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Abstract 
 
The testing method proposed in the Cleanroom 
methodology is Statistical Usage Testing. This testing 
technique is based on that the test cases represent the 
operational profile. The failure data from testing is then 
used in a software reliability model to certify the reliability 
of the software. This paper introduces a new model for 
modelling the usage of the system, i.e. the operational 
profile. It is shown to cope with the state explosion 
problem encountered when applying a simple Markov 
model to large software systems. The proposed model 
introduces a hierarchical Markov model, which is shown to 
solve the problems encountered in the ordinary Markov 
description. Users and services are represented so that the 
model can easily be extended when new users or services 
are added. It is concluded that the introduction of this 
model will make it possible to certify large software 
systems in the future. The model generates test cases 
providing failure data that can be used in software 
reliability models. The new model forms the basis for being 
able to apply statistical quality control to software systems. 
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1. Introduction 
 
The reliability problem in software systems of today is a 
well-known fact. No silver bullet will solve this problem, 
instead the solution will be the combination of several 
approaches. That is improvements throughout the whole 
life cycle. These improvements include for example 
specification and design, verification and validation, 
certification as well as maintenance. This is the approach 
taken in the Cleanroom methodology, [Mills87, Mills88, 
Dyer92], which includes methods for specification and 
design, verification and validation, as well as certification. 
In particular, Cleanroom supports the idea and philosophy 
that it is possible to develop zero-defect software. 
 The certification process is an important issue, since it 
is often one of the interfaces between the developer and the 

purchaser, in many cases the manager of the software. This 
process is the foundation for acceptance of a software 
product and a key issue in the quality control of software 
products. The objective is to certify during testing that the 
reliability requirements during operation are fulfilled. The 
basis for this is that the testing procedure resembles or 
models the operational profile. In Cleanroom this type of 
testing is referred to as Statistical Usage Testing, [Currit86, 
Cobb90]. 
 The problem of certification involves two parts: 

• modelling operation during testing, i.e. a statistical 
usage model. 

• prediction of the reliability, i.e. software reliability 
models. 

 Numerous software reliability models can be found in 
the literature, some examples are presented in [Goel85, 
Jelinski72, Goel79]. The model proposed within the 
Cleanroom concept is presented in [Currit86]. Most of 
these models are based on the assumption of operational 
usage, but not much emphasis has been put into actually 
modelling and performing tests that fulfils this assumption. 
 It is often suggested that it is possible to describe the 
operation with a Markov model, see [Whittaker92]. But is 
this possible and can test cases be generated for all types of 
systems based on a Markov model? 
 In this paper the Markov model will be studied and we 
will indicate that it might not be useful for all types of 
systems. In particular, it will be shown that the ordinary 
Markov model is not possible to use for telecommunication 
systems. It is also believed that the conclusions from the 
telecommunication applications can be generalized to 
incorporate many types of distributed multi-user systems 
providing a wide range of services to the users. Based on 
the conclusion that the existing models are insufficient, a 
hierarchical Markov model is developed. It is shown how 
this model will cope with the problems encountered in for 
example telecommunication systems. 
 

2. Certifying reliability 
 
The certification of software within the Cleanroom 
methodology is discussed in [Currit86]. As stated above, 
the certification process consists of two equally important 
parts. The second part is the software reliability models. 
These shall model the behaviour of software failures and in 
particular predict the future behaviour and reliability of the 
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software. The models are based on several assumptions, 
where one of the most critical is the assumption that 
failures occur according to the operational usage. This 
means that the models can only be applied during operation 
or during testing where it is possible to generate test cases 
from an operational profile. The latter is the basis for 
Statistical Usage Testing. 
 The first part, i.e. modelling the usage, has been much 
less studied than the software reliability models. The most 
frequently used approach is to model the behaviour and 
generate the test cases based on a Markov chain. This 
approach is not useful for all types of applications as will 
be shown below. The problem of modelling the usage for 
complex multi-user systems has been overlooked in the 
past, but if it shall be possible to certify the reliability under 
testing conditions this problem has to be solved. This has 
been one of the key issues in a project conducted for the 
Swedish Telecom. The objective with the project is to 
develop a method for certification of software products that 
can be used when purchasing software systems. 
 The usefulness of the development of software 
reliability models is debatable if the users´ needs can not be 
met, e.g. the assumptions made by the models have to be 
realistic or methods have to be developed that make the 
models realistic. The first approach has been found 
difficult, even if some attempts have been made for 
prediction of software reliability during different types of 
testing [Ehrlich87, Wohlin86, Ehrlich90]. The second 
approach is the one recommended in Cleanroom, i.e. to 
apply Statistical Usage Testing. This calls, however, for 
methods modelling the usage and the selection of suitable 
test cases. It has been shown that this type of testing is 
superior to other types of testing in finding the faults that 
influence the reliability during operation, [Adams84]. 
 A model suitable for describing the usage of for 
example telecommunication systems will be described 
briefly below. A more comprehensive description can be 
found in [Runeson91]. This model will be one important 
part of a method for statistical quality control of software 
systems developed for the Swedish Telecom. 
 

3. Usage modelling  
 
The statistical usage profile is an external description of 
usage events and their probabilistic relationship. The usage 
is modelled as states in a state machine and transitions 
between states, drawn as arcs. An arc from state A to state 
B signifies an event associated with state A. The 
probabilities for transitions between the states are listed in 
a quadratic matrix. 
 

A B
fro m/to     A    B 
     A     0.2   0.8 

     B      0.9   0.1

a

b

ba

 
 

Figure 1. Statistical usage profile. 
 
A simple statistical usage profile example is shown in 

figure 1. The start state is determined by the application. 
 From the statistical usage profile the test cases are 
generated. Starting in an initial user state a transition is 
chosen by e.g. the Monte Carlo method. The stimulus 
needed for this transition is recorded. From the new state a 
new transition is chosen etc. A test case can be made up of 
multiple state transitions. It can be of random length, or be 
finished by ending in a final user state, which is also 
determined by the application. 
 The test cases are randomly generated with respect to 
their probability of use and are then a representative subset 
of the use cases in operation. They are used to represent the 
operation and, like national polls, are the basis for the 
prediction of future results. 
 The basis for modelling the statistical usage profile as a 
Markov chain is that the usage exhibits the Markov 
property. When the usage model is in any state, the next 
state can be predicted without regard to previous states. 
The present state and the stimulus are enough to determine 
the next state. This is normally a reasonable description of 
the usage of most software systems. 
 

3.1. Usage profile development 
 
To develop the statistical usage profile three issues need to 
be handled: 
 • User states  
 • Stimuli 
 • Transitions 
 

3.1.1. User states 
 
The first task is to identify all the user states. A user state is 
the user´s view of the system at a special point of time. The 
user states must be independent from the implementation.  
 

3.1.2. Stimuli 
 
The stimuli are what the user can send to the software 
system. Each stimulus or set of stimuli will make a 
transition in the Markov chain, from one user state to 
another, or to the same state again. 
 In order to develop a usage profile we have to assign 
probabilities to the transitions between user states, 
according to the software usage in ordinary operation, i.e. 
to understand the probability of what the next user stimulus 
will be, given any user state.  
 

3.1.3.  Transitions 
 
The probabilities for transitions between the states are 
represented in a quadratic matrix. The row index represent 
the state to leave and the column index the state to enter, 
see figure 1.  
 

4. State explosion 
 
When applying the previous description model on 
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telecommunication systems, we have experienced that the 
number of states grow very large, too large to be 
characterised feasibly, which is shown in [Runeson91]. It 
would probably happen for any complex multi-user system. 
 A general formula for calculating the total number of 
states can be found from using the combinatorial theory. 
The problem is equivalent to take n elements out of a set of 
S with respect to the order and with replacement.  
 

 # states = S
n

 = # states per user # users (1) 

 
 In a private branch exchange there is more than 10 
states per subscriber and up to 1000 subscribers. Anyone 
can understand that there is no possibility to go further this 
way. Every state cannot be defined because they are too 
many. 
 Similar problems arise in the domains of protocol 
validation [West87] and specification analysis [Ek91]. 
 

4.1. Equivalence classes 
 
It is proposed in [Musa87] to reduce the number of states 
by representing them by equivalence classes. An example 
considering the sum from throwing two dice, the states 
(1,6), (2,5), (3,4), (4,3), (5,2) and (6,1) can all be viewed as 
state 7. In telecommunication systems it is equivalent to 
skipping the identity of the subscribers. 
 We have tried using equivalence classes. States with 
the same number of subscribers in each user state are 
considered equal. Dependencies have for once been helpful 
in our ambition for decreasing the number of user states. 
These steps decreased the number of states rather a lot, but 
not enough to be satisfactory. 
 We have experienced that even in very simple 
examples, a state explosion occurs. The example systems 
studied did not contain any of the added services expected 
from a modern exchange, neither the operator´s role nor the 
net traffic were considered. These factors would make the 
systems even more complex. 
 

4.2. Concluding remarks 
 
Software usage is to be described with a description model. 
We have tried the plain Markov model in our application 
domain and concluded that the models are growing too 
large. There is a need for a new description model to 
master the state explosion problem. 
 

5. State hierarchy 
 
Our proposal is to describe the user states as a levelled 
State Hierarchy, abbreviated SHY. The general model can 
consist of several hierarchy levels. Here, however, it is 
presented in its simplest form with only two levels. Later, 
in section 5.4 an extended version is shown. 
 Examples are taken from the telecommunication 
domain, but the model is probably applicable in other 

domains as well. 
 

5.1. Two-level state hierarchy 
 
The upper level in the two-level SHY is a view of the 
usage model, called User Level (UL). It describes which 
user is generating the next stimulus. The lower level, which 
contains information about the user behaviour, is called 
Behaviour Level (BL). It describes which stimulus the 
selected user will generate. Both levels are described as 
Markov chains. When generating test cases, first a user is 
randomly chosen on the User Level, then a transition for 
the selected user on the Behaviour Level is chosen. 
 

5.1.1. User Level 
 
The User Level system view is a state machine, telling 
which user in the system is to give next stimulus. Figure 2 
shows an UL description for a system with N users. 
 

…use r1 use r3 use rNuse r4use r2

use r

 
 

Figure 2. User Level with N users. 
 
 When a test case is generated, the user to generate next 
stimulus is selected by choosing a transition randomly on 
the UL. In every selection the main state, user in the figure, 
is the initial state. 
 

5.1.2. Behaviour Level 
 
The Behaviour Level in the SHY consists of state 
machines, showing the system from one user´s point of 
view. The behaviour of each user is described by a Markov 
chain. Figure 1 can be seen as a very simple example. 
 The only transition probabilities considered are those, 
caused by stimuli from the user itself. Transitions caused 
by stimuli from other users are marked with an asterisk in 
the transition matrix. These stimuli are generated in other 
Behaviour Level submachines, and shall not be represented 
twice.  
 The asterisk is a mark for the connection between the 
two BL machines, here called a link. The link means that a 
stimulus from one user causes a transition for another user. 
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Figure 3. Connection link between two BL transition 

matrixes. 
 
 In figure 3 parts of two BL transition matrixes are 
shown. The user, corresponding to the leftmost matrix, 
makes a transition from state rs (ringsignal) to t (talking), 
i.e. makes off hook when dialled. This transition causes 
another transition in the BL state machine, corresponding 
to the rightmost matrix, from state rt (ringtone) to t 
(talking), i.e. is connected to the dialled. 
 The information on the linked state machine and the 
transition to be done has to be stored, connected to the 
transition matrix of the causing state machine. When a test 
case is generated and a link transition is chosen, both the 
causing and the caused transitions have to be added to the 
test script.  
 

5.1.3.  Usage model 
 
The User Level and the Behaviour Level make together the 
SHY usage model in its simplest form. Each user has a 
corresponding state on the User Level as well as a state 
machine on the Behaviour Level. 
 The state of the whole usage model is described in 
terms of the BL machine states. A usage model state in the 
State Hierarchy model is denoted as an array of BL states, 
[Stateuser1, Stateuser2, …, StateuserN]. 

 The total number of possible states is not less than in 
the plain Markov model, but here they are hidden in the 
hierarchical structure and must not be handled explicitly. 
The plain Markov description must be expanded to show 
every state. In the hierarchical model the description is 
divided into smaller parts, each of them easier to handle. 
 

5.1.4. User Level probabilities 
 
On the UL, the transition probabilities are depending on the 
BL machine states. The probabilities are functions of the 
BL machine states. Consider the following example from 
the telecommunication domain: When one subscriber is in 
a state within a sequence1 , e.g. dialling, it is more probable 
that this subscriber gives the next stimulus than the other, 
being in the state idle. But when all subscribers are in the 
same state, e.g. idle, it is as probable for any of the 
subscribers to give the next stimulus, if the subscribers are 
equal.  
 To express this difference, every state in the BL 
machine is given a relative weight, denoted wBL-state. This 

corresponds to the probability for selecting the user being 
in the very BL state.  
 The probability for choosing a user on the UL can now 
be expressed in terms of the state weights. The probability 
for choosing user i is denoted p i: 

                                                           
1 States in a sequence means here states, often passed 

in almost non-interrupted succession, e.g. dialtone — 

dialling — ringsignal — talking. 

 

 pi = 
wBL-state(i) 


k=1

N
 wBL-state(k) 

  (2) 

 
where N is the number of users. 

5.2. Reality 
 
In the plain Markov model, user behaviour is modelled as a 
Markov chain and this is supposed to be a reasonable 
model. Now our task is to show that the hierarchical model 
captures the same behaviour as the plain Markov model. 
This will be made credible by analysing three issues: 

• State space  
• Reachable states 
• Transitions 

 

5.2.1. State space 
 

In a plain Markov model there are SN states, according to 
(1), where S is the number of states from one user´s point 
of view and N is the number of users.  
 In the SHY model there are N Behaviour Level 
machines with S states each. These S*N states can however 
be combined in many ways. When one of the N users on 
the User Level is selected, each of the remaining N–1 users 

can be in one of S states. They can be combined in SN–1 
ways. The selected one can be in one of S states. The total 

number of combinations is then SN–1 * S = SN, the same 
number as in the plain model. 
 

5.2.2. Reachable states 
 
In the theoretical Markov model, there is no limitation 
between which states transitions are possible. This 
possibility is however seldom used. In transition matrices 
representing real systems, most elements are equal to zero. 
 In the SHY model, only a subset of the states is 
reachable from each state in a fully connected BL machine. 
A transition is chosen in two steps, first one of N users is 
chosen, then one of S states is selected. This provides that 
there is only one transition between two BL states.  
 Some of the transitions however lead to the same 
system state. The number of unique states is hence: 
 

 # states = N*S–N+1 = N*(S–1)+1. (3) 
 
where N*S is the number of transitions, non-unique 
calculated multiple. N of them result in the same state, they 
are subtracted and one state representing the N equal states 
is added. 
 The number of states in a fully connected Markov 

model is SN. When applying the theoretical model on our 
practical problem, all states are not reachable. The stimuli 
are generated one at a time, then only the transitions caused 
by one stimulus are possible. Other transitions are made as 
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sequences of transitions, caused by sequences of stimuli. 
This explains why most of the elements in the transition 
matrix are equal to zero. 
 In the plain model, only one of N users can give a 
stimulus in practice. This stimulus can cause a transition to 
one of S user states. That makes N*S reachable states. N of 
these result in the same final state, and hence the number of 
reachable states from one state is the same as in (3). 
 The general coupling between the plain Markov and the 
SHY model, is a mapping of the transition matrixes for 
each user in the SHY model onto the plain transition 
matrix. It is a transformation from N dimensions to two. 
The mapping function depends on our ordering of the 
states, and then it is difficult to find a general function. 
 The State Hierarchy model has not as many degrees of 
freedom as the fully connected Markov model. But the 
SHY model has enough degrees of freedom to represent 
telecommunication systems, which are not fully connected 
in the plain Markov model. Other systems are not 
investigated but it seems to be possible to use the SHY 
model in other domains as well. 
 

5.2.3. Transitions 
 
Consider an example with three users with three user states 
each, A, B and C, see figure 4a and 4b for the SHY and PM 
descriptions respectively. 
 

User1 User2 User3

User

A B

C

A B

C

A B

C

User Level

Behaviour Level

 
 

Figure 4a. SHY description. 
 

ACB

ACA

BCCACC

ABC AAC CCC

 
 

Figure 4b. Part of the corresponding plain Markov 
description. 

 
 Now consider the usage model state denoted [A,C,C] in 
the SHY model (figure 4a) and the corresponding state 
ACC in the plain Markov model (figure 4b). Next state can 
be one of the following seven: ACC, BCC, CCC, AAC, 
ABC, ACA and ACB. The probabilities for the transitions 
are denoted pACC–ACC, pACC–BCC and so forth. 

 For the hierarchical model, some notations are needed: 
wA, wB and wC are the weights for the three BL-states. pAA, 

pAB, pAC, pBA etc. are the transition probabilities between 

the Behaviour Level states. p1, p2 and p3 are the 

probabilities for each user on the User Level to be the next 
to generate a stimulus. 
 The probability for a selected transition in the plain 
Markov model, can be expressed in terms of transition 
probabilities in the SHY model. It is a sequence of two 
choices. First a user is chosen, then a transition for this 
user. The probability for this transition is then the 
probabilities for the User Level transition, multiplied with 
the probability for the Behaviour Level transition. This is 
expressed as:  
 
 pPM = pSHY UL * pSHY BL (4) 

 
where PM stands for Plain Markov, SHY for State 
Hierarchy, UL and BL for User Level and Behaviour Level. 

 In our example, the probabilities for the transitions from 

the state ACC are according to (4): 
 
 pACC–ACC = p1* pAA + p2* pCC + p3* pCC  (5a) 

 pACC–BCC = p1* pAB (5b) 

 pACC–CCC = p1* pAC  (5c) 

 pACC–AAC = p2* pCA (5d) 

 pACC–ABC = p2* pCB (5e) 

 pACC–ACA = p3* pCA  (5f) 

 pACC–ACB = p3* pCB (5g) 

 

 where p1 = 
wA

(wA+wC+wC)
  and 

 p2 = p3 = 
wC

(wA+wC+wC)
  according to (2) 

 
 It generally holds that the probabilities for leaving a 
selected state, always sum up to one. In the non-
hierarchical model the sum of the probabilities for leaving 
ACC is (see figure 4b): 
 

 p = pACC–ACC+pACC–BCC+pACC–CCC+pACC–AAC+ 

 pACC–ABC+pACC–ACA+pACC–ACB (6) 

 
This can be expanded in terms of SHY model probabilities, 
according to (5a)–(5g): 
 

 p = p1*(pAA+pAB+pAC )+p2*(pCA+pCB+pCC )+ 

 p3*(pCA+pCB+pCC )  (7) 

 
The probabilities for leaving a state in the Behaviour Level 
description in figure 4a sum up to one:  
 
 pAA + pAB + pAC = 1 (8a) 

 pBA + pBB + pBC = 1 (8b) 

 pCA + pCB + pCC = 1 (8c) 
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In the User Level description in figure 4a, the sum of the 
probabilities are: 
 
 p1 + p2 + p3 =1 (9) 

 
The equations (8a) – (8c) put into (7), and then with (9) our 
result is: 
 

 p = p1 + p2 + p3 =1 (10) 

 
 This indicates that transforming transition probabilities 
from the plain to the State Hierarchy model does not 
change the basic properties for the transition probabilities. 
To prove that the SHY captures the same behaviour as the 
plain Markov model, some Markov chain characteristics 
e.g. state occurrence probabilities, first passage 
probabilities and mean recurrence time could be 
investigated. The objective in the current project has 
however been to find a practical solution and not to prove 
the mathematical equivalence between the two different 
Markov representations. 
 

5.3. Usability 
 
Another important question is the usability of the model. Is 
it easy to model the transition probabilities? How to 
generate test cases? These questions are discussed in this 
section. 
 

5.3.1. Modelling transition probabilities 
 
The Behaviour Level transition probabilities are modelled 
to correspond to the user behaviour. From each user state, 
the possible transitions are considered and each of them, 
caused by stimuli from the user itself, is given a 
probability. The transitions caused by other users are 
marked with an asterisk, to indicate the connection to 
another user. 
 The state weights are chosen to reflect the probability 
that the next event originate from the BL-state, relative to 
other BL-states. Different values of the state weights cause 
different types of usage. If there is little difference between 
the probabilities for the different states, the state weights 
become equal. Then many users act in parallel, i.e. much 
function interaction is generated.  
 Other types of usage is generated when the 
probabilities are very different in different BL states. 
States, which often are passed in a fast sequence have 
higher state weights. Hence the probability for passing this 
sequence, without interrupt, is higher. The probability for 
many users acting in parallel is hence lower. 
 In table 1, two cases with different state weights and its 
consequences on the user probabilities are shown:  
 ____________________________________________  

 

state = [A,C,C] gives  

p1= 
wA

(wA + wC + wC)
 ; p2=p3= 

wC

(wA + wC + wC)
 ; 

 

 Case 1Case 2 
 wA=1.1, wB=1.2, wC=1.3  wA =1, wB=2, wC=3 

 
 p1 = 1.1/(1.1+2*1.3) = 0.30 p1 = 1/(1+2*3) = 0.14 

 p2 = 1.3/(1.1+2*1.3) = 0.35  p2 = 3/(1+2*3) = 0.43 

 p3 = 1.3/(1.1+2*1.3) = 0.35 p3 = 3/(1+2*3) = 0.43 

 ____________________________________________  
 

Table 1. UL probabilities with different state weights. 
 
 From a practical viewpoint can be concluded that this 
modelling of probabilities is easier than in the plain 
Markov model for multi-user systems. It is easier to 
associate a probability for a user performing a specific 
action than studying the probabilities for different events in 
a global state as is the case for the plain Markov model. 
 

5.3.2. Test cases 
 
To generate test cases from the SHY statistical usage 
profile, following four-step algorithm can be used: 
 

1, Determine which user to generate next stimulus. 
This is done by choosing a user in the User Level 
state machine. 

2, Determine which stimulus the selected user will 
generate. This is done by choosing a transition in the 
Behaviour Level state machine for the selected user. 

3, Note the consequences of this stimulus for the 
selected user and for the others by following the 
links and append the generated stimuli to the test 
script. 

4, Update the User Level transition matrix. 
 

Random numbers for controlling the choices are taken from 
a uniform distribution, i.e. as a sample of a random variable 
uniformly distributed on (0,1). 
 

5.4. Extensions 
 
The reasoning in section 5.2 indicates that the hierarchical 
model can express the same as a plain Markov chain. But 
there is a possibility to express more with the State 
Hierarchy model. An extended SHY model is shown in 
figure 5. The levels in the figure can be described as 
follows: 
 

• The state weights are representing the time scale in 
the usage profile. In the plain Markov model this 
aspect is implicit in the transition probabilities, but 
here it is more visible. It is no exact time scale, but a 
relative.  

  By adding a stimulus intensity on a Time Level as 
an upper level, we can model an absolute time scale. 
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This gives a possibility to test time constraints and 
real time aspects in the system. It is also a way to 
model and control the system load. 

• The Usage Level contains one state, which is the 
main state for selecting the underlying user types. 

• The SHY model can be extended, by adding a User 
Type Level (UTL), above the User Level. On this 
level, a choice between different types of users can 
be done. This makes it easier to handle large 
systems. 

• On the User Level (UL) the individuals of the user 
types are shown. They are instances of the user 
types. 

• To support modularity and reuse of the usage model, 
a Service Level is introduced. This implies that the 
usage of each user is described as a set of different 
services, each of them describing a part of the usage. 
When adding new functionality it is easy to add new 
services to a user. 

• This leads to that the Behaviour Level describes the 
behaviour of the services instead. Each service is 
described by a BL state machine, similar to the prior 
described (see figure 4a).  

• A stimulus can be refined by using a Sub-Behaviour 
Level (SBL) state machine. E.g the stimulus ”digit” 
can be chosen on the BL and then an SBL choice 
selects the exact digit, 0 to 9. 

 
 

Usage

User 

Type 1

User 

Type 2

User 1 User 2 User 3 User 4

Service 

1

Service 

2

Service 

3

User T ype Level

User Level

Service Level

Behaviour Level

Sub-Behaviour Level

TimeT ime Level
t

Usage Level

 
 
 

Figure 5. Extended SHY model.  
 
 With this extended SHY model it is rather easy to add 
new services or users. The model also supports easy 
reconfiguration of the system. Most parts of the system 

description can be reused. If the model once is constructed, 
changes are rather easy to cope with. Only the sub-parts of 
the system, directly describing the changes must be 
exchanged. 
 Test cases are generated by traversing the SHY model. 
First a time to next event is drawn on the Time Level. Then 
the main state, Usage, is entered from which a selection of 
a User Type is done. If e.g. User Type 2 is selected, there is 
only one user and this will hence be drawn on the User 
Level. One of the services connected to User 4 is drawn, 
e.g. Service 2, and then a transition in its Behaviour Level 
state machine. The selected stimulus and its possible 
influence on other BL-state machines are added to the test 
script, or if there is a Sub-Behaviour Level connected to the 
stimulus, a refinement of the stimulus is drawn and it is 
added to the test script. Then the probabilities are updated 
and the model can be traversed again. 
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6. Experience 
 
We have performed a case study in usage modelling for an 
advanced telephone device. The case study has given 
experience about specifying a statistical usage profile. The 
greatest positive experience is that it is possible to describe 
a SHY usage profile for a real product of the tele-
communication domain. Even though the studied product is 
rather small, we have seen needs for alternatives to a plain 
Markov model.  
 We have seen as well that the SHY model gives a 
description, which is of reasonable size. We have 
concluded that there is space for specifying a usage profile 
for a much larger product, using the SHY model. 
 Problems encountered concern service interaction, i.e. 
which services may act together and which services affect 
each other. We have not found any simple trick to solve the 
service interaction problems. They are however common in 
the telecommunication domain and is a large current 
research area. 
 

7. Conclusions 
 
It can be concluded that the statistical quality control of 
software products is an important issue. The certification 
process is central in this effort. This process is highly 
dependent on relevant software reliability models and a 
sound basis for prediction. The basis includes relevant 
failure data, i.e. data that is obtained under circumstances 
fulfilling the assumptions of the reliability models. In 
particular, this means that the failure data during testing has 
to be similar to the failure data encountered during 
operation. This type of testing is often referred to as 
Statistical Usage Testing. To be able to use this type of 
testing, a model for the usage is needed. No suitable model 
was found in the literature, i.e. the existing ones were not 
suitable for describing the application studied (primarily 
telecommunication systems). 
 A model for describing the usage of software systems 
has been proposed. The model is based on describing the 
usage as a hierarchical Markov model. This modelling 
approach provides some essential benefits: for example, it 
is based on well-known theories, it is simple to understand, 
easy to add new parts as well as remove old parts. The 
model can easily be used to generate test cases that are 
representative of the operational usage. This means that the 
model provides the necessary basis for performing 
Statistical Usage Testing. It can be concluded that the 
proposed model fills a gap in the process of certifying 
software. 
 

Acknowledgement 
 
The project is being conducted for the Swedish Telecom, to 
whom we are grateful for specifying this project and in 
particular for letting us publish the results. 
 Thanks to Professor Lars Reneby, Department of 

Communication Systems, Lund Institute of Technology for 
valuable comments in the work with the master thesis of 
Mr Runeson. 
 Many thanks to Erik Johansson and Bo Lennselius, E-P 
Telecom Q-Labs for interesting and fruitful discussions and 
comments throughout the project. 
 We also would like to acknowledge Dr James A. 
Whittaker, University of Tennessee, Knoxville and Dr 
Even-Andre Karlsson, E-P Telecom Q-Labs for valuable 
improvement suggestions concerning the paper. 
 

References 
 
[Adams84] E. N. Adams, ”Optimizing Preventive 

Service of Software Products”, IBM Journal 
of Research and Development, January 
1984. 

[Cobb90] Richard H. Cobb and Harlan D. Mills, 
”Engineering Software Under Statistical 
Quality Control”, IEEE Software, 
November 1990, pp. 44-54. 

[Currit86] P. Allen Currit, Michael Dyer and Harlan 
D. Mills, ”Certifying the Reliability of 
Software”, IEEE Transactions on Software 
Engineering, vol SE-12, no 1, January 
1986, pp. 3-11. 

[Dyer92] Michael Dyer, ”The Cleanroom Approach 
to Quality Software Development”, John 
Wiley & Sons, 1992. 

[Ehrlich87] Willa K. Ehrlich and Thomas J. Emerson, 
”Modeling Software Failures and 
Reliability Growth during System Testing”, 
In Proceedings 9th Int. Conf. on Software 
Engineering, 1987, pp. 72-82. 

[Ehrlich90] Willa K. Ehrlich, S. Keith Lee and Rex 
H.Molisani, ”Applying Reliability 
Measurement: A Case Study”, IEEE 
Software, March 1990, pp. 56-64. 

[Ek91] Anders Ek and Jan Ellsberger, ”A Dynamic 
Analysis Tool for SDL”, SDL ’91: 
Evolving Methods, Elsevier Science 
Publisher B V (North Holland) 1991. 

[Goel79] Amrit L. Goel and Kazuhira Okumoto, 
”Time-dependent Error-detection Rate 
Model for Software Reliability and Other 
Performance Measures”, IEEE Transactions 
on Reliability, Vol. R-28, No. 3, 1979, pp. 
206-211. 

[Goel85] Amrit L. Goel, ”Software Reliability 
Models: The State of the Art”, IEEE 
Transactions on Software Engineering, Vol. 
SE-11, No. 12, 1985, pp. 1411-1423. 

[Jelinski72] Z. Jelinski and P. Moranda, ”Software 
Reliability Research”, Statistical Computer 
Performance Evaluation, 1972, pp. 465-
484. 



 

9 

[Mills87] Harlan D. Mills, Michael Dyer and Richard 
C. Linger, ”Cleanroom Software 
Engineering”, IEEE Software, September 
1987, pp. 19-24. 

[Mills88] Harlan D. Mills and J. H. Poore, ”Bringing 
Software Under Statistical Quality 
Control”, Quality Progress, November 
1988, pp. 52-55. 

[Musa87] John D. Musa, Anthony Iannino and 
Kazuhira Okumoto, ”Software Reliability, 
Measurement, Prediction, Application”, 
McGraw-Hill Int. 1987. 

[Runeson91] Per Runeson, ”Statistical Usage Testing for 
Telecommunication Systems”, Dept. of 
Communication Systems, Lund, Sweden, 
Report no. CODEN: LUTEDX (TETS-
5134)/1-49)/(1991)&Local 9, 1991, Master 
thesis. 

[West87] Colin H. West. ”Protocol Validation by 
Random State Exploration”, Protocol 
Specification, Testing and Verification VI, 
Elsevier Science Publisher B V (North 
Holland) 1987. 

[Whittaker92] James A. Whittaker, ”Markov Chain 
Techniques for Software Testing and 
Reliability Analysis”, Dept. of Computer 
Science, University of Tennessee, 
Knoxville, USA, 1992, Ph.D. Dissertation. 

[Wohlin86] Claes Wohlin, ”Software Testing and 
Reliability for Telecommunication 
Systems”, In Software Engineering ´86, 
Peter Peregrinus Ltd., United Kingdom, 
1986, pp. 27-42. 


