
 

 

 

 

 

 

 

 

 

 

 

 

T. Thelin, P. Runeson and C. Wohlin, "An Experimental Comparison of Usage-Based 
and Checklist-Based Reading", Proceedings International Workshop on Inspection in 
Software Engineering (WISE'01).  M. Lawford and D.L. Parnas (editors), pp. 136-144, 

Paris, France, 2001. Extended version invited to IEEE Transctions on Software 
Engineering.  



An Experimental Comparison of Usage-Based and Checklist-Based Reading

Thomas Thelin and Per Runeson
Dept. of Communication Systems,

Lund University
Box 118, SE-221 00 LUND, Sweden

{thomas.thelin, per.runeson}@telecom.lth.se

Claes Wohlin
Dept. of Software Eng. and Computer Science

Blekinge Institute of Technology
Box 520, SE-372 25 Ronneby, Sweden

claes.wohlin@bth.se
Abstract
Software quality can be defined as the customer’s per-

ception of how a system works. Inspection is a method to
control the quality throughout the development cycle. Read-
ing techniques applied to inspections help reviewers to stay
focused on the important parts of an artefact when inspect-
ing. However, many reading techniques focus on finding as
many faults as possible, regardless of their importance. Us-
age-based reading helps reviewers to focus on the most im-
portant part of an software artefact from a user’s point of
view. This paper is an extended abstract of a technical re-
port describing an experiment, which compares usage-
based and checklist-based reading. The results show that
reviewers applying usage-based reading are more efficient
and effective in detecting the most critical faults from a us-
er’s point of view than reviewers using checklist-based
reading. Usage-based reading may be preferable to use for
software organisations utilising or will start utilising use
cases in their software development.

1. Introduction

Software inspections have since its inception [5] 25
years ago spawned quite some interest both from the re-
search community and industrial practice. The research in-
cludes changes to the inspection process, e.g.
[17][2][13][9], support to the process, e.g. [1][4], and em-
pirical studies, e.g. [19][22]. The suggested improvements
include active design reviews [17], two-person inspection
teams [2], n-fold inspections [13], phased-inspections [9],
perspective-based reading (PBR) [1] and the use of capture-
recapture techniques to estimate the remaining number of
faults after an inspection [4]. Industry has studied the bene-
fits of conducting software inspections [25]. Moreover,
software inspections have been popularised by books on the
subject [6][3].

In parallel with the development of software inspections,
software engineering as such has evolved. Two directions
of evolvement are of particular importance in the context of

this paper, namely usage-based testing [12][15] and the in-
troduction of use cases in object-orientation [7]. One impor-
tant common denominator of these two techniques that have
emerged is the focus on usage. Based on this, a method for
usage-based inspection was proposed by Olofsson and
Wennberg [16]. The basic idea was to let the expected usage
govern the inspection. The motivation behind the method
was that faults that affect the user of the software the most
are crucial to find, and hence an inspection method putting
the user in focus was needed.

The initial idea has since been refined and further studied
and some results have been presented by Regnell et al. [20]
and Thelin et al. [24]. These two studies have refined the
ideas and formulated the approach as a new reading tech-
nique denoted Usage-Based Reading (UBR). The studies
have primarily focused on improving UBR as such. The ob-
jective here is to compare and hence evaluate how good the
usage-based reading is in comparison with other methods.
The paper presents a controlled experiment where usage-
based reading is compared with checklist-based reading
(CBR). The results are promising since the study shows that
UBR is significantly better than CBR in terms of both effec-
tiveness and efficiency in finding the faults that affect the
user the most.

The paper is structured as follows. In Section 2, the back-
ground and principles of UBR are presented. In the follow-
ing sections, the experiment is presented; experiment
preparation in Section 3, experiment planning in Section 4
and experiment operation in Section 5. In Section 6, the
analysis of experiment data is presented and in Section 7,
the results are discussed. Finally, summary and conclusions
are presented in Section 8.

2. Usage-Based Reading

Many reading techniques focus on finding as many faults
as possible, regardless of their importance. The inspection
effectiveness is often measured in terms of number of faults
found, without taking into account that some faults in the in-



spected object are likely to affect the final system quality
more than others do.

The principal idea behind Usage-Based Reading (UBR)
is to focus the reading effort on detecting the most critical
faults in the inspected object. Hence, faults are not assumed
to be of equal importance, and the UBR method is aimed at
finding the faults that have the most negative impact on the
users’ perception of system quality. The UBR method fo-
cuses the reading effort guided by a prioritized, require-
ments-level use case model.

In order to specify the users’ perception of system qual-
ity, use cases are prioritized. The order of the use cases re-
flects what a user or a group of users thinks is most
important in the system to be developed. The prioritization
can be made by, for example, pair-wise comparisons ac-
cording to the Analytical Hierarchy Process [8].

UBR utilises a set of use cases as a vehicle for focusing
the inspection effort, much the same way as a set of test cas-
es focuses the testing effort. The use cases tell the reviewers
how to inspect a design or code document in a similar man-
ner as the test cases tell the testers how to test the system.

Inspection of a design document using UBR is per-
formed in the following basic steps:
• Preparation – Glance through the design document to

be inspected, the use cases utilised to guide the reading
and the requirements document, which is the reference
to which the design is compared.

• Inspection – Start with the first use case. Trace the use
case through the design document and use the require-
ments document as a reference. Identify anomalies in
the design document and report the faults found. Repeat
the inspection procedure using the next use case, until
all use cases are covered, or until a time limit is reached.

Two variants of the UBR method are defined, rank-
based reading and time-controlled reading. The former pri-
oritizes the use cases with respect to the importance from a
user’s perspective. A reviewer using rank-based reading
follows the use cases in the order they appear in the ranked
use case document. Time-controlled reading adds a time
budget to each use case in order to force a reviewer to utilise
a specific use case the specified time. Time budgets are ap-
plied to each use case and are normally longer for use cases
given a high rank and less for use cases given a lower rank.
A detailed description of UBR is given by Thelin et al. [24].

In this investigation, rank-based reading is used. To in-
vestigate the effects of using UBR, the following research
questions are addressed:
• RQ1 – Is UBR more effective than CBR in finding the

most critical faults?
• RQ2 – Is UBR more efficient than CBR in terms of total

number of critical faults found per hour?

• RQ3 – Are different faults detected when using UBR
and CBR?

• RQ4 – Is UBR more effective and efficient than CBR
considering the performance of an inspection team?

UBR is related to perspective-based reading (PBR) [22]
in the sense that both reading techniques utilise the user per-
spective. In PBR, different perspectives are used to produce
artefacts during inspection. The reviewers applying the user
perspective develop use cases based on the inspected arte-
fact and thereby find faults. In UBR, the use cases are used
as a guide through the inspected artefact. The differences
are hence that reviewers applying UBR utilises existing use
cases while reviewers applying PBR actively develops use
cases. The goal of UBR is to improve efficiency and effec-
tiveness by directing the inspection effort to the most im-
portant use cases from a user’s perspective, while PBR has
the goal of improving efficiency by minimising the overlap
among the faults that the reviewers find. The latter is, how-
ever, not always achieved [20]. There is no contradiction
between the techniques, but they aim at fulfilling different
goals.

3. Experiment Preparation

This section describes the preparation needed to conduct
the experiment and the subjects acting in the experiment.
Since the experiment is based on an experimental package
developed at Lund University, most of the software arte-
facts are already described in a previous study. In this sec-
tion, only a brief overview of the package is provided. For a
detailed description of the artefacts included in the experi-
mental package and how they were developed, see Thelin et
al. [24].

3.1. Reviewers

The students participating as reviewers in the study were
fourth-year Software Engineering Master students at Ble-
kinge Technical Institute of Technology in Sweden. Many
of the students have extensive experience from software de-
velopment. As part of their bachelor degree, they have ob-
tained extensive practical training in software development.
Among other things, they have participated in a one semes-
ter project including 15 students. The customer for these
projects are normally people in industry, and hence the stu-
dents have participated in projects close to an industrial sit-
uation with changing requirements and time pressure.
Several of the master students also work in industry in par-
allel with their studies. This means that the students are rath-
er experienced and to some extent comparable to fresh
software engineers in industry.



The experiment was a mandatory part of a course in ver-
ification and validation. The course included lectures and
assignments both related to verification and validation of
software products and evaluation of software processes.
The latter means that the students have been introduced to
empirical studies and the opportunity of using them to eval-
uate different techniques and methods. The objective of the
experiment, from an educational perspective, was that the
students should be exposed to an empirical study in soft-
ware verification and validation at the same time as they
were introduced to some of the on-going research in the ar-
ea.

3.2. Inspection Material

The inspection experiment is based on material devel-
oped for a verification and validation course in software en-
gineering at Lund University in Sweden. The material
consists of four documents in structured text: one require-
ments document, one design document, one use case docu-
ment, and one checklist. The use case document and the
design document were used in a previous experiment at
Lund University. The requirements document and the
checklist were developed for this experiment.

The requirements document is written in natural lan-
guage (English). The document is used as a reference docu-
ment to know how the system is meant to work. The
checklist consists of 18 check items and is based on a check-
list presented by Laitenberger et al. [10]. It would have been
preferable to use a checklist from an industrial application
to check this kind of design, but no such checklist was
found. Therefore, we used a modified version of a checklist
utilised in experiments with the purpose of comparing CBR
and PBR.

The subjects inspected the design document using the re-
quirements document as a reference. To guide the reading
they used either a use case document or a checklist. The de-
sign consists of software modules of a taxi management
system and descriptions of signals in-between these mod-
ules. The modules are one taxi module for each vehicle, one
central module for the operator and one communication
link. The use cases are written in Task Notation [11] and are
prioritized using the Analytical Hierarchy Process (AHP)
[8] from a user’s point of view, i.e. the function of the first
use case is the most important to the user while the last use
case is least important.

The design document contained 38 faults, of which two
were new faults found during the experiment. The 36 others
were faults made during development of the design docu-
ment and later found in inspection or test. These faults were
re-inserted prior to the experiment.

The development of the documents and the design of the
experiments have involved six persons in total. The persons

have taken different roles in the development of the experi-
ment package since it was important to develop and design
some parts of the experiment independently in order to min-
imise the threats to the validity of the experiment. A detailed
description of the development of the documents is provid-
ed by Thelin et al. [24].

3.3. Fault Classification

The faults are divided into three classes depending on the
importance for the user, which is a combination of the prob-
ability of the fault to manifest as a failure, and the severity
of the fault considered from the user’s point of view.
• Class A faults – The functions affected by these faults

are crucial for the user, i.e. the functions affected are
important for the user and are often used. An example of
this kind of faults is: the operator cannot log in to the
system.

• Class B faults – The functions affected by these faults
are important for the user, i.e. the functions affected are
either important and rarely used or not as important but
often used. An example of this kind of fault is: the oper-
ator cannot log out of the system.

• Class C faults – The functions affected by these faults
are not important for the user. An example of this kind
of fault is: a signal is confounded with another signal in
an MSC diagram.

The design document contains 13 class A faults, 14 class
B faults and 11 class C faults. No syntax errors like spelling
errors or grammatical errors are logged as faults. If these
kinds of errors are found, they are not included in the anal-
ysis. Three persons made the classification of the faults pri-
or to the experiment.

4. Experimental Planning

4.1. Variables

Three types of variables are defined for the experiment,
independent, controlled and dependent variables. The inde-
pendent variable is the reading technique used and the con-
trolled variable is the experience of the students. The
dependent variables are measures collected to evaluate the
effect of the methods.

4.2. Hypotheses

The hypothesis of the experiment is that UBR is more ef-
ficient and effective in finding faults of the most critical
fault classes, i.e. UBR is assumed to find more faults per
time unit, and to find a larger share of the critical faults.



The independent variables are analysed to evaluate the
hypotheses of the experiment. The main alternative hypoth-
eses are stated below [14]. These are evaluated for all faults,
class A faults and class A&B faults. The hypotheses con-
cerns efficiency, effectiveness and fault detecting differenc-
es:
• HEff – The reviewers applying use cases are more effi-

cient in detecting faults than the reviewers using a
checklist, i.e. find more faults per hour.

• HRate – The reviewers applying use cases are more

effective in detecting faults than the reviewers using a
checklist, i.e. find higher rate of total number of faults.

• HFault – The reviewers applying use cases detect differ-

ent faults than the reviewers using a checklist.

4.3. Design

The students were divided into two groups, one group
using UBR and one group using CBR. Using the controlled
variable to get a block design, the students were divided into
three groups and then randomized within each group, result-
ing in 11 students in the UBR group and 12 students in the
CBR group.

The experiment data are analysed with descriptive anal-
ysis and statistical tests [21]. The collected data were
checked for normal distribution. Since no such distribution
could be demonstrated using normal probability plots and
residual analysis, nonparametric tests are used. Mann-Whit-
ney [23] is used to investigate hypotheses HEff and HRate
and a chi square test is used to test HFault.

4.4. Threats to Validity

The threats to the validity of the experiment are consid-
ered under control. As the purpose of the study is to com-
pare two reading techniques, and more studies are needed
for generalization purposes, the threats to internal and con-
struct validity are most critical. When trying to generalize
the results to a more general domain, the external validity
goes more important [26].

Threats to conclusion validity are considered under con-
trol. Robust statistical techniques are used, measures and
treatment implementation are considered reliable. The only
risk in the treatment implementation is that the subjects
were trained one day and the experiment was conducted the
next day. Hence, they might inform each other about the
other technique, even though they were strictly forbidden to
do. However, nobody would gain from doing so and hence
the risk of doing it is low. Random variation in the subject
group is blocked, based on the controlled variable.

Concerning the internal validity, the risk of rivalry be-
tween groups is considered the largest one. However, the
student subjects were informed that they would be given ad-
ditional training in the other reading technique used on the
second day. Further, their grade on the course was not af-
fected by the performance in the experiment, only on their
attendance.

Threats to the construct validity are neither considered
very harmful. The development of the textual requirements
document was performed after the development of the use
cases. Hence, there is a risk that the use cases may have af-
fected the requirements document to make it suitable for the
use cases. On the other hand, the inspection object was the
design document and the requirements document was just a
reference.

Concerning the external validity, the use of students as
subjects is a threat. However, the students are fourth year
master students in software engineering, and a large share of
the students have part time jobs in software companies,
hence being more representative of software industry than
students in general. Further, the size of the inspected docu-
ment is in the smaller range for real-world problem, even
though it describes a real-world problem.

5. Experimental Operation

The experiment was run over two days during spring
2001, see schedule in Table 1.

6. Analysis

This section presents the data collected during the exper-
iment and pinpoints important issues to discuss in Section 7,
where the results are discussed. First, a descriptive analysis
is carried out and then the statistical analyses are presented.

Table 1: Schedule for the Experiment.

CBR group UBR group

Day 1
(1.15 p.m. - 2.00 p.m.)

General introduction to the Taxi
Management System

Day 1
(2.15 p.m. - 3.00 p.m.)

Introduction to
CBR

Introduction to
UBR

Day 2
(9.15 a.m. - 12.00 p.m.)

Inspection Experiment

Day 2
(1.15 p.m. - 2.00 p.m.)

Introduction to
UBR and

follow-up dis-
cussion

Introduction to
CBR and

follow-up dis-
cussion



6.1. Time versus Faults

When the reviewers found a fault, they logged the clock
time in the inspection protocol. In Figure 1, the cumulative
fault detection is shown. The plot is standardised with re-
spect to the number of reviewers in each groups, i.e. it rep-
resents an “average reviewer”. The mean preparation time
for the UBR group and the CBR group was 53 and 59 min-
utes respectively.

The reviewers in the UBR group started to find faults
earlier than reviewers in the CBR group. The difference is
about 20 minutes. Reviewers in the UBR group started to
find faults after 54 minutes and the CBR group started to
find faults after 74 minutes. (Note that these are a mean val-
ues when one fault has been found). This difference could
either be due to that it is easier to start with use cases than
with a checklist item, or due to that reviewers in the UBR
group spend shorter time reading through the documents.

In Figure 2, class A faults are plotted versus detection
time and standardised with the number of reviewers. It took
a little longer time before the identification of class A faults
started and the difference between the UBR and CBR with
respect to when the first class A fault found is more than 20
minutes.

In both figures, the slope of the UBR curve increases
faster than the curve for the CBR group. This indicates that
more severe faults are found more efficiently as well as ef-
fectively by reviewers in the UBR group.

In Table 2, the actual figures are presented of how many
more faults an “average reviewer” found, i.e. total number
of faults found by each group, standardised with the size of
the group. A UBR reviewer is more efficient and effective
than a CBR reviewer for all classes of faults except for class
C faults. A reviewer applying UBR found 75% more class
A faults than a CBR reviewer. A similar pattern is shown for

class B faults. However, for class C faults, CBR reviewers
found most number of faults.

In Table 2, it is also reported which technique found
most unique faults, and the percentage figures show how
much more is found compared to the other technique. For all
faults, class A and class B faults, the UBR group found
more unique faults. They found 18% more unique class A
faults and 20% more class B faults. However, CBR found
13% more unique C faults. In total, UBR missed 13% of the
faults and CBR missed 21% of the faults.

6.2. Effectiveness and Efficiency

The most important characteristic of a reading technique
is whether it is efficient and effective enough. Efficiency is
defined as the number of faults found per minute and effec-
tiveness is defined as the rate of the total number of faults
found in the inspected document. This section provides
boxplots of these parameters together with statistical analy-
sis of the performance.

In Figure 3 and Figure 4, the efficiency and the effective-
ness are shown. UBR is more efficient as well as more ef-
fective than CBR. These figures show the same facts as

Figure 1. The cumulative number of faults found
during the inspection. The data are standardised by
the number of reviewers in each group.

Figure 2. The cumulative number of class A faults
found during the inspection. The data are standard-
ised by the number of reviewers in each group.

0 20 40 60 80 100 120 140 160
0

2

4

6

8

10

12
All Faults − Standardised

Minutes

N
um

be
r o

f F
au

lts

UBR      
Checklist

0 20 40 60 80 100 120 140 160
0

2

4

6

8

10

12
A Faults − Standardised

Minutes

N
um

be
r o

f F
au

lts

UBR      
Checklist

Table 2: A comparison of the number of faults
found.

More faults
found

More Unique
Faults

All Faults 21.1%(UBR) 10.0% (UBR)

Class A Faults 75.1%(UBR) 18.2% (UBR)

Class B Faults 27.7% (UBR) 20.0% (UBR)

Class C Faults 62.5% (CBR) 12.5% (CBR)

Class A&B Faults 50.5% (UBR) 19.0% (UBR)



discussed earlier in this section. This is true for all faults,
class A faults and A&B faults.

In Table 3, p-values for the nonparametric Mann Whit-
ney test are shown. The UBR group is significantly more ef-
ficient than the CBR group for class A, class B, class A&B
faults. The group is also significantly more effective for
class A and class A&B faults. For the rest of the classes, no
significant differences can be demonstrated. Hence, accord-
ing to the statistical analysis combined with the descriptive
analysis show that using UBR is significantly more efficient
and effective with respect to severe faults.

To test whether the two groups found different faults
(HFault), a Chi-square test is used [23][20]. The test p-value
is equal to 0.001, which means that they find different faults
in the two groups.

6.3. Team Performance

Although individuals perform inspections, the combined
results of an inspection team are the important outcome of
an inspection session. Since the reviewers may find the
same faults, they may not add as much to the team perform-
ance [18]. In order to investigate the reading techniques
compared, simulation of the inspection meeting is per-
formed (nominal teams). The purpose of the simulation is to
investigate whether a UBR team, a CBR team or a mixed
team is the best alternative when performing inspections.
The purpose is not to find the ultimate team size, but to an-
alyse the composition of a team. In order to find the best
team, trade-off analysis between efficiency and effective-
nesss has to be done, which is out of scope of this paper.

To investigate the team performance, all possible combi-
nations were made and the result is shown in Figure 5 and
Figure 6. The boxplots show combinations of reviewers
only in the UBR group, only in the CBR group and a com-
bination of reviewers in both groups. For example, for the
two-inspection-teams, one reviewer from respectively
group is used in the mixed teams. Since we have shown that
the groups detect different faults, these mixed teams could
give better results.

For all team sizes, UBR teams perform better than CBR
teams. UBR teams outperform the mixed teams in all cases
except for effectiveness in team sizes 5 and 6. However,
there are only small differences.

Similar results are obtained when class A faults and class
A&B faults are observed in Figure 7 to Figure 8. However,
in these cases, the UBR team is better than the mixed team
for all team sizes.

Figure 3. The efficiency for all faults, class A faults
and class A&B faults.

Figure 4. The effectiveness for all faults, class A
faults and class A&B faults.

 All Faults   A Faults  A & B Faults

0

1

2

3

4

5

6

7

8

9

10

Efficiency
Fa

ul
ts

 fo
un

d 
pe

r h
ou

r

UBR      
Checklist

 All Faults   A Faults  A & B Faults

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Effectiveness

Fa
ul

ts
 fo

un
d 

/ T
ot

al

UBR      
Checklist

Table 3: P values for Mann Whitney tests of
Efficiency and Effectiveness (α=0.05).

Efficiency (P
value)

Effectiveness
(P value)

All Faults 0.0423 0.1029

Class A Faults 0.0127 0.0364

Class A & B Faults 0.0164 0.0312

Class B Faults 0.1481 0.1754

Class C Faults 0.2679 0.1481



7. Discussion

The analysis of the experiment results is summarised in
Table 4.

The result can be interpreted as reviewers using UBR are
more efficient and effective than reviewers using CBR.
They are significantly more efficient for all faults and for
critical faults. They are more effective for critical faults but
not for all faults. The assumption when designing the exper-
iment was that they would perform better for critical faults,
but not necessary for all faults. The result also shows that re-

viewers using UBR find different faults than reviewers us-
ing CBR.

The team performance analysis shows that it is more ef-
ficient to use only UBR reviewers. Pure UBR teams are
compared to pure CBR teams and also with mixed teams.
Although they find different faults, the mixed teams do not
outperform the UBR teams. This can be interpreted as re-
viewers using UBR are so much better that a combination
will not help. However, in some cases a small improvement
can be observed in terms of effectiveness.

The UBR reviewers start to find faults earlier than the
CBR reviewers do. For all faults, an “average UBR review-
er” starts to find faults 20 minutes before an “average CBR
reviewer”. This time increases when critical faults are
inves1tigated. This depends on that they spend less prepara-
tion time to read through the documents. Even if the review-
ers using UBR spend less time in both preparation and
inspection, they find significantly more faults. The main ex-
planation for this is probably that the use cases help them to
focus on the most important parts in the documents.

The use cases used in UBR are prioritized according to
the rank-based reading method. They are prioritized from a

Figure 5. Efficiency for different team sizes. All
faults are included.

Figure 6. Effectiveness for different team sizes. All
faults are included.

Figure 7. Efficiency for different team sizes. Class
A faults are included.

Figure 8. Effectiveness for different team sizes.
Class A faults are included.

 2  3  4  5  6 

1

2

3

4

5

6

Efficiency
Fa

ul
ts

 fo
un

d 
pe

r h
ou

r

Group size

UBR      
Checklist
Mixed    

 2  3  4  5  6 

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Effectiveness

Fa
ul

ts
 fo

un
d 

/ T
ot

al

Group size

UBR      
Checklist
Mixed    

 2  3  4  5  6 

1

2

3

4

5

6

Efficiency − A Faults

Fa
ul

ts
 fo

un
d 

pe
r h

ou
r

Group size

UBR      
Checklist
Mixed    

 2  3  4  5  6 

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Effectiveness − A Faults

Fa
ul

ts
 fo

un
d 

/ T
ot

al

Group size

UBR      
Checklist
Mixed    

Table 4: Summary of the results of the
hypotheses.

Group / Fault
class

All
A+B+C

A A+B

Efficiency P=0.042 P=0.013 P=0.016

Effectiveness (Rate) P=0.103 P=0.036 P=0.031

Different (Fault) P=0.001 – –



user’s perspective, since the purpose is to locate the critical
faults from a user’s point of view. The checklist was not pri-
oritized according to this principle, since a checklist is not
function oriented as a use case document. However, the
checklist items were ordered in significance order before it
was handed out to the students. Furthermore, the CBR
group had the opportunity to use the exact same checklist
during the introduction to CBR (see Table 1) the day before
the actual experiment. The UBR group did not see their use
cases before the experiment, since the use cases are differ-
ent for different systems.

Because of the above stated differences between the
reading methods, the reviewers in the UBR group find sig-
nificantly more critical faults and perform in total better
than the CBR group. Reviewers using CBR find more class
C faults, though not significantly more. This could depend
on when inspecting a document with a checklist it is easier
to focus on details and more difficult to inspect abstract ma-
terial, which is necessary in order to find severe faults. Dur-
ing the follow-up session, some students said that it would
be beneficial to use both the checklist and the use cases. A
hybrid of the UBR method would then beneficial, but we
think the checklist need to be adapted for this purpose in or-
der to use it in combination with the use cases.

The results presented by Thelin et al. [24] show that it is
possible to guide reviewers more efficiently and more effec-
tively by prioritizing the use cases in the UBR method. In
this experiment, the UBR method is baselined against CBR
and the study shows positive results. The results are positive
from a research perspective but also from an industrial per-
spective. Especially software organisations using use cases
in their development should be interested in the results.

As always when conducting experiments to increase the
body of knowledge, the experiment has to the replicated in
different contexts. The method should also be investigated
in a case study in an industrial setting in order to show
whether it still provides positive effects. It would be espe-
cially interesting to investigate the method with profession-
als as subjects.

In order to develop the method further, an experiment in-
vestigating time-controlled reading should be conducted. If
it is possible to control the reviewers’ time consumption and
thereby focus only on the critical faults, this could be the
starting point of a new important reading technique. A hy-
brid of UBR and CBR should also be investigated. Apply-
ing each use case with some check items or all use cases
with a general checklist, the method could be even further
improved.

The UBR technique does not produce an artefact during
inspection, in contrast to PBR. An experiment to investigate
whether reviewers find more faults when actively produc-
ing something compared to UBR should be conducted. The
experiment would be a comparison of the rank-based meth-

od of UBR against the user perspective in PBR. The conclu-
sion of the experiment would be whether it is better to
actively produce use cases or passively apply use cases that
another person has developed.

8. Summary and Conclusions

The presented experiment compares two reading tech-
niques in order to baseline the rank-based usage-based read-
ing method against the standard industry practice of
checklist-based reading. UBR showed promising results in
an earlier experiment [24] and even more promising results
in this experiment.

The main results from the analysis are that reviewers us-
ing UBR find more critical faults and do it more efficiently.
The fault severity is defined from a user’s point of view.
The important results from the experiment are:
• Efficiency – Reviewers using usage-based reading are

significantly more efficient than reviewers using check-
list-based reading. This difference is significant for all
faults and for critical faults.

• Effectiveness – Reviewers using usage-based reading
are significantly more effective than reviewers using
checklist-based reading. This difference is significant
for critical faults, but not for all faults.

• Faults – Reviewers using usage-based reading find dif-
ferent and more unique faults and especially more criti-
cal faults than reviewers using checklist-based reading.

• Teams – The team analysis also shows that UBR is
more effective and efficient than CBR. This is true for
all team sizes ranging from two to six.

• Fault Finding – A reviewer applying UBR starts to find
faults earlier than a reviewer using CBR. The differ-
ences for all faults are about 20 minutes and this differ-
ence is even larger for critical faults.

Further work is to further develop the method, either to
include checklist items or to investigate the time-based
ranking method. Although the results are promising, the
method needs to be replicated and compared with, for ex-
ample, the user perspective in PBR.

Acknowledgement

The authors would like to thank the students for partici-
pating in the investigation and Thomas Olsson at the De-
partment of Communication Systems at Lund University
for developing the taxi management system. We would also
like to thank Christer Svensson for work on the require-
ments specification. Thanks also to Dr. Björn Regnell and
Johan Natt och Dag at the Department of Communication
Systems for prioritizing the use cases and to Håkan Peters-



son at the Department of Communication Systems for re-
viewing an earlier draft of this paper. This work was partly
funded by The Swedish National Board for Industrial and
Technical Development (NUTEK), under grant for Center
for Applied Software Research at Lund University (LU-
CAS).

References

[1] Basili, V. R., Green, S., Laitenberger, O., Lanubile, F., Shull,
F., Sørumgård, S. and Zelkowitz, M. V., “The Empirical In-
vestigation of Perspective-Based Reading”, Empirical Soft-
ware Engineering: An International Journal, 1(2):133-164,
1996.

[2] Bisant, D. B. and Lyle, J. R., “A Two-Person Inspection
Method to Improve Programming Productivity”, IEEE
Transactions on Software Engineering, 15(10):1294-1304,
1989.

[3] Ebenau, R. G. and Strauss, S. H., Software Inspection Proc-
ess, McGraw-Hill, New York, 1994.

[4] Eick, S. G., Loader, C. R., Long, M. D., Votta, L. G. and
Vander Wiel, S., “Estimating Software Fault Content Before
Coding” Proc. of the 14th International Conference on Soft-
ware Engineering, pp. 49-65, 1992.

[5] Fagan, M. E. “Design and Code Inspections to Reduce Errors
in Program Development”, IBM System Journal, 15(3):182-
211, 1976.

[6] Gilb, T. and Graham, D. Software Inspections, Addison-Wes-
ley, UK, 1993.

[7] Jacobson, I., Christerson, M., Jonsson, P. and Övergaard G.
Object-Oriented Software Engineering: A Use Case Driven
Approach, Addison-Wesley, USA, 1992.

[8] Karlsson, J. and Ryan, K., “A Cost-Value Approach for Pri-
oritizing Requirements”, IEEE Software, 14(5):67-74, 1997.

[9] Knight, J. C. and Myers, A. E., “An Improved Inspection
Technique”, Communications of ACM, 36(11):50-69, 1993.

[10] Laitenberger, O., Atkinson, C., Schlich, M. and El Emam, K.,
“An Experimental Comparison of Reading Techniques for
Defect Detection in UML Design Documents”, Journal of
Systems and Software, 53(2):183-204 2000.

[11] Lauesen, S., Software Requirements – Styles and Techniques,
Samfundslitteratur, Denmark, 1999.

[12] Linger, R. C., “Cleanroom Process Model”, IEEE Software,
11(2):50-58, 1994.

[13] Martin, J. and Tsai, W. T., “N-Fold Inspection: A Require-
ments Analysis Technique”, Communications of ACM,
33(2):225-232, 1990.

[14] Montgomery, D., Design and Analysis of Experiments, John
Wiley & Sons, USA, 1997.

[15] Musa, J. D., Software Reliability Engineering: More Reliable
Software, Faster Development and Testing, McGraw-Hill,
USA, 1998.

[16] Olofsson, M. and Wennberg, M., “Statistical Usage Inspec-
tion”, Master’s Thesis, Dept. of Communication Systems,
Lund University, CODEN: LUTEDX (TETS-5244)/1-81/
(1996)&local 9, 1996.

[17] Parnas, D. L. and Weiss, D. M., “Active Design Reviews:
Principles and Practices”, Proc. of the 8th International Con-
ference on Software Engineering, pp. 418-426, 1985.

[18] Petersson, H., Wohlin, C. and Aurum, A., “Team Size and Ef-
fectiveness in Software Inspections”, submitted to the Work-
shop on Inspection in Software Engineering, 2001.

[19] Porter, A., Votta, L. and Basili, V. R., “Comparing Detection
Methods for Software Requirements Inspection: A Replicat-
ed Experiment”, IEEE Transactions on Software Engineer-
ing, 21(6):563-575, 1995.

[20] Regnell, B., Runeson, P. and Thelin, T., “Are the Perspec-
tives Really Different? - Further Experimentation on Scenar-
io-Based Reading of Requirements”, Empirical Software
Engineering: An International Journal, 5(4):331-356, 2000.

[21] Robson, C., Real World Research, Blackwell, UK, 1993.

[22] Shull, F., Ioana, R. and Basili, V. R., “How Perspective-
Based Reading Can Improve Requirements Inspections”,
IEEE Computer, 33(7):73-79, 2000.

[23] Siegel, S. and Castellan, N. J., Nonparametric Statistics for
the Behavioral Sciences, McGraw-Hill, Singapore, 1988.

[24] Thelin, T., Runeson, P. and Regnell, B., “Usage-Based Read-
ing – An Experiment to Guide Reviewers with Use Cases”, to
appear in Information and Software Technology, 2001.

[25] Weller, E. F., “Lessons from Three Years of Inspection Da-
ta”, IEEE Software, 10(5):38-45, 1993.

[26] Wohlin, C., Runeson, P., Höst, M., Ohlsson, M. C., Regnell,
B. and Wesslén, A., Experimentation in Software Engineer-
ing: An Introduction, Kluwer Academic Publisher, USA,
2000.


	Abstract
	1. Introduction
	2. Usage-Based Reading
	3. Experiment Preparation
	3.1. Reviewers
	3.2. Inspection Material
	3.3. Fault Classification

	4. Experimental Planning
	4.1. Variables
	4.2. Hypotheses
	4.3. Design
	4.4. Threats to Validity

	5. Experimental Operation
	Table 1: Schedule for the Experiment.

	6. Analysis
	Figure 1. The cumulative number of faults found during the inspection. The data are standardised ...
	Figure 2. The cumulative number of class A faults found during the inspection. The data are stand...
	6.1. Time versus Faults
	Table 2: A comparison of the number of faults found.

	6.2. Effectiveness and Efficiency
	Figure 3. The efficiency for all faults, class A faults and class A&B faults.
	Figure 4. The effectiveness for all faults, class A faults and class A&B faults.
	Table 3: P values for Mann Whitney tests of Efficiency and Effectiveness (a=0.05).

	6.3. Team Performance
	Figure 5. Efficiency for different team sizes. All faults are included.
	Figure 6. Effectiveness for different team sizes. All faults are included.
	Figure 7. Efficiency for different team sizes. Class A faults are included.
	Figure 8. Effectiveness for different team sizes. Class A faults are included.


	7. Discussion
	Table 4: Summary of the results of the hypotheses.

	8. Summary and Conclusions
	Acknowledgement
	References
	[1] Basili, V. R., Green, S., Laitenberger, O., Lanubile, F., Shull, F., Sørumgård, S. and Zelkow...
	[2] Bisant, D. B. and Lyle, J. R., “A Two-Person Inspection Method to Improve Programming Product...
	[3] Ebenau, R. G. and Strauss, S. H., Software Inspection Process, McGraw-Hill, New York, 1994.
	[4] Eick, S. G., Loader, C. R., Long, M. D., Votta, L. G. and Vander Wiel, S., “Estimating Softwa...
	[5] Fagan, M. E. “Design and Code Inspections to Reduce Errors in Program Development”, IBM Syste...
	[6] Gilb, T. and Graham, D. Software Inspections, Addison-Wesley, UK, 1993.
	[7] Jacobson, I., Christerson, M., Jonsson, P. and Övergaard G. Object-Oriented Software Engineer...
	[8] Karlsson, J. and Ryan, K., “A Cost-Value Approach for Prioritizing Requirements”, IEEE Softwa...
	[9] Knight, J. C. and Myers, A. E., “An Improved Inspection Technique”, Communications of ACM, 36...
	[10] Laitenberger, O., Atkinson, C., Schlich, M. and El Emam, K., “An Experimental Comparison of ...
	[11] Lauesen, S., Software Requirements – Styles and Techniques, Samfundslitteratur, Denmark, 1999.
	[12] Linger, R. C., “Cleanroom Process Model”, IEEE Software, 11(2):50-58, 1994.
	[13] Martin, J. and Tsai, W. T., “N-Fold Inspection: A Requirements Analysis Technique”, Communic...
	[14] Montgomery, D., Design and Analysis of Experiments, John Wiley & Sons, USA, 1997.
	[15] Musa, J. D., Software Reliability Engineering: More Reliable Software, Faster Development an...
	[16] Olofsson, M. and Wennberg, M., “Statistical Usage Inspection”, Master’s Thesis, Dept. of Com...
	[17] Parnas, D. L. and Weiss, D. M., “Active Design Reviews: Principles and Practices”, Proc. of ...
	[18] Petersson, H., Wohlin, C. and Aurum, A., “Team Size and Effectiveness in Software Inspection...
	[19] Porter, A., Votta, L. and Basili, V. R., “Comparing Detection Methods for Software Requireme...
	[20] Regnell, B., Runeson, P. and Thelin, T., “Are the Perspectives Really Different? - Further E...
	[21] Robson, C., Real World Research, Blackwell, UK, 1993.
	[22] Shull, F., Ioana, R. and Basili, V. R., “How Perspective- Based Reading Can Improve Requirem...
	[23] Siegel, S. and Castellan, N. J., Nonparametric Statistics for the Behavioral Sciences, McGra...
	[24] Thelin, T., Runeson, P. and Regnell, B., “Usage-Based Reading – An Experiment to Guide Revie...
	[25] Weller, E. F., “Lessons from Three Years of Inspection Data”, IEEE Software, 10(5):38-45, 1993.
	[26] Wohlin, C., Runeson, P., Höst, M., Ohlsson, M. C., Regnell, B. and Wesslén, A., Experimentat...


	An Experimental Comparison of Usage-Based and Checklist-Based Reading
	Thomas Thelin and Per Runeson
	Dept. of Communication Systems, Lund University Box 118, SE-221 00 LUND, Sweden {thomas.thelin, p...
	Claes Wohlin
	Dept. of Software Eng. and Computer Science Blekinge Institute of Technology Box 520, SE-372 25 R...


