

M. Xie, G. Y. Hong and C. Wohlin, "Modeling and Analysis of Software System
Reliability", in Case Studies on Reliability and Maintenance, edited by W. Blischke

and P. Murthy, Wiley VHC Verlag, Germany, 2003.

1

Modeling and Analysis of Software System Reliability

M. Xiea, G. Y. Hongb, and C. Wohlinc

aNational University of Singapore, Singapore

bMassey University at Albany, Auckland, New Zealand
cBlekinge Institute of Technology, Ronneby, Sweden

ABSTRACT

Software is an integral part of many products, ranging from durable goods such as

household appliances to large and complex commercial and industrial systems. With the

increasing dependency on software in our daily lives, the size and complexity of

software systems has grown dramatically. This trend is of great interest to the software

industry, calling for more practical analysis and prediction techniques of the reliability of

software systems. Various modelling techniques for the analysis of software reliability at

different development stages have appeared in the recent literature. This chapter

describes the analysis of software failure data with commonly used non-homogeneous

Poisson process (NHPP) models to track the reliability growth trend during the testing

phase. This chapter deals with the use of available information from earlier releases of a

project for early reliability prediction. A detailed case study is presented to illustrate the

approach.

1 INTRODUCTION

Software is playing an increasingly important role in our systems. With well-developed

2

hardware reliability engineering methodologies and standards, hardware components of

complex systems are becoming more and more reliable. In contrast, such methodologies

are still lacking for software reliability analysis due to the complex and difficult nature

of software systems. The lack of appropriate data and necessary information needed for

the analysis are the common problems faced by software reliability practitioners. In

addition, practitioners often find it difficult to decide how much data should be collected

at the start of their analysis and how to choose an appropriate software reliability model

and method from the existing ones for that specific system.

 Here the data is assumed to be failure time data during testing and debugging.

The most informative data is the actual time each failure occurred, but grouped data

might be sufficient. It could also be useful for detailed analysis if software metrics and

other information can be collected during the testing. However, we will not discuss this

as their main uses are not for reliability analysis, but for quality and cost prediction.

In a well-defined software development process, data should be collected

throughout the software life cycle. These data usually indicate the status and progress of

planning, requirement, design, coding, testing and maintenance stages of a software

project. Among all these data, failure data collected during the system testing and

debugging phase are most critical for reliability analysis. During this period of time,

software failures are observed and corrective actions are taken to remove the faults

causing the failures. Hence there is a reliability growth phenomenon with the progress of

testing and debugging. Appropriate reliability growth models can be used to analyse this

reliability growth trend (Musa et al., 1987, Xie, 1991 and Lyu, 1996). The results of the

analysis are often used to decide when it is the best time to stop testing and to determine

the overall reliability status of the whole system, including both hardware and software.

A good analysis will benefit a software company not only in gaining market advantages

by releasing the software at the best time, but also in saving lots of money and resources

(Laprie and Kanoun, 1992).

However, the applications of software reliability growth models are often limited

by the lack of failure data. This is because the traditional approach is based on the

goodness of fit of a reliability growth model to the failure data set collected during

testing. With a focus on the convergence and accuracy of parameter estimation, the

3

traditional approaches commonly suffer from divergence at the initial stage of testing

and usually need a large amount of data to make stable parameter estimates and

predictions. In many cases, this means reliability analysis could only be started at a later

stage of software testing and results of the analysis might have been too late for any

changes in the decisions made.

To overcome this problem, reliability analysis should be started as early as

possible and to make this possible, additional information should be used in the analysis

until enough data from testing can be collected. It is noted that software systems today

are often put on the market in releases. A new release is usually a modification of an

earlier one and tested in a similar way. In the current practice, the data collected from the

previous releases are often discarded in the reliability analysis of the current release.

Although realising that this is wasteful of information, practitioners are uncertain of how

to make use of these old data. In our studies, we found that although the two consecutive

releases can be considerably different, the information from an earlier release could still

provide us with important and useful information about the reliability of a later release

from a process development point of view; at least, the information about the testing of

an earlier release will help in understanding the testing process that leads to reliability

growth in the software system. Thus, a simple approach on early reliability prediction

with the use of information from previous releases is introduced in the chapter.

The organization of this chapter is as follows. In Section 2, we first introduce a

selection of traditionally used software reliability models with an emphasis on Non-

homogeneous Poisson Process (NHPP) models, as they are by far the most commonly

used and easily interpreted existing models. In Section 3, a data set from the latest

release is introduced and traditional modelling techniques are used for the illustration of

their analysis. The convergence and accuracy problems faced by this traditional

approach are explored in Section 4. In Section 5, we discuss a new approach that can be

taken at a very early stage of software testing for reliability analysis of the current

release, making use of the previous release information. A comparison of the two

approaches is also conducted as part of the case study. A brief discussion of the

conclusions of the case is given in Section 6.

4

2 NHPP SOFTWARE RELIABILITY GROWTH MODELS

When modelling the software failure process, different models can be used. For an

extensive coverage of software reliability models, see Xie (1991) and Lyu (1996), where

most existing software reliability models are grouped and reviewed. In this section, we

summarise some useful models that belong to the non-homogeneous Poisson process

category. Models of this type are widely used by practitioners because of their simplicity

and ease of interpretation. Note that here a software failure is generally defined as the

deviation from the true or expected outcome when the software is executed.

2.1. Introduction to NHPP Models

Let)(tN be the cumulative number of failures occurred by time t. When the counting

process { }0);(≥ttN can be modelled by an NHPP which is a widely used counting

process model for inter-event arrival (Xie, 1991), NHPP software reliability models can

be used for its analysis. In general, a NHPP model is a Poisson process whose intensity

function is time-dependent (Rigdon and Basu, 2000). This type of model is also

commonly called the Software Reliability Growth Model (SRGM), as the reliability is

improving or the number of failures per interval is decreasing during testing with the

discovery and removal of defects found. The expected cumulative number of failures in

[0,t) can be represented using a so-called mean value function)(tμ . With different mean

value functions, we have different SRGMs. The basic assumptions of NHPP SRGMs are:

1. Software failures occur at random, and they are independent of each

other;

2. The cumulative number of failures occurred by time t,)(tN , follows a

Poisson process;

Here a software failure is said to have occurred when the output from the

software is different from the expected or true one. During the testing and debugging of

the software, a software fault is identified after each failure, and the fault caused that

failure is removed, and hence the same failure will not occur again. In this way, the

5

failure frequency is reduced and the software can be release when it is expected to be

lower than certain acceptable level.

Usually, a software reliability growth model is specified by its mean value

function)(tμ with an aim to analyse the failure data. To determine the mean value

function, a number of parameters have to be estimated using the failure data collected.

The maximum likelihood estimation method is the most commonly used technique for

the parameter estimation of software reliability models, using the failure data, such as the

number of failures per interval data or exact failure time. To perform the maximum

likelihood estimation of the model parameters, the likelihood function is used:

)]}()([exp{
!

)}()({
)...(1

1

1
,1 −

=

− −−
−

=∏ ii

m

i i

n
ii

m tt
n

tt
nnL

i

μμ
μμ

 (1)

where in (i=1,…, m) is the observed number of failures in interval),[1 ii tt − during each of

m time intervals, with 0 ≤ t0 < t1 < … < tm. In general, to find the maximum likelihood

estimates, we take the derivative of the log-likelihood function, equate the derivative to

zero, and solve the resulting equation. Often the maximum likelihood equations are

complicated and a numerical solution will be possible only using computer programs and

libraries.

2.2. Some Specific NHPP Models

The first NHPP software reliability model was proposed by Goel and Okumoto (1979). It

has formed the basis for the models using the observed number of faults per time unit. A

number of other models were proposed after that, for example, the S-shaped model, the

log-power model, and the Musa-Okumoto model, etc. The Goel-Okumoto model has the

following mean value function

 μ () ()t a e bt= − −1 , a>0, b>0 (2)

where a = ∞μ () is the expected total number of faults in the software to be eventually

detected and b indicates the failure occurrence rate per each software fault.

6

The Goel-Okumoto model is probably the most widely used software reliability

model because of its simplicity and the easy interpretation of model parameters to

software engineering related measurements. This model assumes that there are a finite

number of faults in the software and the testing and debugging process does not

introduce more faults into the software.

The failure intensity function)(tλ is obtained by taking the derivative of the

mean value function, that is:

 btabe
dt

tdt −==
)()(μλ . (3)

Another useful NHPP model is the S-shaped reliability growth model proposed

by Yamada and Osaki (1984), which is also called the delayed S-shaped model. This

model has the following mean value function

))1(1()(btebtat −+−=μ , a>0, b>0. (4)

The parameter a can also be interpreted as the expected total number of faults eventually

to be detected and the parameter b represents a steady-state fault detection rate per fault.

This is a finite failure model with the mean value function)(tμ showing the

characteristic of S-shaped curve rather than the exponential growth curve of the Goel-

Okumoto model. This model assumes that the software fault detection process has an

initial learning curve, followed by growth when testers are more familiar with the

software, and then levelling off as the residual faults become more and more difficult to

detect.

Xie and Zhao (1993) proposed an NHPP model called Log-Power model. It has

the mean value function

)1(ln)(tat b +=μ , a>0, b>0. (5)

This model is a modification of the traditional Duane (1964) model. An important

property is that the log-power model has a graphical interpretation. If we take the

logarithmic on both sides of the mean value function, we have

7

)1ln(lnln)(ln tbat ++=μ . (6)

If the cumulative number of failures is plotted versus the running time, the plot should

tend to be on a straight line on a log-log scale. This can be used to validate the model

and to easily estimate the model parameters. When the plotted points cannot be fitted

with a straight line, the model is probably inappropriate, and if they can be fitted with a

straight line, then the slope and intercept on vertical axis can be used as estimates of b

and lna, respectively.

 Note that the log-power model, as well as the Duane model for repairable system,

allows)(tμ to approach infinity. These models are infinite failure models with the

assumption that the expected total number of failures to be detected is infinite. This is

valid in the situation of imperfect debugging where new faults are introduced in the

process of removing the detected faults.

Musa and Okumoto (1984) proposed an NHPP model called the logarithmic

Poisson model. It also has an unbounded mean value function

)1ln()(btat +=μ , a>0, b>0. (7)

This model was developed based on the fact that faults that contribute more to the failure

frequency, are found earlier, and it often provides good results in modelling software

failure data. However, unlike the log-power model, there is no graphical method for

parameter estimation and model validation.

The models introduced in this section are just a glimpse of the many SRGMs that

have appeared in the literature. For other models and additional discussion, see Xie

(1991). Understanding the software reliability models and their selection and validation

is essential for successful analysis (Musa et al., 1987, Friedman and Voas, 1995 and Lyu,

1996).

2.3 Model Selection and Validation

Model selection and validation is an important issue in reliability modelling analysis.

However, no single model has emerged to date that is superior to the others and can be

recommended to software reliability practitioners in all situations. To successfully apply

8

software reliability modelling techniques, we need to select the model that is the most

appropriate for the data set we need to analyse. Goodness-of-fit tests can normally be

performed to test the selected model. Some tests are reviewed in Gaudoin (1997).

Models can also be compared in order to select a model that is best fit for the data set we

want to analyse. On the other hand, as Musa et al (1987) has discussed, there are many

practical aspects in model selection.

Models can go wrong in many different ways. Each model has its own

assumptions for its validity. To validate a model, we can compare a model prediction

with the actual observation that is available later. An appropriate model should yield

prediction results within the tolerable upper and lower limits to the users. When a chosen

model is proven to be invalid, a re-selection process should begin to find a more

appropriate model.

Data collection is also critical for both model selection and validation. Good

quality data not only reflect the true software failure detection process but also form the

foundation to successful analysis.

3 CASE STUDY

In this section, a case study is presented based on a set of failure data obtained during the

system test of a large telecommunication project. The case study is used to illustrate how

a traditional NHPP software reliability model introduced in Section 2 is implemented in

practice.

The case study is based on the following background. A telecommunication

company under study has been collecting failure data for each of its software releases.

The data has been collected for documentation purpose without any further analysis to

make use of the data. However, they decided, as they started developing release j (j > 1)

of the system, to try applying software reliability modelling techniques to predict the

software system reliability.

 Although we have an earlier version of the software that had been tested and

failure data recorded for that version, when no such information is available, the standard

method assuming unknown parameters can be used. Graphical and statistical methods

9

can be employed for model validation and parameter estimation. The software failure

process is then described as failure process similar to any standard repairable system.

Hence, in this case study we will focus on the use of the earlier information and assume

that the information is made available, which is the case in our case study. On the other

hand, the use of traditional approach will be described first.

3.1. Data Set from Release j

Table 1 shows the failure data set collected during the system testing of the jth release of

a large and complex real time telecommunication system. There are 28 software system

components with the size of each component between 270 and 1900 lines of code. The

programming language used is a company internal language targeted at their specific

hardware platform. For each of the components, a problem report is filled in after the

detection of a failure during the testing, and corrective actions are taken to modify the

code, so similar problems will not be repeated. Each problem report corresponds to the

detection of one software failure. By the 28th week of release j, the number of problem

reports collected from testing was counted and are summarized in Table 1.

Although it is desirable to know the performance of the system as early as

possible, at this point the project manager of release j is interested knowing how reliable

this software system is, based on traditional reliability modelling prediction techniques.

3.2. Analysis of Reliability after the Release

To illustrate how traditional software reliability modelling techniques are used, first a

model has to be selected. For its simplicity in illustration, we use the Goel-Okumoto

model as an example in this case study. As mentioned, this model is the most widely

used NHPP model and the parameters have clear physical meaning.

Second, the parameters of the select software model should be estimated to

determine its mean value function)(tμ . The two parameters a and b of the Goel-

Okumoto model can be estimated by the maximum likelihood estimation (MLE) method

using the following non-linear equations:

10

$

()()

$

$ $ $

$ $

a
n

e

n

e e

n

e
t e t e

i
i

k

bt

i
bt bti

k i
i

k

bt i
bt

i
bt

k

i i k

i i

=
−

−
−

−
− =

⎧

⎨

⎪
⎪
⎪

⎩

⎪
⎪
⎪

=
−

− −=

=
−

−
−

−

∑

∑
∑

−

−

1

1

1
1

1

1
0

1

1

 (8)

The second equation can be solved numerically using the data set in Table 1 with

k=28. Then the estimate of b can be inserted into the first equation to obtain an estimate

of a. Solving the equations, we have

0999.0ˆ2.249ˆ == banda (9)

The software reliability model is determined by its mean value function,

estimated by

)1(2.249)(ˆ 0999.0 tet −−=μ . (10)

With the mean value function, the reliability R(x|t) of the software system for a given

time interval (t,t+x) can be calculated as follows:

)]1(2.249exp[)]1(exp[)|(ˆ 0999.00999.0 −×=−= −−−− ttbtbt eeeaetxR . (11)

Given t=0.2, we get R=0.74 at the end of the 28th week.

In addition to reliability, other types of analysis can be conducted. For example,

we can determine when to stop testing and release the system based on the criteria of

whether certain failure rate level 0λ has been achieved. To determine the release time τ,

we find the smallest t that satisfies the following requirement:

 0)(λλ ≤= −btabet . (12)

That is, b
ab

/ln 0
⎥⎦
⎤

⎢⎣
⎡−=

λ
τ .

11

For example, with our estimated model, tet 0999.00999.02.249)(−××=λ . Suppose

that the system can be released when the failure intensity is less than 1. Then

2.32/1ln =⎥⎦
⎤

⎢⎣
⎡−= b

ab
τ . That is, the system can be released after five more weeks of

testing.

4. PROBLEMS AND ALTERNATIVES

4.1. Some Practical Problems

In the previous section, we used a case study to show how traditional modelling

techniques are used for software reliability analysis. The maximum likelihood method is

commonly used to obtain the parameters of the model. However, the MLE requires a

large data set for an estimate to be reasonably stable. That is only when the number of

failures is large, the estimates will fluctuate slightly around the true value. A problem

with the MLE method is that there might be no solution, especially at the early stages of

software testing. This problem has been noticed in Knafl and Morgan (1996). A common

approach is to wait until we have a large number of failures and the estimation can then

be carried out. In the software industry, the availability of a large data set is often an

issue. Waiting for a large data set also means reliability analysis could only be done at a

later stage of the project development cycle when critical decisions have already been

made. On the other hand, we may not know how long we should wait and, when

estimates can be obtained, it is possible that after the next interval, there is again no

solution to the likelihood equations.

To illustrate the problems encountered in model parameter estimation using the

MLE in early stages of testing when only a small number of failures is collected, again

we use the data set presented in Table 1. We conducted model parameter estimation from

the 11th week onwards. The MLEs using the data collected at the end of each week are

given in Table 2. It can be noted that the estimates are not stable, and even may not exist

at the beginning. In fact, MLE does not exist before the 12th week. It is also not until the

24th week that the estimates start to stabilise. This is very late in the testing phase and

change of any decision-making can be difficult and costly. The release date probably has

12

already been decided by that time.

In fact, it is common that the MLE yields no solution or unstable solutions for

model parameter estimations at the early stage of software testing. This is a practical

problem that prevents the use of MLE in many cases.

Another problem revealed in the previous case study is perhaps the waste of

information. We noticed that the system was developed and tested in a series of releases,

which is quite common in the software industry today. However, the data collected from

the previous releases are ignored.

To solve these problems, the case of analysing software in previous releases

needs to be studied and a procedure for early stage software reliability predictions based

on this information is needed. It can be noted here that there are other approaches that

could be adopted, such as Bayesian approach. When using a Bayesian approach, prior

distributions are needed for the model parameters, and posterior distribution can then be

obtained via conditional probability. In the following, we will describe a simple

approach that has shown to be useful in our case study.

4.2. The Case with k Releases

In fact, nowadays, most large software systems are developed in such a way that each

version is a modification of an earlier release. A complete software product thus consists

of a series of releases. Traditional software reliability growth models require a large

amount of failure data, which is not usually available until the system has been tested for

a long time. Although such an analysis is useful for the prediction of field reliability and

for the estimation of software failure cost, many software developers would be more

interested in estimating the software reliability as early as possible for their planning

purpose. In our studies, we found that although two consecutive releases are not the

same, some information from the previous release is useful for early reliability prediction

of the current release.

Here we are concerned with a number of releases of a certain software system

and the underlying trend of software reliability. For the case of k releases, we use Nj

(j=1,2, ..., k) to denote the total number of faults and use bj (j=1,2, ..., k) to represent the

fault detection rate for the jth release in the series of k releases. If traditional reliability

13

modelling techniques are employed, failure information of that particular release is used.

During the early stage of the software fault detection process, we cannot provide any

reliability predictions before enough failure data become available to build a reliability

model of the release. However, after studying the characteristics of the fault detection

rate, we found that the fault detection rate bj-1 of the (j-1)th release can be used for the

early prediction of the jth release, which can be given as

 bj(t)= bj-1 (t), t>0. (13)

An unknown fault detection rate of most of the existing SRGMs always makes

the parameter estimation non-linear and requires regression or other estimation

techniques. On the other hand, once the fault detection rate bj is known, determination of

an SRGM becomes very straightforward. A procedure for making use of this early

information for reliability prediction using Goel-Okumoto model is illustrated in the next

section.

Note that equation (13) is an important assumption that should be verified. The

justification of that could be subjective by studying the actual testing process as a total

change of test personnel or testing strategy will certain lead to different fault detection

rate over the release. The verification could also be based on the data assuming both

parameters are unknown and estimated without using prior information. However, this

will require a large data set. In fact, when we have a sufficiently large data set, the prior

information may not be useful and the simple method of using a model and estimation

approach as described in Section 3.2 will be sufficient.

4.3. A Proposed Approach

A procedure for accurate software reliability prediction by making use of the information

from an early release of the software in the series of k releases is presented here. For

illustration, we use the Goel-Okumoto model as an example. We know that the current

jth release being developed has a previous (j-1)th release and we have some reliability

information about that release. We can apply the following procedures (see Figure 1) for

the early reliability prediction for the jth release (current release). A similar method was

14

presented in Xie et al. (1999).

First, according to the data collected in the previous (j-1)th release, a suitable

software reliability model μ j t−1() is selected. Then we apply μ j t−1() to the failure data

collected from the (j-1)th release and estimate the model parameters.

After the (j-1)th release, a new release j is developed, normally by the same

programming group. The traditional approach is to analyse this data set independently to

obtain the two parameters in the Goel-Okumoto model, aj and bj. However, we found that

the fault detection rate is quite stable for the consecutive releases, assuming that the

same team is performing the testing. It can be expected that the value of the fault

detection rate bj of the jth release is similar to the previous (j-1)th release, which is bj =

bj-1. Parameter aj is then estimated as a simple function of the known parameter bj.

Figure 1 indicates the flow of software reliability modelling and analysis by this

sequential procedure. Our focus in this chapter is on the first four boxes. The bottom four

boxes will be briefly discussed here.

There are different ways to carry out goodness-of-fit tests. The methods can be

different for different models. Standard tests such as the Kolmogorov-Smirnov test, the

Cramer-von Mises test and the Anderson-Darling test can be used. If a model is rejected,

another reasonable model should be selected. Usually this has to be based on experience

and physical interpretation. It is important to also compare with the case when no prior

information is used. This is because it is possible for earlier data to be, for example, of

different type or based on different failure definition, and hence the proposed approach is

no longer suitable.

For illustration of the proposed approach, the same data set used in Section 3 are

reanalysed in the following section, making use of additional information from the

earlier releases.

5 CASE STUDY (CONTINUED)

In the case study introduced in Section 3, based on the actual failure data given in Table

1, the MLEs of the parameters using the data available after each week were calculated

in Table 2. We have discussed the problems associated with this traditional reliability

15

modelling approach in the previous section and proposed a new approach enabling

reliability analysis to start as early as possible. In this section, we carry on with the case

study, looking at the reliability analysis of release j from the early stage of testing based

on the information from the previous release j-1.

5.1. Data Set from the Earlier Release

The system for which the failure data of release j was shown in Table 1, was one of the

company’s main products. The product went through a couple of releases and the

releases under investigation are considered typical releases of this particular system.

Prior to release j, the failure data of its previous release j-1 were also collected for

documentary purpose. The number of failures detected during the testing of release j-1

were summarised on a weekly basis as shown in Table 3. The Goel-Okumoto model was

chosen again for its reliability prediction. Based on Table 3, the MLEs of parameters aj-1

and bj-1 of release j-1 are obtained by solving equation (8). We get

 098076.0ˆ48.199ˆ 11 == −− jj banda . (14)

In the following this assumption will be used. Of course, when a large number of failures

have occurred, it is more appropriate to use the complete failure data without assuming

any prior knowledge of b. In fact, this was done in section 3.2 and an estimate of b is

0.0999 in equation (9) which is very close to that in equation (14). On the other hand, the

justification of making the assumption initially should be based on process and

development related information which is the case here; the products were developed in

a similar environment and tested with the same strategy and hence the occurrence rate

per fault is expected to remain the same.

5.2. Earlier Prediction for Release j

Using the procedures discussed in Section 4, we can actually start reliability analysis at a

very early stage of release j making use of the information from its previous release j-1.

First, we estimate the two parameters aj and bj of the Goel-Okumoto model for release j.

Note that in this case, we assume that

16

 098076.0ˆ

1 == −jj bb (15)

The estimate of parameter aj for release j is obtained by

kj tb

k

i
i

j e

n
a −

=

−
=
∑

1
ˆ 1 . (16)

where in (i=1,…, k) is the observed number of failures in interval),[1 ii tt − as before.

Table 4 shows the re-estimation of parameter ja of release j at the end of each

week starting from the 11th week by using the parameter 1
ˆ
−= jj bb from release j-1.

Second, the mean value function)(tjμ of release j can be easily obtained using

equation (2) and Table 4. Actually, with this information available from the (j-1)th

release, the reliability prediction can be started as early as the second week of the system

testing after the failure data were collected for the first week.

5.3. Interval estimation

A comparison of the early reliability prediction approach with the case of traditional

approach without using the previous release information is made in this section. We only

need to compare the estimates of parameter a using these two approaches. However, in

addition to the comparison of two point estimates, we also show the 95% confidence

intervals of the values of parameter aj using the proposed early prediction approach. In

fact, for practical decision making and risk analysis, interval estimation should be more

commonly used as it provides the statistical significance with the values used.

For the interval estimation, we first estimate the parameters ja and jb of the

Goel-Okumoto model using our proposed early prediction method and can construct

95% confidence intervals for the estimated parameter aj. To obtain confidence limits, we

calculate the asymptotic variance of the MLE of the parameter aj and we get (Xie and

Hong, 2001),

17

 1 1
2

2

/ ()
[ln]

I a
E L

a

=
−
∂
∂

. (17)

Here, lnL is given by

ln ln{
[() ()]

!
exp[(() ())]}

{ ln[() ()] [() ()] ln !}

L
t t

n
t t

n t t t t n

i i
n

i
i i

i

k

i i i i i i
i

k

i

=
−

− −

= − − − −

−
−

=

− −
=

∑

∑

μ μ
μ μ

μ μ μ μ

1
1

1

1 1
1

. (16)

Applying this result to the Goel-Okumoto model, we get

 2
1

ˆ
2

2

ˆ
]ln[)(

a

n

a
LEaI

k

i
i

aa

∑
=

=

=−=
∂

∂ . (17)

For a given confidence level α , the two-sided confidence intervals for parameter a is

)ˆ(

ˆ 2/

aI
z

aaL
α−= , and

)ˆ(
ˆ 2/

aI
z

aaL
α+= . (18)

where 2/αz is the [100(1-α)/2]th standard normal percentile. Given α =0.05, for

example, we get 96.1025.02/ == zzα .

The 95% confidence intervals for the prediction of parameter ja using parameter

1−= jj bb are shown in Table 5. Interval estimation provides more information than a

point estimate and it can help the decision maker to consider the risk when a bound is to

used for further analysis or resource allocation.

Also, from Table 5, we can see that the 95% confidence intervals are very wide

and this is because of the limited amount of data and the variability of the failure

process. In fact, this is a typical situation in the analysis of software failure data,

especially when only a small number of failures have occurred. When the testing is

continued and more failures are observed, the confidence interval will become narrower.

18

6 DISCUSSION

Early software reliability prediction has attracted great interests from software managers.

Most large software systems today are developed in such a way that they are a

modification of an earlier release. Although two releases of software are not the same,

some information should be useful for the predictions. We know that the common way of

estimating parameter b of the Goel-Okumoto model usually requires programming and

only numerical solutions can be obtained. This means obtaining an analytical solution for

parameter b is not practical for many software managers. The proposed method of

estimating the model parameter by making use of the information of a previous release

solves this problem nicely. Two case studies were presented and compared in this

chapter.

However, there are also some limitations. The usage of early information for

reliability prediction is based on the assumption that the testing efficiency is the same

and the current software release can be analysed using the same type of reliability

models as the prior release. When these assumptions are not satisfied, the method

proposed in this chapter is not longer applicable.

References:

Blischke, W.R. and Murthy, D.N.P. (2000). Reliability; Modeling, Prediction and
Optimization. Wiley, New York.

Duane, J.T. (1964). Learning curve approach to reliability monitoring. IEEE
Transactions on Aerospace, 2, 563-566.

Friedman, M.A. and Voas, J.M. (1995). Software Assessment: Reliability, Safety,
Testability. Wiley, New York.

Gaudoin, O. (1998). CPIT goodness-of-fit tests for the power-law process.
Communications in Statistics – A: Theory and Methods, 27, 165-180.

Goel, A.L. and Okumoto, K. (1979). Time-dependent error-detection rate model for
software reliability and other performance measures. IEEE Transactions on
Reliability, 28, 206-211.

Knafl, G.J. and Morgan, J. (1996). Solving ML equations for 2-parameter Poisson-
process models for ungrouped software-failure data. IEEE Transactions on

19

Reliability, 45, 42-53.

Laprie, J.C. and Kanoun, K. (1992). X-ware reliability and availability modelling. IEEE
Transactions on Software Engineering, 18, 130-147.

Lyu, M. R. (1996). Handbook of Software Reliability Engineering, McGraw-Hill, New
York.

Musa, J.D., Iannino, A. and Okumoto, K. (1987). Software Reliability: Measurement,
Prediction, Application, McGrow-Hill, New York.

Rigdon, S.E. and Basu, A.P. (2000). Statistical Methods for the Reliability of Repairable
Systems. Wiley, New York.

Xie, M. (1991). Software Reliability Modelling. World Scientific Publisher, Singapore.

Xie, M. and Hong, G.Y. (2001). Software reliability modeling, estimation and analysis.
In Handbook of Statistics 20: Advances in Reliability (N. Balakrishnan and C.R. Rao,
Eds), Elsevier, London.

Xie, M., Hong, G.Y. and Wohlin, C. (1999). Software reliability prediction incorporating
information from a similar project. Journal of Systems and Software, 49, 43-48.

Xie, M. and Zhao, M. (1993). On some reliability growth-models with simple graphical
interpretations. Microelectronics and Reliability, 33, 149-167.

Yamada, S. and Osaki, S. (1984). Nonhomogeneous error detection rate models for
software reliability growth. In Stochastic Models in Reliability Theory, Springer-
Verlag, Berlin, pp.120-143.

Yang. B. and Xie, M. (2000). A study of operational and testing reliability in software
reliability analysis. Reliability Engineering and System Safety, 70, 323-329.

Exercises

1. It is possible to use an S-shaped NHPP model for the data set in Table 1. Use this

model and estimate the model parameters. Discuss the pros and cons of this model.

2. The Duane model is widely used for repairable system reliability analysis and

software system reliability during the testing can be considered as a special case. Use

the Duane model and discuss the estimation and modelling issues. In particular,

explain if this model should be used.

3. Derive the MLE for the log-power model. Note that you can get an analytical

solution for both parameters.

4. The Goel-Okumoto model, although commonly used, assumes that each software

20

fault contributes the same amount of software failure intensity. Discuss this

assumption and explain how it can be modified.

5. Software reliability model selection is an important issue. Study the failure intensity

function of the Goel-Okumoto model and log-power model and give some

justification for using each of them in different cases.

6. Use the MLE and the graphical method for the log-power model to fit the data set in

Table 1. Compare the results.

7. Discuss how the proposed method of earlier estimation in Section 4 can be used for

more complicated NHPP models, such as those with three parameters.

8. What is the estimated intensity function at the time of release for release j? You may

use the Goel-Okumoto model with the estimated parameter in (9).

9. Discuss how the intensity function can be used to determine the release time. For

example, assume that there is a failure rate requirement,.that is, a requirement that

the software cannot be released before the failure intensity reaches a certain level.

10. When prior information is to be used, an alternative approach is to use Bayesian

analysis. Comment on the selection an of appropriate probability model, including

prior distributions, in the context of the available information, and discuss the

application of the Bayesian methodology in this type of study.

21

Table 1 Number of failures per week from a large communication system

Week Failures Week Failures Week Failures Week Failures
1 3 8 32 15 7 22 3
2 3 9 8 16 0 23 4
3 38 10 8 17 2 24 1
4 19 11 11 18 3 25 2
5 12 12 14 19 2 26 1
6 13 13 7 20 5 27 0
7 26 14 7 21 2 28 1

Table 2 The ML estimates of the model parameter for Release j.

(Note that prior to the 12th week, the ML estimates do not exist)

Week
jâ

jb̂ Week
jâ

jb̂

11 NA NA 20 NA NA

12 211.3 0.180 21 276.8 0.0771

13 NA NA 22 269.5 0.0819

14 NA NA 23 NA NA

15 NA NA 24 261.9 0.0878

16 269.4 0.0924 25 259.6 0.0896

17 483.5 0.0335 26 256.3 0.0923

18 NA NA 27 250.2 0.0991

19 NA NA 28 249.2 0.0999

22

Table 3. Number of failures per week from the previous release (j-1).

Week Failures Week Failures Week Failures Week Failures Week Failures
1 2 11 17 21 1 31 0 41 0

2 11 12 31 22 1 32 0 42 0

3 18 13 8 23 1 33 0 43 1

4 10 14 7 24 0 34 0 44 1

5 12 15 10 25 1 35 1 45 0

6 4 16 2 26 1 36 0 46 0

7 28 17 2 27 0 37 1 47 1

8 6 18 0 28 0 38 0 48 0

9 7 19 3 29 0 39 0 49 0

10 6 20 2 30 1 40 0 50 1

Table 4 Parameter ja estimation assuming 1
ˆ

−= jj bb

Week aj (1
ˆ

−= jj bb) Week aj (1
ˆ

−= jj bb)
11 262.12 20 264.58
12 270.32 21 268.20
13 269.23 22 264.58
14 269.20 23 261.39
15 270.01 24 258.57
16 262.70 25 256.05
17 258.86 26 253.82
18 256.97 27 251.83
19 254.48 28 250.05

23

Table 5 95% confidence intervals for parameter ja assuming 1−= jj bb

Week
ja (1

ˆ
−= jj bb) jUa jLa jâ (Traditional)

12 270.32 309.07 219.29 211.32
14 269.20 306.41 231.58 N.A.
16 262.70 298.40 231.98 269.42
18 256.97 291.94 226.99 N.A.
20 254.48 289.84 222.46 N.A.
22 264.58 298.49 230.68 266.51
24 258.57 291.69 225.44 260.22
26 253.82 286.34 221.30 257.39
28 250.05 282.09 218.01 249.22

24

Model Selection for

Release j-1

Perform
goodness of fit

test

Model Parameter
Estimation for Release

j-1

Assuming the Same
Parameter bj=bj-1

Estimation of
Parameter aj

With Parameter bj =bj-1

Comparison with
the Case of No
Prior Information

Choose
another
model

Reject

Accept

Decision Making

Figure 1 Procedures of using early information in reliability prediction

