requires that we are able to define some
“benchmark” changes.

• Fault data – classification of different types of faults, e.g. using a fault taxonomy
[24].

3. Case Study

3.1 Environment

This study is based on data from a large software/hardware vendor. The data we used
for our case study comes from a large embedded mass storage system which includes
about 800,000 lines of C code and 130 software components. Each component contains
a number of files. We have studied the system over eight releases, though five of the
releases were closely related sub-releases and therefore treated as one release. The
releases were predominantly corrective releases.

The data is based on defect/fix reports or source change notices (SCN). This means that
every report indicates a problem that had to be corrected. From the defect/fix reports a
number of measures were collected for the components. The measures we have used
are based on the information contained in the defect/fix reports. This could be argued
but our concern has been to not increase the burden for the developers and instead to
use existing data to calculate our measures. Part of the objective in this case study is
thus to evaluate how useful currently existing data is for identifying problematic com-
ponents. In the analysis of the results, we will also make recommendations on what
data might be more useful.

In total we collected 28 different measures. Twelve of those are size and amount/type
of change measures based on LOC. The others describe, for example, in how many
defect reports multiple components were changed.

Since we cannot measure the quality of the architecture or measure the interfaces
between components directly, we built the model based on which of the components
were affected by some defect, i.e. impact on other components. This also provides
insight into which of the components are the most critical.

It could also be argued that many of the measures should be normalised to the size of
the components. The reason we have not done so is that we are interested in where it is
necessary to spend effort. For this, normalisation is not desirable.

Published in the Proceedings of the IEEE Aerospace Conference, March 1999, Snowmass, Colorado,

Code Decay Analysis of Legacy Software through Successive Releases30 April 1999 6

3.2 Description of Measures

3.2.1 Impact Measures

These measures are indications of how many times the files were changed for each
component in each release. This is an indicator of how large the changes were in a
component. The larger the number is, the more times the files had to be changed indi-
cating a fault-prone and complex component. We distinguish between .c and .h files to
evaluate the role of shared data (.h) versus functions (.c). There might exist a risk that
developers affect this measure in terms of poor programming habits. We do not con-
sider this a problem since this also likely causes code decay and thus should be flagged.

• Sys_impact_c = Total number of changes to .c files in a release.

• Sys_impact_h = Total number of changes to .h files in a release.

• Sys_impact = Sys_impact_c + Sys_impact_h

3.2.2 Type of Impact

Here we distinguish between impact on .c files and impact on .h files. Changes to .h
files imply that defects occurred in data shared between multiple files. The measures
identify the proportion of such changes with data versus function impact. A single .h
change impacts multiple .c files. As a result, the changes to .h files should be more
indicative of code decay. By ordering the components by those numbers, an indication
of which components rely more on shared data structures, will be given.

• Sys_impact_c% = Sys_impact_c/Sys_impact

• Sys_impact_h% = Sys_impact_h/Sys_impact

3.2.3 Changed Components

This measure indicates how many times a component had to be changed in a release.
The higher the number, the more fixes had to be made to the component. It can also be
an indication that it is a central or complex component.

• SCN_comp(c) = Number of SCN’s (defect fix reports) that involve a component.

3.2.4 Effort

These measures provide information about the average number of files (.c and .h) that
required changes for a single defect fix. This should be related to the amount of effort
each defect/fix report required.

Having to change multiple files to fix a single defect indicates a component with strong
dependencies among its files. The purpose of separate files is to minimise such depend-
encies, and their presence indicates that files have been altered time and again in ways
that conflict with the initial design. Strong interconnection of files related to defect
fixes is an indication of code decay because the complexity of the interconnections
between files within the component has grown too much.

Published in the Proceedings of the IEEE Aerospace Conference, March 1999, Snowmass, Colorado,

Code Decay Analysis of Legacy Software through Successive Releases30 April 1999 7

As before, the measures distinguish between .c and .h files. We also provide a com-
bined measure as an overall effort surrogate. SCN_comp measures the number of
defect fix reports for a component in a given release.

• SCN_effort_c = Sys_impact_c/SCN_comp

• SCN_effort_h = Sys_impact_h/SCN_comp

• SCN_effort = Sys_impact/SCN_comp

3.2.5 Unique Files

These measures count how many of the components’ files were touched in a release. It
is an indication of how widespread the corrective actions within a component have
been or how much the component was broken and needed to be fixed. As before, the
measures distinguish between .c and .h files. We also provide a combined measure for
an overall assessment of how much of a component needed fixing.

• Unique_c = Number of unique .c files fixed in a component.

• Unique_h = Number of unique .h files fixed in a component.

• Unique = Unique_c + Unique_h

3.2.6 Average Number of Changes

This measure indicates how fault-prone and complex a component is. It returns the
number of changes to a component’s files normalised by the number of unique changed
files in the component. Since we do not have any actual values for the file sizes we
assume that the average file sizes are similar within all components. The measure gives
each component a number which increases as the component requires more changes
for defect corrections. This measure could be an indication of decay resulting from
increased complexity of particular files or breakdown of encapsulation between files,
i.e. internal coupling in components between files causes more than one file to be
changed.

Having to change a file multiple times indicates that a change was made and that the
change probably did not work. Therefore more change was needed. The action of
repeatedly changing a file shows that maintenance may have made incorrect decisions
in correcting the file or that the file had multiple problems. Another explanation could
be that the complexity of the code in the file makes it difficult to comprehend. Either
way, increasing numbers in these indicators are a sign of code decay.

• Avg_fix_c = Sys_impact_c/Unique _c

• Avg_fix_h = Sys_impact_h/Unique_h

• Avg_fix = Sys_impact/Unique

3.2.7 Size

This measure provides information about how much the components (their .c and .h
files) have changed. It measures also where the largest amount of change has occurred,
in .c or .h files. The measures cover added LOC, deleted LOC, added executable LOC
and deleted executable LOC. These measures provide information about how stable the

Published in the Proceedings of the IEEE Aerospace Conference, March 1999, Snowmass, Colorado,

Code Decay Analysis of Legacy Software through Successive Releases30 April 1999 8

component and its files are and the amount of change from release to release. Increas-
ing amounts in these measures are a sign of potential decay.

• Size_add_c = Number of LOC added accumulated for .c files.

• Size_add_h = Number of LOC added accumulated for .h files.

• Size_add = Number of LOC added accumulated for a component.

• Size_del_c = Number of LOC deleted accumulated for .c files.

• Size_del_h = Number of LOC deleted accumulated for .h files.

• Size_del = Number of LOC deleted accumulated for the component.

• Size_exec_add_c = Number of executable LOC added accumulated for .c files.

• Size_exec_add_h = Number of executable LOC added accumulated for .h files.

• Size_exec_add = Number of executable LOC added for a component.

• Size_exec_del_c = Number of executable LOC deleted accumulated for .c files.

• Size_exec_del_h = Number of executable LOC deleted accumulated for .h files.

• Size_exec_del = Number of executable LOC deleted for a component.

3.2.8 Coupling

This measure will associate a number within each component that denotes how often it
was involved in defects that required corrections that extended beyond the current
component. The higher the number is, the more the encapsulation between the compo-
nent and the components it interacts with has broken down. Such strong dependencies
are indications of relationship decay between the components or very poor design from
the start.

In the absence of actual coupling measures associated with corrective maintenance
reports, we need a surrogate measure. Our rationale for the measure proposed is based
on the following: if a set of strongly coupled components decays, corrective actions to
fix defects are likely to require changes to many of the related files.

Further, it is very undesirable when components come to rely too much on the particu-
lars of the implementation of other components because it describes a break in the
encapsulation components are supposed to have with respect to each other. Often these
defects are related to shared data structures. The need to access more than one compo-
nent (similar to the files within a component) indicates that a defect exists in more than
one component or the defect exist in a single component but its fix has ramifications in
the way other components can interact with the particular component.

The measure is calculated as follows: for each defect fix report where more than one
component was changed, increase the measure by one for all changed components.

• Multi_rel = Number of times a component was changed together with other compo-
nents.

Published in the Proceedings of the IEEE Aerospace Conference, March 1999, Snowmass, Colorado,

Code Decay Analysis of Legacy Software through Successive Releases30 April 1999 9

3.3 Description of Releases

The releases differ from each other in terms of defect fixes and their purpose. Release n
was a fairly large release with approximately twice as many changes in .c files as .h
files. The amount of LOC added and deleted was significantly larger for the .c fixes.
Release n+1 had almost the same characteristics but with a larger amount of changes in
the .h files.

Release n+2 was a small release with few defects reported. Approximately twice as
many .c files as .h files were changed but the number of defects was smaller (about a
third) compared to the other releases. Finally, release n+3 was a very large release but
very .c intensive in its defect files. The changed LOC (added plus deleted) for the .c
and the .h files are approximately seven times larger for the .c files than for the .h files.

4. Analysis

4.1 Code Churn

Our analysis proceeds in two steps. First we identify the fault-prone components in
each release. The measure we use for this is the number of defect fix reports for a com-
ponent, SCN_comp. This is what we refer to as code churn. As threshold we chose the
top 25 percent. Thus all components whose number of defect fix reports is in the upper
quartile are considered fault-prone.

Tables 1-4 show the number of defect fix reports for the 10 most fault-prone compo-
nents and their ranks in the release. The 10 least fault-prone components all had zero
defect fixes.

Problemati
c 1 2 3 4 5 6 7 8 9 10

Reports 8 9 10 11 11 11 13 15 15 24

Rank 120 122 123 124 124 124 127 128 128 130

TABLE 1. Defect reports in release n.

Problemati
c 1 2 3 4 5 6 7 8 9 10

Reports 10 12 12 12 13 14 17 19 22 37

Rank 116 122 122 122 125 126 127 128 129 130

TABLE 2. Defect reports in release n+1.

Published in the Proceedings of the IEEE Aerospace Conference, March 1999, Snowmass, Colorado,

Code Decay Analysis of Legacy Software through Successive Releases30 April 1999 10

In step two we analyse how components change status according to this classification.
Components which are fault-prone in two successive releases are considered red, those
that are not fault-prone (normal) in either release are considered green. Components
that change status (from fault-prone to normal or from normal to fault-prone) are clas-
sified as yellow.

Tables 5-7 show the results for all four releases. Table 5 shows that 20 components
stayed fault-prone (red) from release n to n+1, 90 stayed normal (green) and 11
changed from normal to fault-prone (yellow). Nine components improved from fault-
prone to normal (yellow).

Going from release n+1 to n+2 (Table 6), only ten components stayed fault-prone, 84
remained normal. A larger number both improved to normal (21 versus 9) and decayed
to fault-prone (15 versus 11). This trend continues from release n+2 to n+3 (Table 7).
More components become fault-prone (20 versus 15), fewer improved from fault-
prone to normal (16 versus 21). Thus there is an indication of decay, code is becoming
more difficult to improve.

Problemati
c 1 2 3 4 5 6 7 8 9 10

Reports 8 8 9 9 9 11 13 14 15 15

Rank 121 121 123 123 123 126 127 128 129 129

TABLE 3. Defect reports in release n+2.

Problemati
c 1 2 3 4 5 6 7 8 9 10

Reports 12 13 13 18 20 22 23 26 29 43

Rank 121 122 122 124 125 126 127 128 129 130

TABLE 4. Defect reports in release n+3.

25%
Prediction (Release n)

Fault-prone Normal

Outcome
(Release n+1)

Fault-prone 20 11

Normal 9 90

TABLE 5. Result from release n to n+1.

25%
Prediction (Release n+1)

Fault-prone Normal

Outcome
(Release n+2)

Fault-prone 10 15

Normal 21 84

TABLE 6. Result from release n+1 to n+2.

Published in the Proceedings of the IEEE Aerospace Conference, March 1999, Snowmass, Colorado,

Code Decay Analysis of Legacy Software through Successive Releases30 April 1999 11

On the positive side, results show a good number of components that are stable
between successive releases (classified as green, lower right corner of table) and a few
components that always are pinpointed as fault-prone between releases (classified as
red, upper left corner of table). The ones that are classified as yellow are those compo-
nents that should be further investigated to find out what the reasons have been for the
shift in classification, i.e. why they became fault-prone or what activities improved
them to “green” status.

One reason why some of the components were classified as yellow is that corrective
maintenance for a specific release focused on some specific parts of the system. For
example, in release n the focus was on part A of the system, release n+1 fixed part B
and finally in release n+2, part A was again the focus of corrective maintenance.

If a component is enhanced during one specific release, this might be a reason for a
component to change state. Also, it might be that it is affected because of problems in
other components and is therefore reported as changed. The latter is an architectural
problem. If a component has been pinpointed as fault-prone it might have been cor-
rected properly and is therefore not subject to being fault-prone any longer. The prob-
lematic components (from a classification view) are those that are classified as green
and then show some indication of problems and then are classified as green again. For
those components it is important to use historical data and find some threshold to be
able to pinpoint them.

Table 8 shows to which degree components were repeatedly fault-prone. This shows
that 68 components were healthy throughout all releases while 3 components where
fault-prone in all four releases. Obviously, these components bear investigation further.
They also require immediate attention.

Overall, the software we investigated is quite healthy, although it shows some prob-
lems that need to be looked at. Our results indicate:

• A large number of healthy components in the system.

• A small identifiable set of problematic components. Most of these include shared
data structures The small set of red components also show that this analysis has the
potential for focusing on maintenance and thus make it easier to plan for and do it
less expensively.

25%
Prediction (Release n+2)

Fault-prone Normal

Outcome
(Release n+3)

Fault-prone 9 20

Normal 16 85

TABLE 7. Result from release n+2 to n+3.

Times fault-prone 0 1 2 3 4

Number of components 68 29 17 13 3

TABLE 8. Times components were pinpointed as fault-prone.

Published in the Proceedings of the IEEE Aerospace Conference, March 1999, Snowmass, Colorado,

Code Decay Analysis of Legacy Software through Successive Releases30 April 1999 12

• A limited number of components that changed state, indicating high predictability
of red versus green components. In order to assess them further, we will try to iden-
tify what characteristics cause a fault-prone component to become fault-free (lower
left corner of Tables 5-7) and what causes a fault-free component to become fault-
prone (upper right corner of Tables 5-7).

4.2 Structure

To investigate the characteristics of green, yellow and red components across releases,
we have applied a principal component analysis (PCA). This analysis method groups a
number of correlated variables into a number of factors [25].

Changes in the number of factors and variables changing factors are indicators that the
system is not stable. In our case the grouping of the factors are descriptive of the
release, i.e. on which parts of the system were the maintenance activities focused and
how do these system parts relate to each other.

We used a standard principal component analysis with a orthotran/varimax transforma-
tion to extract as high differences between the variables as possible [26]. We stopped
extracting factors when 75 percent of the variance of the variables were explained. This
reduces the number of factors to those that explain 75 percent of the variance in the
data and excludes those that only have small impact.

 We performed factor analysis on two groups of software components:

• Healthy components - components that stayed or became normal in two successive
releases (second row in Tables 5-7).

• Problematic components - components that stayed or became fault-prone in two
successive releases (first row in Tables 5-7).

Table 9 shows the results of this factor analysis for the healthy components and Table
10 for the problematic components. In the tables the dark gray correlation values iden-
tify the variables that contribute most to the factors identified by the column. The light
gray values have a correlation less than 0.5 or have a negative value and the white val-
ues do not contribute to a factor.

4.3 Healthy Components

The principal component analysis for the healthy components shows two distinct
groups of factors in release n+1 and n+3, one related to the .c group and one related to
the .h group. Though there exist some minor differences, most of the variables have
very small correlations. The summary data of the .c and .h measures are grouped with
the .c files which means that most of the changes made to the components involved .c
files and were simple code corrections. Even though the Size_add_h measure is related
to the .c group the difference between the factors is very small and the reason why it
belongs to the .c group is that the code added to the .h files was slightly more than the
other measures. Avg_fix_c and Avg_fix were also grouped with the .c factor because
Avg_fix_c dominates Avg_fix.

Published in the Proceedings of the IEEE Aerospace Conference, March 1999, Snowmass, Colorado,

Code Decay Analysis of Legacy Software through Successive Releases30 April 1999 13

Release n+2 is very different. All variables except one are grouped into one main fac-
tor. The relative variance contribution is also very high for this main factor. This is
because release n+2 reported the smallest number of defects and most of the healthy
components were not changed at all.

By contrast, PCA results for release n+3 are similar to release n+1. Measures that are
grouped with different factors are Avg_fix_c, Size_add_h, Avg_fix and Multi_rel.
Three of those four show low factor correlation values for one of the two releases, only
Size_add_h points to a significant difference between the two releases. This indicates
more emphasis on adding shared data to .h files, increasing complexity of shared data.
With fewer improved software components, this could indicate reasons for beginning
decay, especially if problematic software components show the same classification of
this factor.

Release n+1 n+2 n+3

Variable Factor 1 Factor 2 Factor 1 Factor 2 Factor 1 Factor 2
Sys_impact_c 0.788 -0.116 0.942 0.158 0.909 0.24

Sys_impact_c% 0.472 -0.441 0.547 0.705 0.455 0.298

SCN_effort_c 0.835 0.018 0.942 0.158 0.834 0.306

Unique_c 0.812 -0.05 0.942 0.158 0.922 0.186

Avg_fix_c 0.49 -0.24 0.692 0.634 0.36 0.525

Size_add_c 0.875 0.19 0.815 -0.48 0.929 0.112

Size_del_c 0.895 0.201 0.758 0.286 0.923 0.238

Size_exec_add_c 0.887 0.163 0.932 -0.46 0.92 0.21

Size_exec_del_c 0.918 0.152 0.862 0.167 0.887 0.321

Sys_impact_h 0.212 0.926 0.964 -0.166 0.322 0.873

Sys_impact_h% -0.052 0.692 0.798 0.059 0.083 0.879

SCN_effort_h 0.591 0.71 0.964 -0.166 0.218 0.791

Unique_h 0.218 0.915 0.964 -0.166 0.401 0.796

Avg_fix_h 0.167 0.609 0.876 0.055 0.349 0.85

Size_add_h 0.678 0.591 0.871 -0.424 0.076 0.797

Size_del_h -0.041 0.812 0.951 -0.256 0.276 0.793

Size_exec_add_h 0.595 0.698 0.871 -0.416 0.118 0.845

Size_exec_del_h -0.041 0.837 0.944 -0.316 0.262 0.866

Sys_impact 0.715 0.443 0.97 0.05 0.862 0.406

SCN_effort 0.848 0.29 0.97 0.05 0.753 0.484

Unique 0.699 0.537 0.97 0.05 0.89 0.333

Avg_fix 0.441 -0.138 0.692 0.634 0.327 0.598

Size_add 0.867 0.243 0.817 -0.479 0.92 0.167

Size_del 0.887 0.277 0.827 0.211 0.9 0.305

Size_exec_add 0.877 0.256 0.834 -0.458 0.898 0.28

Size_exec_del 0.891 0.311 0.914 0.075 0.853 0.406

SCN_comp 0.395 0.051 0.692 0.634 0.506 0.62

Multi_rel 0.316 0.111 0.722 0.425 0.361 0.44

Proportional var.
contributions 0.651 0.349 0.852 0.148 0.585 0.415

TABLE 9. Healthy components.

Published in the Proceedings of the IEEE Aerospace Conference, March 1999, Snowmass, Colorado,

Code Decay Analysis of Legacy Software through Successive Releases30 April 1999 14

4.4 Problematic Components

Like the healthy components, PCA results for the problematic components show two
factors, one is more related to .c measures, and the other to .h measures. The differ-
ences show in the factor values for the variables and in how the variables are grouped
into factors. One difference is that we have several negative correlations between .c
measures and the .h factor. One reason is that these variables (for example
Sys_impact_c% and Avg_fix_c in release n+3) are almost constant because many of
the components exclusively contain .c files. Therefore these variables are negatively
correlated to the .h factor. We have to be aware that this affects some of the summa-
rised variables if they depend heavily on the variables with negative correlation. Also,
if we had not stopped extracting factors in the PCA at 75 percent these variables would
probably have been grouped in a third factor.

Release n+1 n+2 n+3

Variable Factor 1 Factor 2 Factor 1 Factor 2 Factor 1 Factor 2
Sys_impact_c 0.855 -0.151 0.964 -0.154 0.852 -0.324

Sys_impact_c% 0.294 -0.738 0.241 -0.795 0.223 -0.828

SCN_effort_c 0.803 -0.26 0.875 -0.388 0.527 -0.656

Unique_c 0.84 -0.192 0.812 -0.228 0.775 -0.356

Avg_fix_c 0.392 -0.572 0.735 -0.527 0.479 -0.691

Size_add_c 0.888 -0.012 0.961 -0.115 0.92 -0.117

Size_del_c 0.806 -0.0005 0.968 -0.165 0.945 -0.128

Size_exec_add_c 0.915 0.004 0.962 -0.127 0.924 -0.109

Size_exec_del_c 0.863 -0.023 0.971 -0.163 0.946 -0.134

Sys_impact_h -0.049 0.99 0.088 0.945 0.011 0.949

Sys_impact_h% -0.294 0.738 -0.241 0.795 -0.223 0.828

SCN_effort_h 0.069 0.848 -0.009 0.91 -0.116 0.775

Unique_h -0.154 0.978 -0.018 0.824 0.016 0.934

Avg_fix_h 0.632 0.344 0.323 0.523 -0.15 0.536

Size_add_h -0.036 0.938 0.077 0.904 0.036 0.765

Size_del_h 0.062 0.921 0.039 0.958 0.071 0.867

Size_exec_add_h -0.049 0.944 0.101 0.926 0.06 0.908

Size_exec_del_h 0.088 0.898 0.032 0.956 0.046 0.924

Sys_impact 0.586 0.704 0.928 0.271 0.86 0.23

SCN_effort 0.803 0.167 0.859 0.234 0.263 0.471

Unique 0.32 0.888 0.627 0.453 0.538 0.696

Avg_fix 0.409 -0.164 0.805 0.186 0.493 -0.5

Size_add 0.648 0.693 0.963 0.083 0.927 0.036

Size_del 0.667 0.626 0.958 0.226 0.952 0.136

Size_exec_add 0.628 0.731 0.967 0.078 0.936 0.04

Size_exec_del 0.604 0.719 0.938 0.29 0.961 0.038

SCN_comp 0.025 0.909 0.508 0.445 0.712 0.057

Multi_rel -0.175 0.899 -0.011 0.666 0.166 0.173

Proportional
variance
contributions 0.41 0.59 0.594 0.406 0.539 0.461

TABLE 10. Problematic components.

Published in the Proceedings of the IEEE Aerospace Conference, March 1999, Snowmass, Colorado,

Code Decay Analysis of Legacy Software through Successive Releases30 April 1999 15

In release n+1 and n+2 we can see that the relationship measure (Multi_rel) is related
to the .h files. In release n+3 the relationship measure does not contribute, because the
release had a very high degree of changes in the .c files. We can also see that even
though the summarised measures change from the .h group to the .c group, the measure
describing relationships between components (coupling) still are related to the .h factor
(although the correlation is small).

Finally, this analysis gives us a picture of the characteristics of the releases and high-
lights the problematic areas, for example, relationships between components and the
change in amount of LOC changed in .c files, that need further investigation. It is diffi-
cult to say anything about trends for the components when only four releases are avail-
able and the characteristics are so different.

4.5 Box Plot Analysis

The PCA results pointed to differences between factor grouping of variables between
releases and between the healthy and problematic components. We now investigate
these differences further by comparing actual measurements of these variables. Figures
1-6 show box plots of these variables. A box plot shows the second and third quartiles
(Q2 and Q3) of values as a box and the range of values, the lower and upper quartiles
(Q1 and Q4), as vertical lines.

FIGURE 1. Number of changed files.

Figure 1 shows number of files that were changed in each release (Sys_impact). The
healthy components behave different from the problematic ones. Release n+1 was a
large release and therefore there are slightly more files changed among the healthy
ones. The number of files changed in the problematic components are slightly decreas-

S ys _impact

0

2 0

4 0

6 0

8 0

10 0

12 0

Healthy n+1 n+2 n+3 Problematic
n+1

n+2 n+3

Published in the Proceedings of the IEEE Aerospace Conference, March 1999, Snowmass, Colorado,

Code Decay Analysis of Legacy Software through Successive Releases30 April 1999 16

ing in range in successive releases, the decrease is even less between the lower and
upper quartile (the box). Problematic components clearly show more system impact.

FIGURE 2. Number of defect reports.

Looking at the number of defect reports in Figure 2 for each release indicates an
increasing trend for problematic components. As mentioned earlier, release n+2 was a
small release compared to the others and therefore the values for this release are small.
Noticeable is the size of the box for the problematic components. For release n+2 the
box is even larger than n+1. Release n+3 has the largest one. This is an indication of
decay.

FIGURE 3. Number of files changed per defect report.

Figure 3 plots the SCN_effort. It describes the average number of files changed in a
component per defect report. While the range of SCN_effort is larger for the healthy
components, the boxes are lower than the problematic ones. SCN_effort for the prob-
lematic components show less variance and is higher when we consider the two middle
quartiles (the box). If we only compare the problematic parts we can see that the values
are slightly decreasing. This might be an indication that the problems are related to cer-

S CN_comp

0

5

10

15

20

25

30

35

40

45

50

Healthy n+1 n+2 n+3 Problematic
n+1

n+2 n+3

S CN_effort

0

5

10

15

20

25

Healthy n+1 n+2 n+3 Problematic
n+1

n+2 n+3

Published in the Proceedings of the IEEE Aerospace Conference, March 1999, Snowmass, Colorado,

Code Decay Analysis of Legacy Software through Successive Releases30 April 1999 17

tain sets of components and files. Noticeable also is that the box for release n+2 is
slightly larger than the other two.

FIGURE 4. Number of unique files changed.

In Figure 4 we can see the decreasing number of unique files that are changed for each
component. This is, as mentioned earlier, an indication that certain parts of the system
are decaying and that problems are concentrated in specific parts of the system.

FIGURE 5. Number of defect reports with more than one component changed.

One of our conjectures was that the relationships between components cause decay and
therefore also problems maintaining the system. Figure 5 shows the relationship meas-
ures of components that required corrective maintenance across releases. The healthy
components have fairly low values. Values for release n+1 where the highest, but still
much smaller than for problematic components. Problematic components show much
higher values. In release n+1 the maximum value is very high but the box is not as
large as in release n+3. This is definitely an indication of decay among the compo-

Unique

0

10

20

30

40

50

60

70

80

Healthy n+1 n+2 n+3 Problematic
n+1

n+2 n+3

Multi_rel

0

5

10

15

20

25

30

35

40

Healthy n+1 n+2 n+3 Problematic
n+1

n+2 n+3

Published in the Proceedings of the IEEE Aerospace Conference, March 1999, Snowmass, Colorado,

Code Decay Analysis of Legacy Software through Successive Releases30 April 1999 18

nents. We also have to keep in mind that release n+3 included many changes in related
.c files.

FIGURE 6. Changes in size.

Finally in Figure 6 the LOC changed (added plus deleted) are plotted. The healthy
components are fairly stable with a very small box and low change values. By contrast,
the problematic components show larger variance and larger boxes. More code has to
be changed. Between release n+1 and n+3 the amount of code change decreases. Over-
all the results show for the problematic components that:

• Defect reports increase.

• More components needed to be changed to fix problems. Thus coupling and rela-
tionships between components play a major part in decay for this system.

• Size of change is slightly decreasing. Thus it is not any large, obvious omission that
is the problem, but subtle problems that involve multiple components.

Together this indicates that there are parts of the system that are decaying and that it is
difficult to maintain. The source of decay is the interdependence between components.

5. Conclusions

Prediction of fault-prone components is a very important task to be able to direct effort
and apply necessary corrective actions. But only looking at the defects from releases is
not enough to assess fault-prone components.

We have classified components as green, yellow and red according to a certain thresh-
old. In this case we chose to pinpoint 25 percent of the most fault-prone components,
but other values are possible depending on the purpose and the amount of available
resources. Healthy and problematic components are quite easy to predict. Harder to
assess are the yellow ones, especially the ones that change from healthy to problematic.
There is a need for more information to direct attention towards those components in a
new release.

By applying PCA we tried to discover certain patterns among the healthy and the prob-
lematic components. Also, we focused on finding characteristics for the releases with
the help of the PCA results. Among the healthy components we found groups of .c and
.h related variables but no strong correlation to the relationship measure (Multi_rel).

Size_changed

0

5 000

10 000

15 000

20 000

25 000

Healthy n+1 n+2 n+3 Pro blematic
n+1

n+2 n+3

Published in the Proceedings of the IEEE Aerospace Conference, March 1999, Snowmass, Colorado,

Code Decay Analysis of Legacy Software through Successive Releases30 April 1999 19

One of the releases only touched a few components, which resulted in almost no sepa-
ration between the variables for the healthy components.

The problematic components, on the other hand, showed some interesting reverse rela-
tionships between .c and .h variables. Also, the .h factors were mostly related to the
relationship measures which indicates that shared data and coupling between compo-
nents need repeated fixes. The box plots confirmed this as well.

Since we were limited in the kind of data collected, some of our results had to be based
on surrogate measures, such as for component coupling. Ideally, we would prefer
actual measures of connectivity between components. However, defect/fix reports are
not likely to contain them. On the positive side, the study showed that a limited data set
can provide useful information and help to find problematic areas (in this case compo-
nent coupling). The results from the analysis have been verified by experts at the com-
pany. We do not think that too much effort should be spent on collecting other data, but
in this case it would have been very useful to analyse connectivity measures.

Acknowledgements

This work was partly funded by The Swedish National Board for Industrial and Techni-
cal Development (NUTEK), grant 1K1P-97-09673, and by a scholarship from the
ISS’90 foundation. We would also like to thank the two employees who helped us col-
lect and interpret the data.

References
[1] N. Ohlsson, M. Helander and C. Wohlin, “Quality Improvement by Identification

of Fault-prone Modules Using Software Design Metrics”, Proceedings of the
International Conference on Software Quality, ICSQ’96, pp. 1-13, 1996, Ottawa,
Canada.

[2] V. Basili, G. Caldiera and D. Rombach, “Experience Factory”, in Encyclopedia of
Software Engineering, Vol. 1, edited by J.J. Marciniak, pp. 469-476, John Wiley &
Sons, New York, 1994.

[3] D. Ash, J. Alderete, P.W. Oman and B. Lowther, “Using Software Models to Track
Code Health”, Proceedings of the International Conference on Software Mainte-
nance, ICSM'94, pp. 154-160, September 1994, Victoria, British Colombia, Can-
ada.

[4] N.F. Schneidewind, “Software Metrics Model for Quality Control”, Proceedings
of the International Symposium on Software Metrics, Metrics'97, pp. 127-136,
November 1997, Albuquerque, New Mexico.

[5] T.M. Khoshgoftaar and R.M. Szabo, “Improving Code Churn Predictions During
the System Test and Maintenance Phases”, Proceedings of the International Con-
ference on Software Maintenance, ICSM'94, pp. 58-66, September 1994, Victoria,
British Colombia, Canada.

Published in the Proceedings of the IEEE Aerospace Conference, March 1999, Snowmass, Colorado,

Code Decay Analysis of Legacy Software through Successive Releases30 April 1999 20

[6] T.M. Khoshgoftaar, E.B. Allen, N. Goel, A. Nandi and K.S. Kalaichelvan, “Detec-
tion of Software Modules with High Debug Code Churn in a Very Large Legacy
System”, Proceedings of the International Symposium on Software Reliability
Engineering, ISSRE’96, pp. 364-371, October-November 1996, White Plains,
New York, USA.

[7] N. Ohlsson and H. Alberg, “Predicting Fault-prone Software Modules in Tele-
phone Switches”, IEEE Transactions on Software Engineering, 22(12), pp. 886-
894, December 1996.

[8] T. M. Khoshgoftaar, E.B. Allen, K.S. Kalaichelvan, N. Goel, J.P. Hudepohl and J.
Mayrand, “Detection of Fault-Prone Program Modules in a Very Large Telecom-
munications System”, Proceedings of the International Symposium on Software
Reliability Engineering, ISSRE’95, pp. 24-33, October 1995, Toulouse, France.

[9] T.M. Khoshgoftaar, E.B. Allen, R. Halstead and G.P. Tiro, “Detection of Fault-
prone Software Modules During a Spiral Life Cycle”, Proceedings of the Interna-
tional Conference on Software Maintenance, ICSM’96, pp. 69-76, November
1996, Monterey, California.

[10] M. Jorgensen, “Experience With the Accuracy of Software Maintenance Task
Effort Prediction Models”, IEEE Transactions on Software Engineering, 21(8),
pp. 674-681, 1995.

[11] T.M. Khoshgoftaar and E.B. Allen, “Classification of Fault-Prone Software Mod-
ules: Prior Probabilities, Costs and Model Evaluation”, Journal of Empirical Soft-
ware Engineering, 3(3), pp. 275-297, September 1998.

[12] M.J. Baker and S.G. Eick, “Visualizing Software Systems”, Proceedings of Inter-
national Conference on Software Engineering, ICSE'94, pp. 59-67, May 1994,
Sorrento, Italy.

[13] K.B. Gallagher, “Visual Impact Analysis”, Proceedings of International Confer-
ence about Software Maintenance, ICSM'96, pp. 52-58, November 1996,
Monterey, California.

[14] H. Gall, M. Jazayeri, R.R. Klosch and G. Trausmuth, “Software Evolution Obser-
vations Based on Product Release History”, Proceedings of International Confer-
ence on Software Maintenance, ICSM'97, pp. 160-166, October 1997, Bari, Italy.

[15] M.C. Ohlsson and C. Wohlin, “Identification of Green, Yellow and Red Legacy
Components”, Proceeding of International Conference on Software Maintenance,
ICSM’98, pp. 6-15, November 1998, Bethesda, Washington D.C.

[16] L.C. Briand, V.R. Basili, Y-M. Kim and D.R. Squier, “A Change Analysis Process
to Characterize Software Maintenance Projects”, Proceedings of the International
Conference on Software Maintenance, ICSM'94, pp. 38-49, September 1994, Vic-
toria, British Colombia, Canada.

[17] I.D. Baxter and C.W. Pidgeon, “Software Change Trough Design Maintenance”,
Proceedings of the International Conference on Software Maintenance, ICSM'97,
pp. 250-259, October 1997, Bari, Italy.

Published in the Proceedings of the IEEE Aerospace Conference, March 1999, Snowmass, Colorado,

Code Decay Analysis of Legacy Software through Successive Releases30 April 1999 21

[18] R. Takahashi and Y. Nakamura, “The Effect of Interface Complexity on Program
Error Density”, Proceedings of International Conference about Software Mainte-
nance, ICSM'96, pp. 77-86, November 1996, Monterey, California.

[19] A. von Mayrhauser and A.M. Vans, “Comprehension Processes During Large
Scale Maintenance”, Proceedings of International Conference on Software Engi-
neering, ICSE'94, pp. 39-48, May 1994, Sorrento, Italy.

[20] T. M. Pigoski and L.E. Nelson, “Software Maintenance Metrics: A Case Study”,
Proceedings of the International Conference on Software Maintenance, ICSM'94,
pp. 392-401, September 1994, Victoria, British Colombia, Canada.

[21] P. Oman and J. Hagemeister, “Metrics for Assessing a Software System's Main-
tainability”, Proceedings of the International Conference on Software Mainte-
nance, ICSM'92, pp. 337-344, November 1992, Orlando, Florida.

[22] J. Tian and M.V. Zelkowitz, “Complexity Measure Evaluation and Selection”,
IEEE Transactions on Software Engineering, 21(8), pp. 641-650, 1995.

[23] N.F. Schneidewind, “Measuring and Evaluating Maintenance Process Using Reli-
ability, Risk and Test Metrics”, Proceedings of International Conference on Soft-
ware Maintenance, ICSM'97, pp. 232-239, October 1997, Bari, Italy.

[24] W.S. Humphrey, “A Discipline for Software Engineering”, Addison-Wesley Pub-
lishing Company, 1995.

[25] R.L. Gorsuch, “Factor Analysis”, 2:nd edition, Laurence Erlbaum Associates,
Hillsdale, New Jersey, 1983.

[26] J.O. Ramsay and B.W. Silverman, “Functional Data Analysis”, Springer-Verlag,
New York, 1997.

