

P. Runeson and C. Wohlin, "Usage Modelling: The Basis for Statistical Quality
Control", Proceedings 10th Annual Software Reliability Symposium, pp. 77-

84, Denver, Colorado, USA, 1992.

1

Usage Modelling:
The Basis for Statistical Quality Control

Per Runeson and Claes Wohlin,

 E-P Telecom Q-Labs, IDEON Research Park, S-223 70 Lund, Sweden,

Phone: +46-46-182980, Fax: +46-46-152880, e-mail: pr@q-labs.se.

Abstract

The testing method proposed in the Cleanroom
methodology is Statistical Usage Testing. This testing
technique is based on that the test cases represent the
operational profile. The failure data from testing is then
used in a software reliability model to certify the reliability
of the software. This paper introduces a new model for
modelling the usage of the system, i.e. the operational
profile. It is shown to cope with the state explosion
problem encountered when applying a simple Markov
model to large software systems. The proposed model
introduces a hierarchical Markov model, which is shown to
solve the problems encountered in the ordinary Markov
description. Users and services are represented so that the
model can easily be extended when new users or services
are added. It is concluded that the introduction of this
model will make it possible to certify large software
systems in the future. The model generates test cases
providing failure data that can be used in software
reliability models. The new model forms the basis for being
able to apply statistical quality control to software systems.

Keywords

Cleanroom, Statistical usage testing, Statistical quality
control, Markov model, Operational profile, Usage
modelling, Software reliability

1. Introduction

The reliability problem in software systems of today is a
well-known fact. No silver bullet will solve this problem,
instead the solution will be the combination of several
approaches. That is improvements throughout the whole
life cycle. These improvements include for example
specification and design, verification and validation,
certification as well as maintenance. This is the approach
taken in the Cleanroom methodology, [Mills87, Mills88,
Dyer92], which includes methods for specification and
design, verification and validation, as well as certification.
In particular, Cleanroom supports the idea and philosophy
that it is possible to develop zero-defect software.
 The certification process is an important issue, since it
is often one of the interfaces between the developer and the

purchaser, in many cases the manager of the software. This
process is the foundation for acceptance of a software
product and a key issue in the quality control of software
products. The objective is to certify during testing that the
reliability requirements during operation are fulfilled. The
basis for this is that the testing procedure resembles or
models the operational profile. In Cleanroom this type of
testing is referred to as Statistical Usage Testing, [Currit86,
Cobb90].
 The problem of certification involves two parts:

• modelling operation during testing, i.e. a statistical
usage model.

• prediction of the reliability, i.e. software reliability
models.

 Numerous software reliability models can be found in
the literature, some examples are presented in [Goel85,
Jelinski72, Goel79]. The model proposed within the
Cleanroom concept is presented in [Currit86]. Most of
these models are based on the assumption of operational
usage, but not much emphasis has been put into actually
modelling and performing tests that fulfils this assumption.
 It is often suggested that it is possible to describe the
operation with a Markov model, see [Whittaker92]. But is
this possible and can test cases be generated for all types of
systems based on a Markov model?
 In this paper the Markov model will be studied and we
will indicate that it might not be useful for all types of
systems. In particular, it will be shown that the ordinary
Markov model is not possible to use for telecommunication
systems. It is also believed that the conclusions from the
telecommunication applications can be generalized to
incorporate many types of distributed multi-user systems
providing a wide range of services to the users. Based on
the conclusion that the existing models are insufficient, a
hierarchical Markov model is developed. It is shown how
this model will cope with the problems encountered in for
example telecommunication systems.

2. Certifying reliability

The certification of software within the Cleanroom
methodology is discussed in [Currit86]. As stated above,
the certification process consists of two equally important
parts. The second part is the software reliability models.
These shall model the behaviour of software failures and in
particular predict the future behaviour and reliability of the

2

software. The models are based on several assumptions,
where one of the most critical is the assumption that
failures occur according to the operational usage. This
means that the models can only be applied during operation
or during testing where it is possible to generate test cases
from an operational profile. The latter is the basis for
Statistical Usage Testing.
 The first part, i.e. modelling the usage, has been much
less studied than the software reliability models. The most
frequently used approach is to model the behaviour and
generate the test cases based on a Markov chain. This
approach is not useful for all types of applications as will
be shown below. The problem of modelling the usage for
complex multi-user systems has been overlooked in the
past, but if it shall be possible to certify the reliability under
testing conditions this problem has to be solved. This has
been one of the key issues in a project conducted for the
Swedish Telecom. The objective with the project is to
develop a method for certification of software products that
can be used when purchasing software systems.
 The usefulness of the development of software
reliability models is debatable if the users´ needs can not be
met, e.g. the assumptions made by the models have to be
realistic or methods have to be developed that make the
models realistic. The first approach has been found
difficult, even if some attempts have been made for
prediction of software reliability during different types of
testing [Ehrlich87, Wohlin86, Ehrlich90]. The second
approach is the one recommended in Cleanroom, i.e. to
apply Statistical Usage Testing. This calls, however, for
methods modelling the usage and the selection of suitable
test cases. It has been shown that this type of testing is
superior to other types of testing in finding the faults that
influence the reliability during operation, [Adams84].
 A model suitable for describing the usage of for
example telecommunication systems will be described
briefly below. A more comprehensive description can be
found in [Runeson91]. This model will be one important
part of a method for statistical quality control of software
systems developed for the Swedish Telecom.

3. Usage modelling

The statistical usage profile is an external description of
usage events and their probabilistic relationship. The usage
is modelled as states in a state machine and transitions
between states, drawn as arcs. An arc from state A to state
B signifies an event associated with state A. The
probabilities for transitions between the states are listed in
a quadratic matrix.

A B
fro m/to A B
 A 0.2 0.8

 B 0.9 0.1

a

b

ba

Figure 1. Statistical usage profile.

A simple statistical usage profile example is shown in

figure 1. The start state is determined by the application.
 From the statistical usage profile the test cases are
generated. Starting in an initial user state a transition is
chosen by e.g. the Monte Carlo method. The stimulus
needed for this transition is recorded. From the new state a
new transition is chosen etc. A test case can be made up of
multiple state transitions. It can be of random length, or be
finished by ending in a final user state, which is also
determined by the application.
 The test cases are randomly generated with respect to
their probability of use and are then a representative subset
of the use cases in operation. They are used to represent the
operation and, like national polls, are the basis for the
prediction of future results.
 The basis for modelling the statistical usage profile as a
Markov chain is that the usage exhibits the Markov
property. When the usage model is in any state, the next
state can be predicted without regard to previous states.
The present state and the stimulus are enough to determine
the next state. This is normally a reasonable description of
the usage of most software systems.

3.1. Usage profile development

To develop the statistical usage profile three issues need to
be handled:
 • User states
 • Stimuli
 • Transitions

3.1.1. User states

The first task is to identify all the user states. A user state is
the user´s view of the system at a special point of time. The
user states must be independent from the implementation.

3.1.2. Stimuli

The stimuli are what the user can send to the software
system. Each stimulus or set of stimuli will make a
transition in the Markov chain, from one user state to
another, or to the same state again.
 In order to develop a usage profile we have to assign
probabilities to the transitions between user states,
according to the software usage in ordinary operation, i.e.
to understand the probability of what the next user stimulus
will be, given any user state.

3.1.3. Transitions

The probabilities for transitions between the states are
represented in a quadratic matrix. The row index represent
the state to leave and the column index the state to enter,
see figure 1.

4. State explosion

When applying the previous description model on

3

telecommunication systems, we have experienced that the
number of states grow very large, too large to be
characterised feasibly, which is shown in [Runeson91]. It
would probably happen for any complex multi-user system.
 A general formula for calculating the total number of
states can be found from using the combinatorial theory.
The problem is equivalent to take n elements out of a set of
S with respect to the order and with replacement.

 # states = S
n

 = # states per user # users (1)

 In a private branch exchange there is more than 10
states per subscriber and up to 1000 subscribers. Anyone
can understand that there is no possibility to go further this
way. Every state cannot be defined because they are too
many.
 Similar problems arise in the domains of protocol
validation [West87] and specification analysis [Ek91].

4.1. Equivalence classes

It is proposed in [Musa87] to reduce the number of states
by representing them by equivalence classes. An example
considering the sum from throwing two dice, the states
(1,6), (2,5), (3,4), (4,3), (5,2) and (6,1) can all be viewed as
state 7. In telecommunication systems it is equivalent to
skipping the identity of the subscribers.
 We have tried using equivalence classes. States with
the same number of subscribers in each user state are
considered equal. Dependencies have for once been helpful
in our ambition for decreasing the number of user states.
These steps decreased the number of states rather a lot, but
not enough to be satisfactory.
 We have experienced that even in very simple
examples, a state explosion occurs. The example systems
studied did not contain any of the added services expected
from a modern exchange, neither the operator´s role nor the
net traffic were considered. These factors would make the
systems even more complex.

4.2. Concluding remarks

Software usage is to be described with a description model.
We have tried the plain Markov model in our application
domain and concluded that the models are growing too
large. There is a need for a new description model to
master the state explosion problem.

5. State hierarchy

Our proposal is to describe the user states as a levelled
State Hierarchy, abbreviated SHY. The general model can
consist of several hierarchy levels. Here, however, it is
presented in its simplest form with only two levels. Later,
in section 5.4 an extended version is shown.
 Examples are taken from the telecommunication
domain, but the model is probably applicable in other

domains as well.

5.1. Two-level state hierarchy

The upper level in the two-level SHY is a view of the
usage model, called User Level (UL). It describes which
user is generating the next stimulus. The lower level, which
contains information about the user behaviour, is called
Behaviour Level (BL). It describes which stimulus the
selected user will generate. Both levels are described as
Markov chains. When generating test cases, first a user is
randomly chosen on the User Level, then a transition for
the selected user on the Behaviour Level is chosen.

5.1.1. User Level

The User Level system view is a state machine, telling
which user in the system is to give next stimulus. Figure 2
shows an UL description for a system with N users.

…use r1 use r3 use rNuse r4use r2

use r

Figure 2. User Level with N users.

 When a test case is generated, the user to generate next
stimulus is selected by choosing a transition randomly on
the UL. In every selection the main state, user in the figure,
is the initial state.

5.1.2. Behaviour Level

The Behaviour Level in the SHY consists of state
machines, showing the system from one user´s point of
view. The behaviour of each user is described by a Markov
chain. Figure 1 can be seen as a very simple example.
 The only transition probabilities considered are those,
caused by stimuli from the user itself. Transitions caused
by stimuli from other users are marked with an asterisk in
the transition matrix. These stimuli are generated in other
Behaviour Level submachines, and shall not be represented
twice.
 The asterisk is a mark for the connection between the
two BL machines, here called a link. The link means that a
stimulus from one user causes a transition for another user.

nt

*

0.01

t

*

0.99 *

0.01

rs

*

0.01

i

dt

d

et

bt

rt

rs

t

nt

nt

*

0.01

t

*

0.99 *

0.01

rs

*

0.01

i

dt

d

et

bt

rt

rs

t

nt

4

Figure 3. Connection link between two BL transition

matrixes.

 In figure 3 parts of two BL transition matrixes are
shown. The user, corresponding to the leftmost matrix,
makes a transition from state rs (ringsignal) to t (talking),
i.e. makes off hook when dialled. This transition causes
another transition in the BL state machine, corresponding
to the rightmost matrix, from state rt (ringtone) to t
(talking), i.e. is connected to the dialled.
 The information on the linked state machine and the
transition to be done has to be stored, connected to the
transition matrix of the causing state machine. When a test
case is generated and a link transition is chosen, both the
causing and the caused transitions have to be added to the
test script.

5.1.3. Usage model

The User Level and the Behaviour Level make together the
SHY usage model in its simplest form. Each user has a
corresponding state on the User Level as well as a state
machine on the Behaviour Level.
 The state of the whole usage model is described in
terms of the BL machine states. A usage model state in the
State Hierarchy model is denoted as an array of BL states,
[Stateuser1, Stateuser2, …, StateuserN].

 The total number of possible states is not less than in
the plain Markov model, but here they are hidden in the
hierarchical structure and must not be handled explicitly.
The plain Markov description must be expanded to show
every state. In the hierarchical model the description is
divided into smaller parts, each of them easier to handle.

5.1.4. User Level probabilities

On the UL, the transition probabilities are depending on the
BL machine states. The probabilities are functions of the
BL machine states. Consider the following example from
the telecommunication domain: When one subscriber is in
a state within a sequence1 , e.g. dialling, it is more probable
that this subscriber gives the next stimulus than the other,
being in the state idle. But when all subscribers are in the
same state, e.g. idle, it is as probable for any of the
subscribers to give the next stimulus, if the subscribers are
equal.
 To express this difference, every state in the BL
machine is given a relative weight, denoted wBL-state. This

corresponds to the probability for selecting the user being
in the very BL state.
 The probability for choosing a user on the UL can now
be expressed in terms of the state weights. The probability
for choosing user i is denoted p i:

1 States in a sequence means here states, often passed

in almost non-interrupted succession, e.g. dialtone —

dialling — ringsignal — talking.

 pi =
wBL-state(i)


k=1

N
 wBL-state(k)

 (2)

where N is the number of users.

5.2. Reality

In the plain Markov model, user behaviour is modelled as a
Markov chain and this is supposed to be a reasonable
model. Now our task is to show that the hierarchical model
captures the same behaviour as the plain Markov model.
This will be made credible by analysing three issues:

• State space
• Reachable states
• Transitions

5.2.1. State space

In a plain Markov model there are SN states, according to
(1), where S is the number of states from one user´s point
of view and N is the number of users.
 In the SHY model there are N Behaviour Level
machines with S states each. These S*N states can however
be combined in many ways. When one of the N users on
the User Level is selected, each of the remaining N–1 users

can be in one of S states. They can be combined in SN–1
ways. The selected one can be in one of S states. The total

number of combinations is then SN–1 * S = SN, the same
number as in the plain model.

5.2.2. Reachable states

In the theoretical Markov model, there is no limitation
between which states transitions are possible. This
possibility is however seldom used. In transition matrices
representing real systems, most elements are equal to zero.
 In the SHY model, only a subset of the states is
reachable from each state in a fully connected BL machine.
A transition is chosen in two steps, first one of N users is
chosen, then one of S states is selected. This provides that
there is only one transition between two BL states.
 Some of the transitions however lead to the same
system state. The number of unique states is hence:

 # states = N*S–N+1 = N*(S–1)+1. (3)

where N*S is the number of transitions, non-unique
calculated multiple. N of them result in the same state, they
are subtracted and one state representing the N equal states
is added.
 The number of states in a fully connected Markov

model is SN. When applying the theoretical model on our
practical problem, all states are not reachable. The stimuli
are generated one at a time, then only the transitions caused
by one stimulus are possible. Other transitions are made as

5

sequences of transitions, caused by sequences of stimuli.
This explains why most of the elements in the transition
matrix are equal to zero.
 In the plain model, only one of N users can give a
stimulus in practice. This stimulus can cause a transition to
one of S user states. That makes N*S reachable states. N of
these result in the same final state, and hence the number of
reachable states from one state is the same as in (3).
 The general coupling between the plain Markov and the
SHY model, is a mapping of the transition matrixes for
each user in the SHY model onto the plain transition
matrix. It is a transformation from N dimensions to two.
The mapping function depends on our ordering of the
states, and then it is difficult to find a general function.
 The State Hierarchy model has not as many degrees of
freedom as the fully connected Markov model. But the
SHY model has enough degrees of freedom to represent
telecommunication systems, which are not fully connected
in the plain Markov model. Other systems are not
investigated but it seems to be possible to use the SHY
model in other domains as well.

5.2.3. Transitions

Consider an example with three users with three user states
each, A, B and C, see figure 4a and 4b for the SHY and PM
descriptions respectively.

User1 User2 User3

User

A B

C

A B

C

A B

C

User Level

Behaviour Level

Figure 4a. SHY description.

ACB

ACA

BCCACC

ABC AAC CCC

Figure 4b. Part of the corresponding plain Markov
description.

 Now consider the usage model state denoted [A,C,C] in
the SHY model (figure 4a) and the corresponding state
ACC in the plain Markov model (figure 4b). Next state can
be one of the following seven: ACC, BCC, CCC, AAC,
ABC, ACA and ACB. The probabilities for the transitions
are denoted pACC–ACC, pACC–BCC and so forth.

 For the hierarchical model, some notations are needed:
wA, wB and wC are the weights for the three BL-states. pAA,

pAB, pAC, pBA etc. are the transition probabilities between

the Behaviour Level states. p1, p2 and p3 are the

probabilities for each user on the User Level to be the next
to generate a stimulus.
 The probability for a selected transition in the plain
Markov model, can be expressed in terms of transition
probabilities in the SHY model. It is a sequence of two
choices. First a user is chosen, then a transition for this
user. The probability for this transition is then the
probabilities for the User Level transition, multiplied with
the probability for the Behaviour Level transition. This is
expressed as:

 pPM = pSHY UL * pSHY BL (4)

where PM stands for Plain Markov, SHY for State
Hierarchy, UL and BL for User Level and Behaviour Level.

 In our example, the probabilities for the transitions from

the state ACC are according to (4):

 pACC–ACC = p1* pAA + p2* pCC + p3* pCC (5a)

 pACC–BCC = p1* pAB (5b)

 pACC–CCC = p1* pAC (5c)

 pACC–AAC = p2* pCA (5d)

 pACC–ABC = p2* pCB (5e)

 pACC–ACA = p3* pCA (5f)

 pACC–ACB = p3* pCB (5g)

 where p1 =
wA

(wA+wC+wC)
 and

 p2 = p3 =
wC

(wA+wC+wC)
 according to (2)

 It generally holds that the probabilities for leaving a
selected state, always sum up to one. In the non-
hierarchical model the sum of the probabilities for leaving
ACC is (see figure 4b):

 p = pACC–ACC+pACC–BCC+pACC–CCC+pACC–AAC+

 pACC–ABC+pACC–ACA+pACC–ACB (6)

This can be expanded in terms of SHY model probabilities,
according to (5a)–(5g):

 p = p1*(pAA+pAB+pAC)+p2*(pCA+pCB+pCC)+

 p3*(pCA+pCB+pCC) (7)

The probabilities for leaving a state in the Behaviour Level
description in figure 4a sum up to one:

 pAA + pAB + pAC = 1 (8a)

 pBA + pBB + pBC = 1 (8b)

 pCA + pCB + pCC = 1 (8c)

6

In the User Level description in figure 4a, the sum of the
probabilities are:

 p1 + p2 + p3 =1 (9)

The equations (8a) – (8c) put into (7), and then with (9) our
result is:

 p = p1 + p2 + p3 =1 (10)

 This indicates that transforming transition probabilities
from the plain to the State Hierarchy model does not
change the basic properties for the transition probabilities.
To prove that the SHY captures the same behaviour as the
plain Markov model, some Markov chain characteristics
e.g. state occurrence probabilities, first passage
probabilities and mean recurrence time could be
investigated. The objective in the current project has
however been to find a practical solution and not to prove
the mathematical equivalence between the two different
Markov representations.

5.3. Usability

Another important question is the usability of the model. Is
it easy to model the transition probabilities? How to
generate test cases? These questions are discussed in this
section.

5.3.1. Modelling transition probabilities

The Behaviour Level transition probabilities are modelled
to correspond to the user behaviour. From each user state,
the possible transitions are considered and each of them,
caused by stimuli from the user itself, is given a
probability. The transitions caused by other users are
marked with an asterisk, to indicate the connection to
another user.
 The state weights are chosen to reflect the probability
that the next event originate from the BL-state, relative to
other BL-states. Different values of the state weights cause
different types of usage. If there is little difference between
the probabilities for the different states, the state weights
become equal. Then many users act in parallel, i.e. much
function interaction is generated.
 Other types of usage is generated when the
probabilities are very different in different BL states.
States, which often are passed in a fast sequence have
higher state weights. Hence the probability for passing this
sequence, without interrupt, is higher. The probability for
many users acting in parallel is hence lower.
 In table 1, two cases with different state weights and its
consequences on the user probabilities are shown:
 __

state = [A,C,C] gives

p1=
wA

(wA + wC + wC)
 ; p2=p3=

wC

(wA + wC + wC)
 ;

 Case 1Case 2
 wA=1.1, wB=1.2, wC=1.3 wA =1, wB=2, wC=3

 p1 = 1.1/(1.1+2*1.3) = 0.30 p1 = 1/(1+2*3) = 0.14

 p2 = 1.3/(1.1+2*1.3) = 0.35 p2 = 3/(1+2*3) = 0.43

 p3 = 1.3/(1.1+2*1.3) = 0.35 p3 = 3/(1+2*3) = 0.43

 __

Table 1. UL probabilities with different state weights.

 From a practical viewpoint can be concluded that this
modelling of probabilities is easier than in the plain
Markov model for multi-user systems. It is easier to
associate a probability for a user performing a specific
action than studying the probabilities for different events in
a global state as is the case for the plain Markov model.

5.3.2. Test cases

To generate test cases from the SHY statistical usage
profile, following four-step algorithm can be used:

1, Determine which user to generate next stimulus.
This is done by choosing a user in the User Level
state machine.

2, Determine which stimulus the selected user will
generate. This is done by choosing a transition in the
Behaviour Level state machine for the selected user.

3, Note the consequences of this stimulus for the
selected user and for the others by following the
links and append the generated stimuli to the test
script.

4, Update the User Level transition matrix.

Random numbers for controlling the choices are taken from
a uniform distribution, i.e. as a sample of a random variable
uniformly distributed on (0,1).

5.4. Extensions

The reasoning in section 5.2 indicates that the hierarchical
model can express the same as a plain Markov chain. But
there is a possibility to express more with the State
Hierarchy model. An extended SHY model is shown in
figure 5. The levels in the figure can be described as
follows:

• The state weights are representing the time scale in
the usage profile. In the plain Markov model this
aspect is implicit in the transition probabilities, but
here it is more visible. It is no exact time scale, but a
relative.

 By adding a stimulus intensity on a Time Level as
an upper level, we can model an absolute time scale.

7

This gives a possibility to test time constraints and
real time aspects in the system. It is also a way to
model and control the system load.

• The Usage Level contains one state, which is the
main state for selecting the underlying user types.

• The SHY model can be extended, by adding a User
Type Level (UTL), above the User Level. On this
level, a choice between different types of users can
be done. This makes it easier to handle large
systems.

• On the User Level (UL) the individuals of the user
types are shown. They are instances of the user
types.

• To support modularity and reuse of the usage model,
a Service Level is introduced. This implies that the
usage of each user is described as a set of different
services, each of them describing a part of the usage.
When adding new functionality it is easy to add new
services to a user.

• This leads to that the Behaviour Level describes the
behaviour of the services instead. Each service is
described by a BL state machine, similar to the prior
described (see figure 4a).

• A stimulus can be refined by using a Sub-Behaviour
Level (SBL) state machine. E.g the stimulus ”digit”
can be chosen on the BL and then an SBL choice
selects the exact digit, 0 to 9.

Usage

User

Type 1

User

Type 2

User 1 User 2 User 3 User 4

Service

1

Service

2

Service

3

User T ype Level

User Level

Service Level

Behaviour Level

Sub-Behaviour Level

TimeT ime Level
t

Usage Level

Figure 5. Extended SHY model.

 With this extended SHY model it is rather easy to add
new services or users. The model also supports easy
reconfiguration of the system. Most parts of the system

description can be reused. If the model once is constructed,
changes are rather easy to cope with. Only the sub-parts of
the system, directly describing the changes must be
exchanged.
 Test cases are generated by traversing the SHY model.
First a time to next event is drawn on the Time Level. Then
the main state, Usage, is entered from which a selection of
a User Type is done. If e.g. User Type 2 is selected, there is
only one user and this will hence be drawn on the User
Level. One of the services connected to User 4 is drawn,
e.g. Service 2, and then a transition in its Behaviour Level
state machine. The selected stimulus and its possible
influence on other BL-state machines are added to the test
script, or if there is a Sub-Behaviour Level connected to the
stimulus, a refinement of the stimulus is drawn and it is
added to the test script. Then the probabilities are updated
and the model can be traversed again.

8

6. Experience

We have performed a case study in usage modelling for an
advanced telephone device. The case study has given
experience about specifying a statistical usage profile. The
greatest positive experience is that it is possible to describe
a SHY usage profile for a real product of the tele-
communication domain. Even though the studied product is
rather small, we have seen needs for alternatives to a plain
Markov model.
 We have seen as well that the SHY model gives a
description, which is of reasonable size. We have
concluded that there is space for specifying a usage profile
for a much larger product, using the SHY model.
 Problems encountered concern service interaction, i.e.
which services may act together and which services affect
each other. We have not found any simple trick to solve the
service interaction problems. They are however common in
the telecommunication domain and is a large current
research area.

7. Conclusions

It can be concluded that the statistical quality control of
software products is an important issue. The certification
process is central in this effort. This process is highly
dependent on relevant software reliability models and a
sound basis for prediction. The basis includes relevant
failure data, i.e. data that is obtained under circumstances
fulfilling the assumptions of the reliability models. In
particular, this means that the failure data during testing has
to be similar to the failure data encountered during
operation. This type of testing is often referred to as
Statistical Usage Testing. To be able to use this type of
testing, a model for the usage is needed. No suitable model
was found in the literature, i.e. the existing ones were not
suitable for describing the application studied (primarily
telecommunication systems).
 A model for describing the usage of software systems
has been proposed. The model is based on describing the
usage as a hierarchical Markov model. This modelling
approach provides some essential benefits: for example, it
is based on well-known theories, it is simple to understand,
easy to add new parts as well as remove old parts. The
model can easily be used to generate test cases that are
representative of the operational usage. This means that the
model provides the necessary basis for performing
Statistical Usage Testing. It can be concluded that the
proposed model fills a gap in the process of certifying
software.

Acknowledgement

The project is being conducted for the Swedish Telecom, to
whom we are grateful for specifying this project and in
particular for letting us publish the results.
 Thanks to Professor Lars Reneby, Department of

Communication Systems, Lund Institute of Technology for
valuable comments in the work with the master thesis of
Mr Runeson.
 Many thanks to Erik Johansson and Bo Lennselius, E-P
Telecom Q-Labs for interesting and fruitful discussions and
comments throughout the project.
 We also would like to acknowledge Dr James A.
Whittaker, University of Tennessee, Knoxville and Dr
Even-Andre Karlsson, E-P Telecom Q-Labs for valuable
improvement suggestions concerning the paper.

References

[Adams84] E. N. Adams, ”Optimizing Preventive

Service of Software Products”, IBM Journal
of Research and Development, January
1984.

[Cobb90] Richard H. Cobb and Harlan D. Mills,
”Engineering Software Under Statistical
Quality Control”, IEEE Software,
November 1990, pp. 44-54.

[Currit86] P. Allen Currit, Michael Dyer and Harlan
D. Mills, ”Certifying the Reliability of
Software”, IEEE Transactions on Software
Engineering, vol SE-12, no 1, January
1986, pp. 3-11.

[Dyer92] Michael Dyer, ”The Cleanroom Approach
to Quality Software Development”, John
Wiley & Sons, 1992.

[Ehrlich87] Willa K. Ehrlich and Thomas J. Emerson,
”Modeling Software Failures and
Reliability Growth during System Testing”,
In Proceedings 9th Int. Conf. on Software
Engineering, 1987, pp. 72-82.

[Ehrlich90] Willa K. Ehrlich, S. Keith Lee and Rex
H.Molisani, ”Applying Reliability
Measurement: A Case Study”, IEEE
Software, March 1990, pp. 56-64.

[Ek91] Anders Ek and Jan Ellsberger, ”A Dynamic
Analysis Tool for SDL”, SDL ’91:
Evolving Methods, Elsevier Science
Publisher B V (North Holland) 1991.

[Goel79] Amrit L. Goel and Kazuhira Okumoto,
”Time-dependent Error-detection Rate
Model for Software Reliability and Other
Performance Measures”, IEEE Transactions
on Reliability, Vol. R-28, No. 3, 1979, pp.
206-211.

[Goel85] Amrit L. Goel, ”Software Reliability
Models: The State of the Art”, IEEE
Transactions on Software Engineering, Vol.
SE-11, No. 12, 1985, pp. 1411-1423.

[Jelinski72] Z. Jelinski and P. Moranda, ”Software
Reliability Research”, Statistical Computer
Performance Evaluation, 1972, pp. 465-
484.

9

[Mills87] Harlan D. Mills, Michael Dyer and Richard
C. Linger, ”Cleanroom Software
Engineering”, IEEE Software, September
1987, pp. 19-24.

[Mills88] Harlan D. Mills and J. H. Poore, ”Bringing
Software Under Statistical Quality
Control”, Quality Progress, November
1988, pp. 52-55.

[Musa87] John D. Musa, Anthony Iannino and
Kazuhira Okumoto, ”Software Reliability,
Measurement, Prediction, Application”,
McGraw-Hill Int. 1987.

[Runeson91] Per Runeson, ”Statistical Usage Testing for
Telecommunication Systems”, Dept. of
Communication Systems, Lund, Sweden,
Report no. CODEN: LUTEDX (TETS-
5134)/1-49)/(1991)&Local 9, 1991, Master
thesis.

[West87] Colin H. West. ”Protocol Validation by
Random State Exploration”, Protocol
Specification, Testing and Verification VI,
Elsevier Science Publisher B V (North
Holland) 1987.

[Whittaker92] James A. Whittaker, ”Markov Chain
Techniques for Software Testing and
Reliability Analysis”, Dept. of Computer
Science, University of Tennessee,
Knoxville, USA, 1992, Ph.D. Dissertation.

[Wohlin86] Claes Wohlin, ”Software Testing and
Reliability for Telecommunication
Systems”, In Software Engineering ´86,
Peter Peregrinus Ltd., United Kingdom,
1986, pp. 27-42.

